用户名: 密码: 验证码:
表面展示甲基对硫磷水解酶的解脂耶罗威亚酵母工程菌的构建及全细胞酶固定化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用表面展示质粒pINA1317-YICPW110将来源于假单胞菌(Pseudomonas sp.)WBC-3的甲基对硫磷水解酶(methyl parathion hydrolase, MPH)展示在解脂耶罗威亚酵母(Yarrowia lipolytica)Po1h细胞表面,研究了重组工程菌的催化特性和降解性能。该工程菌安全无害、不携带抗性基因、目的基因表达无需诱导且可稳定遗传,而且避免了采用非表面展示重组工程菌进行甲基对硫磷降解时需要破碎细胞、酶纯化时活性降低、酶与底物接触不充分等问题;为进一步提高全细胞酶的重复使用性和连续操作的稳定性,通过将绿色木霉(TrichodermaViride)内切葡聚糖酶IV(EG IV)的纤维素结合域(cellulose binding domain, CBD)与甲基对硫磷水解酶的融合蛋白展示在Y. lipolytica Po1h细胞表面,构建了可特异吸附于纤维素基质上的全细胞甲基对硫磷水解酶,采用固定化全细胞酶对甲基对硫磷进行降解研究,解决了甲基对硫磷水解酶采用常规固定化方法出现的活力下降、操作繁琐、费用昂贵等问题。本文构建了一种操作简便、稳定高效、安全无害的固定化全细胞甲基对硫磷水解酶,开辟了国内甲基对硫磷降解的新思路和新手段,为甲基对硫磷降解提供了理论依据和技术支撑。主要研究结果如下:
     (1)利用表面展示质粒pINA1317-YlCWP110将Pseudomonas sp.WBC-3的甲基对硫磷水解酶在Y. lipolytica Po1h上进行了表面展示,通过免疫荧光检测和蛋白酶敏感性分析确定甲基对硫磷水解酶已成功展示于Y. lipolytica Po1h细胞表面。筛选得到甲基对硫磷水解酶酶活力最高的转化子Z51,其甲基对硫磷水解酶比酶活力为36.5±0.5U/mg cells(450.6±7.3U/mL cell suspension),酶活力优于已有的多种重组表达的甲基对硫磷水解酶活力。
     (2)表面展示甲基对硫磷水解酶的最适作用pH为9.5,在pH4.0-11.5之间较稳定;最适作用温度为40℃,在40℃以下稳定性较好。Co2+、Mn2+、 Ni2+、Cu2+对表面展示甲基对硫磷水解酶活性有激活作用,Ag+、Li+、Ba2+、Hg2+对展示酶活力有抑制作用,K+、Zn2+、Ca2+、Mg2+、Fe2+、Fe3+、Na+对展示酶活力没有明显的影响。在10.0mL反应体中的最佳水解条件为100mg/L甲基对硫磷、2.6×107cells/ml表面展示甲基对硫磷水解酶的酵母细胞、反应时间30min,甲基对硫磷水解率可达90.8%。全细胞酶终浓度为2×107cells/ml、甲基对硫磷浓度为20.0mg/L的不同水体40℃、180rpm振荡反应40min,甲基对硫磷的降解率依次为淡水(pH9.5)98.7%、淡水(pH6.8)97.0%、海水(pH9.5)96.5%和海水(pH8.2)94.4%,全细胞酶重复使用4次后,仍可保持70%以上的活力。全细胞酶在4℃放置30天,仍能保持94%的活性。
     (3)采用重叠延伸PCR技术,构建绿色木霉EG IV的CBD和Pseudomonassp.WBC-3MPH的融合基因片段,利用表面展示质粒pINA1317-YlCWP110将MPH-CBD融合蛋白在Y. lipolytica Po1h酵母上进行了表面展示,通过免疫荧光检测和蛋白酶敏感性分析确定MPH-CBD融合蛋白已成功展示于Y. lipolytica Po1h细胞表面。筛选得到甲基对硫磷水解酶酶活力最高的转化子M3,其甲基对硫磷水解酶比酶活力为33.1±1.1U/mg cells(381.0±9.2U/mL cell suspension),甲基对硫磷水解酶的活性基本未受到CBD的影响。
     (4)表面展示MPH-CBD融合蛋白的转化子M3细胞吸附纤维素基质的最适pH为8.0,最适温度为4℃,在4℃-40℃之间具有良好的吸附性。M3细胞通过表面展示的MPH-CBD融合蛋白对纤维素基质具有较高的吸附能力,且细胞与纤维素基质的的结合非常牢固。将M3细胞固定于微晶纤维素上,制成固定化全细胞酶。填充有固定化全细胞酶的柱式生物反应器于流速为120ml/h、pH为9.5、温度为室温25℃时,对26.0mg/L甲基对硫磷的降解率在10min时即可达到80%以上。在随后的60min内,甲基对硫磷的降解率一直保持在80%左右。反应器在30天内对26.0mg/L的甲基对硫磷可保持约77%的降解率。
In this study,the methyl parathion hydrolase (MPH) gene of Pseudomonas sp.WBC-3was cloned into the multiple cloning site of the surface display vectorpINA1317-YlCWP110and displayed on the surface of Yarrowia lipolytica Po1h cells,and the catalytic characteristic and degradation property of the recombinantengineered yeast were investigated. This engineered yeast was safe and didn’t carryantibiotic resistance genes, and its expression of recombinant MPH gene which wasgenetically stable was free from special induction. And it will avoid cell lysis, activitydecrease during the process of enzyme purification and obstacle of enzyme andsubstrates contact when using non-surface-display recombinant engineered strains formethyl parathion (MP) degradation. In order to further improve the repeatability andcontinuous operation stability of whole cell enzyme, the MPH-CBD fusion protein ofcellulose binding domain (CBD) of endo-glucanase IV from Trichoderma Viride andMPH from Pseudomonas sp. WBC-3was displayed on the surface of Yarrowialipolytica Po1h cells to construct the whole-cell methyl parathion hydrolase whichspecifically bounded to cellulose supports, by which the inferiority of activitydecrease, complicate operation and high cost of traditional MPH immobilizationmethod is solved. In this study, a kind of convenient, stable, effective and safeimmobilized whole-cell methyl parathion hydyolase was constructed and provided anew perspective and method of methyl parathion degradation, and it may serve as thetheoretical basis and technological support for degradation of methyl parathion. Themain research achievements of this study were as follows:
     (1) The methyl parathion hydrolase of Pseudomonas sp. WBC-3was displayed on the cells of Yarrowia lipolytica Po1h using surface display vectorpINA1317-YlCWP110, the authenticity of the display of methyl parathion hydrolaseon the cell surface of Y.lipolytica Po1h has been confirmed by immunofluorescenceand proteinase accessibility assay. Transformant Z51was selected with the highestmethyl parathion hydrolase activity of36.5±0.5U/mg cells(450.6±7.3U/mL cellsuspension), which preceded that of many present recombinant methyl parathionhydrolases.
     (2) The displayed methyl parathion hydrolase had the optimal pH of9.5and theoptimal temperature of40℃respectively and was stable in the pH range of4.0–11.5and up to40℃. The displayed methyl parathion hydrolase was stimulated by Co2+、Mn2+、Ni2+and Cu2+, and was inhibited by Ag+、Li+、Ba2+、Hg2+, however it was notaffected by K+、Zn2+、Ca2+、Mg2+、Fe2+、Fe3+、Na+. The optimal hydrolysis conditionin10.0mL of the reaction mixture was2.6×107cells/ml of yeast cell concentration,100mg/L of the substrate concentration and30min of reaction time, under which90.8%of methyl parathion was hydrolyzed. Different kind of water containing20.0mg/L ofmethyl parathion and2×107cells/m of the yeast cells displaying MPH was incubatedat40℃by shaking at180rpm for40min,98.7,97.0,96.5and94.4%of methylparathion in tap water (pH9.5), tap water (pH6.8), seawater (pH9.5) and naturalseawater (pH8.2) were hydrolyzed, respectively. Over70.0%of the activitymaintained after reused for four times and almost94%of whole cell MPH activityretained over a period of30days.
     (3) By employing overlap extension PCR, the fusion gene segment of CBD ofendo-cellulase IV from Trichoderma Viride and MPH from Pseudomonas sp. WBC-3was constructed and the MPH-CBD fusion protein was displayed on the cells ofYarrowia lipolytica Po1h with pINA1317-YlCWP110. The authenticity of the displayof MPH-CBD fusion protein on the cell surface of Y.lipolytica Po1h has beenconfirmed by immunofluorescence and proteinase accessibility assay. TransformantM3was selected with the highest methyl parathion hydrolase activity of33.1±1.1U/mg cells (381.0±9.2U/mL cell suspension), which indicated that themethyl parathion hydrolase activity was not significantly affected by CBD.
     (4) The optimal conditions for M3cells displayed the MPH-CBD fusion proteinbinding to cellulose substrate was at pH8.0and40℃respectively and M3cells alsoshowed high binding affinity to cellulose substrate at the temperature range of4℃-40℃. M3cells exhibited a high ability for attaching to cellulose substrate throughMPH-CBD fusion protein, and this bond was extremely tight. M3cellsimmobilization was performed by using microcrystalline cellulose as cellulose matrix.The bioreactor column packed with immobilized whole cell enzyme could hydrolyzeover80%of26.0mg/L methyl parathion in the10th minute under the condition of25oC, pH9.5and the120ml/h of flow rate, and the degradation ratio was maintained atabout80%in the subsequent60minutes.77%degradation ratio was retained against26.0mg/L methyl parathion over a period of30days.
引文
白红妍,韩彬,郑立,等.桑沟湾水体中有机磷农药残留组成与分布.岩矿测试,2012,31(4):632-637
    陈明,梁春穗,黄伟雄,等.广东省蔬菜水果中有机磷农药残留监测与评价.中国食品卫生杂志,2009,21(2):117-119
    陈亚丽,张先恩,刘虹,等.甲基对硫磷降解菌假单胞菌WBC-3的筛选及其降解性能的研究.微生物学报,2002,42(4):490-497
    楚晓娜.甲基对硫磷水解酶(MPH)的纯化、性质及酶制剂的研究.中国科学院硕士学位研究生学位论文,2001
    楚晓娜,张先恩,陈亚丽,等.假单胞菌WBC-3甲基对硫磷水解酶性质的初步研究.微生物学报,2003,43(4):453-459
    付宇,陈彦凤,刘长福,等.2010年黑龙江省市售蔬菜中有机磷农药的监测结果.职业与健康,2012,28(19):2372-2373
    高兰,李浩明.表面展示技术在污染环境生物修复中的应用.应用与环境生物学报,2005,1l(2):256-259
    李莹莹,李文,张琛,等.甲基对硫磷降解菌L1的分离、鉴定及降解酶基因的克隆.生物技术通报,2008,(6):128-131
    李永玉,洪华生,王新红,等.厦门海域有机磷农药污染现状与来源分析.环境科学学报,2005,25(8):1071-1077
    刘璐璐.甲基对硫磷水解酶的研究.中国科学院硕士学位研究生学位论文,2003
    马晓艳,王春民,张秋萍,等.2009年苏州市蔬菜中有机磷农药残留状况监测及分析.中国卫生检验杂志,2010,20(9):2260-2261
    田艳,廖平德,邓超冰,等.邕江南宁段和南宁城市内河中的有机磷农药调查.广西科学院学报,2012,28(3):216-218
    许育新,冯昭中,陆鹏,等.甲基对硫磷降解茵PF32的分离鉴定及其降解特性研究.农药学学报,2009,11(3):329-334
    杨璇.珠江河口水体常见有机磷农药污染现状及风险评价.暨南大学硕士学位论文,2011
    于志勇,金芬,孙景芳,等.北京市场常见淡水食用鱼体内农药残留水平调查及健康风险评价.环境科学,2013,34(1):251-256
    岳礼溪.解脂耶罗威亚酵母菌表面展示质粒的构建及应用的初步研究.中国海洋大学博士学位论文,2009
    张红星,李茜茜,叶婷,等.细胞表面展示有机磷水解酶的恶臭假单胞菌工程菌的构建及全细胞酶活性分析.华中农业大学学报,2008,27(1):65—70.
    朱丽芳,周文军,王经委.杭嘉湖地区饮用水源有机农药污染现状调查与分析.浙江水利水电专科学校学报,2012,24(2):51-59.
    Barth G, Beckerich J M. Functional genetics of industrial yeasts. New York: Springer-Verlag,2003:227-271
    Benning M M, Kuo J M, Raushel F M, et al. Threedimensional structure of phosphotriesterase: anenzyme capable of detoxifying organophosphate nerve agents. Biochemistry,1994,33:15001–15007
    Benning M M, Kuo J M, Raushel F M, et al. Threedimensional structure of the binuclear metalcenter of phosphotriesterase. Biochemistry1995,34:7973–7978
    Benning M M, Shim H, Raushel F M, et al. High resolution X-ray structures of differentmetal-substituted forms of phosphotriesterase from Pseudomonas diminuta. Biochemistry,2001,40:2712–2722
    Bhadbhade B J, Sarnaik S S, Kanekar P P. Biomineralization of an organophosphorus pestieide,Monocrotophos, by soil baeteria. J Appl Microbiol,2002,93(2):224–234
    Cheng T C, DeFrank J J. Hydrolysis of Organophosphorus Compounds by Bacterial Prolidases. In:Zwanenburg B, Mikolajczyk M, Kielbasinski P (eds) Enzymes in action green solutions forchemical problems,2000, vol33. Kluwer Academic, Dordrecht, pp243–261
    Cui Z L, Li S P, Fu G P. Isolation of methyl parathion degrading strain M6and cloning of themethyl parathion hydrolase gene. Appl Environ Microbiol,2001,67:4922–4925
    Dong Y J, Bartlam M, Sun L, et al. Crystal structure of methyl parathion hydrolase fromPseudomonas sp.WBC-3. J Mol Biol,2005,353(3):655–63
    Efremenko E N, Sergeeva V S. Organophosphate hydrolase—an enzyme catalyzing degradationof phosphoruscontaining toxin and pesticides. Russ Chem Bull Intern Ed,2001,50:1826–1832
    Errampalli D, Tresse O, Lee H, et al. Bacterial survival and mineralization of p-nitrophenol in soilby green fluorescent protein-marked Moraxella sp. G21encapsulated cells. FEMS Microbiol.Ecol,1999,30:229–236
    Francisco J. A, Staphopoulos C, Warren R A J, et al. Specific adhesion and hydrolysis of celluloseby intact Escherichia coli expressing surface anchored cellulose or cellulose binding domain.Bio Technol,1993,11:491–495
    Fu G P, Cui Z, Huang T, et al. Expression, purification, and characterization of a novel methylparathion hydrolase. Prot Expres Purif,2004,36:170–176
    Ghanem E, Raushel FM. Detoxification of organophosphate nerve agents by bacterialphosphotriesterase. Toxicol Appl Pharmacol,2005,207:459–470
    Horne I, Sutherland T D, Harcourt R L, et al. Identification of an opd (organophosphatedegradation) gene in an Agrobacterium isolate. Appl Environ Microbiol,2002,68:3371–3376
    Ito J, Fujita Y, Ueda M, et al. Improvement of cellulose-degrading ability of a yeast straindisplaying Trichoderma reesei Endoglucanase II by recombination of cellulose-bindingdomains. Biotechnol Prog,2004,20:688–691
    Kim J W, Rainina E I, Mulbry W W, et al. Enhanced-rate biodegradation of organophosphateneurotoxins by immobilized nongrowing bacteria. Biotechnol Prog,2003,18:429–436
    Lehtio J, Wemerus H, Samuelson P, et a1. Directed immobilization of recombinant staphylococcion cotton fibers by functional display of a fungal cellulose-binding domain. FEMS MicrobiolLett,2001,195:197–204
    Lei Y, Mulehandani A, Chen W. Improved degradation of organophosphorus nerve agents andp-nitrophenol by Pseudomonas putida JS444with surface-expressed organophosphorushydrolase. Biotechnol Prog,2005,21(3):678–681
    Li C K, Zhu Y R, Benz I, et al. Presentation of functional organophosphorus hydrolase fusions onthe surface of Escherichia coli by the AIDA-I autotranspoter pathway. Biotechnol Bioeng,2008,99:485–490.
    Li X H, Zhang P, Liang SH, et al. Molecular cloning and characterization of a putative cDNAencoding endoglucanase IV from Trichoderma Viride and its expression in Bombyx Mori.Appl Biochem Biotechnol,2012,166:309–320.
    Liu F Y, Hong M Z, Liu D M, et al. Biodegradation of methyl parathion by Acinetobacterradioresistens USTB-04. J Environ Sci,2007,19:1257–1260.
    Liu G, Yue L, Chi Z, et al. The surface display of the alginate lyase on the cells of Yarrowialipolytica for hydrolysis of alginate. Mar Biotechnol,2009,11:619–626
    Liu H, Zhang J J, Wang S J, et al. Plasmid-borne catabolism of methyl parathion andp-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem Biophys Res Commun,2005,334:1107–1114.
    Liu Y H, Liu Y, Chen Z S, et al. Purification and characterization of a novel organophosphoruspesticide hydrolase from Penicillium lilacinum BP303. Enzyme Microbiol Technol,2004,34:297–303
    Madzak C, Gaillardin C, Beckerich J M. Heterologous protein expression and secretion in thenon-conventional yeast Yarrowia lipolytica: a review. Journal of Biotechnology,2004,109:63-81.
    Mansee A H, Chen W, Mulchandai A. Biodetoxification of coumaphos insecticide usingimmobilized Escherichia coli expressing organophosphorus hydrolase enzyme on cellsurface. Biotechnol Bioprocess Eng,2000,5:436–440
    Mansee A H, Chen W, Mulchandani A. Detoxification of the organophosphate nerve agentcoumaphos using organophosphorus hydrolase immobilized on cellulose materials. J IndMicrobiol Biotechnol,2005,32:554–560
    Masako O. The ultrastructure of yeast: cell wall structure and formation. Micron,1998,29:207-233.
    Mulbry W W, Karns J S, Kearney P C, et al. Identification of a plasmid-borne parathion hydrolasegene from Flavobacterium sp. by southern hybridization with opd from Pseudomonasdiminuta. Appl Environ Microbiol,1986,51:926–930
    Mulehandani A, Kaneva I, Chen W. Detoxification of organophosphate nerve agents byimmobilized Eseheriehia coli with surface expressed organophosphorus hydrolase.Biotechnol Bioeng,1999,63(2):216–223
    Nam J M, Fujita Y, Arai T, et al. Construction of engineered yeast with the ability of binding tocellulose. Journal of Molecular Catalysis B: Enzymatic,2002,17:197–202.
    Ni X M, Yue L X, Chi Z M, et al. Alkaline protease gene cloning from the marine yeastAureobasidium pullulans HN2-3and the protease surface display on Yarrowia lipolytica forbioactive peptide production. Mar Biotechnol,2009,11:81–89.
    Nicaud J. M, Madzak C, Vanden B P, et al. Protein expression and secretion in the yeast Yarrowialipolytica. FEMS Yeast Res,2002,2:371-379.
    Nikkila K K, Alakuijala U, Saris P E G. Immobilization of Lactococcus lactis to cellulosicmaterial by cellulose-binding domain of Cellvibrio japonicas. Journal of AppliedMicrobiology.2010,109:1274–1283
    Pakala S B, Gorla P, Pinjari A B, et al. Biodegradation of methyl parathion and p-nitrophenol:evidence for the presence of a p-nitrophenol2-hydroxylase in a gram-negative Serratia sp.strain DS001. Appl Microbiol Biotechnol,2007,73:1452–1462.
    Raushel F M. Bacterial detoxification of organophosphate nerve agents. Curr Opin Microbiol,2002,5:288–295
    Richins R D, Kaneva I, Mulchandai A, et al. Biodegradation of organophosphorus pesticides bysurface-expressed organophosphorus hydrolase. Nat Biotechnol,1997,15(10):984–987
    Richins R D, Mulchandai A, Chen W. Expression, Immobilization, and enzymatic characterizationof cellulose-binding domain-organophosphorus hydrolase fusion enzymes. Biotechnologyand bioengineering,2000,69(6):591–596.
    Robinson C R, Sauer R T. Optimizing the stability of single chain proteins by linker length andcomposition mutagenesis. Proc Natl Acad Sci USA,1998,95:5929–5934.
    Serdar C M, Gibson D T, Munnecke D M, et al. Plasmid involvement in parathion hydrolysis byPseudomonas diminuta. Appl Environ Microbiol,1982,44:246–249
    Shen Y J, Lu P, Mei H, et al. Isolation of a methyl parathion-degrading strain Stenotrophomonassp. SMSP-1and cloning of the ophc2gene. Biodegradation,2010,21(5):785-792.
    Shimazu M, Nguyen A, Mulchandani A, et al. Cell surface display of organophosphorus hydrolasein Pseudomonas Putida using an ice nucleation protein anchor. Biotechnol Prog,2003,19(5):1612–1614
    Singh B K, Walker A. Microbial degradation of organophosphorus compounds. FEMS MicrobiolRev,2006,30:428–471.
    Takayama K, Suye S, Kuroda K, et al. Surface display of organophosphorus hydrolase onSaccharomyces cerevisiae. Biotechnol Prog,2006,22:939–943.
    Theriot C M, Grunden A M. Hydrolysis of organophosphorus compounds by microbial enzymes.Appl Microbiol Biotechnol,2011,89:35–43
    Ueda M, Tanaka A. Genetic immobilization of proteins on the yeast cell surface. Biotechnol Adv,2000,18:121–140.
    Vanhooke J L, Benning M M, Raushel F M, et al. Threedimensional structure of thezinc-containing phosphotriesterase with the bound substrate analog diethyl4-methylbenzylphosphonate. Biochemistry,1996,35:6020–6025
    Wang A A, Chen W, Mulchandani A detoxification of organophosphate nerve agents byimmobilized dual functional biocatalysts in a cellulose hollow fiber bioreactor. BiotechnolBioeng,2005,91(3):379–186
    Wang A A, Mulchandani A, Chen W. Specific adhesion to cellulose and hydrolysis oforganophosphate nerve agents by a genetically engineered Escherichia coli strain with asurface-expressed cellulose-binding domain and organophosphorus hydrolyase. Appl EnvironMicrobiol,2002,68:1684–1689.
    Wang A A, Mulchandani A, Chen W. Whole-cell immobilization using cell surface-exposedcellulose-binding domain. Biotechnol Prog,2001,17:407–411.
    Wang J Y, Chao Y P. Immobilization of cells with surface-displayed chitin-binding domain. Appl.Environ. Microbiol,2006,72:927–931.
    Washida M, Takahashi S, Ueda M., et al. Spacer-mediated display of active lipase on the yeastcell surface. Appl Microbiol Biotechnol,2001,56:681–686.
    Wu N. F, Deng M. J, Liang G Y, et al. Cloning and expression of ophc2, a new organophosphorushydrolase gene. Chin Sci Bull,2004,49:1245–1249
    Xuan J W, Fournier P, Gaillardin C. Cloning of the LYS5gene encoding saccharopinedehydrogenase from the yeast Yarrowia lipolytica by target integration. Curr. Genet,1988,14:15-21.
    Yang C, Cai N, Dong M, et al. Surface display of MPH on Pseudomonas putida JS444using icenucleation protein and its application in detoxification of organophosphates. BiotechnolBioeng,2008a,99:30–37.
    Yang C, Zhao Q, Liu Z, et al. Cell Surface Display of Functional Macromolecule Fusions onEscherichia coli for Development of an Autofluorescent Whole-Cell. Biocatalyst Environ SciTechnol,2008b,42:6105–6110
    Yang J J, Yang C, Jiang H, et al. Overexpression of methyl parathion hydrolase and its applicationin detoxification of organophosphates. Biodegradation,2008c,19:831–839
    Yong Y C, Zhong J J. Recent advances in biodegradation in China: New microorganisms andpathways, biodegradation engineering, and bioenergy from pollutant biodegradation. ProcessBiochem,2010,45(12):1937-1943
    Yu H, Yan X, Shen W, et al. Expression of methyl parathion hydrolase in Pichia pastoris. Curr.Microbiol,2009,59:573–578.
    Yue L X, Chi Z M, Wang L, et al. Construction of a new plasmid for surface display on cells ofYarrowia lipolytica. J Microbiol Method,2008,72:116–123.
    Zaidi R, Imam S.H., R.V. Greene. Accelerated biodegradation of high and low concentrations ofp-nitrophenol (PNP) by bacterial inoculation in industrial wastewater: the role of inoculumsize on acclimation period. Curr Microbiol,1996,33:292–296.
    Zhang Z H, Hong Q, Xu J H, et al. Isolation of fenitrothion-degrading strain Burkholderia sp.FDS-1and cloning of mpd gene. Biodegradation,2006,17:275–283

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700