用户名: 密码: 验证码:
压裂工况下工具材料及表面涂层冲刷磨损机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压裂技术是油气生产领域普遍应用的技术,其主要目的是人为增加油气流动的通道,提高油气层的渗透能力,从而增加油气产量。在压裂施工过程中,随着对压裂效率要求的提高,高压、大砂量压裂技术不断采用,使得管柱和井下工具的冲刷磨损越来越严重,甚至造成冲刷磨损失效,严重影响压裂生产的正常进行。为研究冲刷磨损机理,评价不同材料的腐蚀磨损性能,筛选抗冲刷磨损性能优良的材料,本文进行了不同材料的制备及系统的冲刷磨损实验研究。
     选用P110钢级的29CrMo44作为对比材料,经930-940℃淬火和610-620℃回火,组织为回火索氏体,晶粒度等级7.5-8级,屈服强度870MPa,抗拉强度921MPa,硬度21.5HRC,延伸率19.5%,力学性能优良。
     利用激光熔覆技术在P110钢基础上制备了含Cr量分别为20%、30%和40%的激光熔覆层(LCCs),熔覆层的稀释率分别为7%、5%、6%。沿熔覆涂层截面组织依次为平面晶、胞状晶和树枝晶,组织由马氏体和少量的残余奥氏体及铁素体组织,随Cr含量的增加,组织由柱状、树枝晶逐渐过渡到出现较多的碳化物,熔覆区主要物相为α(Fe,Ni),含铬量高时会出现Cr23C6、Cr7C3及其它形式的碳化物。熔覆层最高硬度513HV,平均硬度分别为350HV、376HV和462HV,明显高于P110钢。
     利用电磁感应炉熔技术,炼制了Fe-Cr-Mo-Mn-W-B-C-Si母合金,并用雾化装置制备非晶合金粉末,并使用XEM和XRD对粉术进行评价,表明粉末颗粒尺寸小于45μm,为完全非晶态结构。利用超音速热火焰喷涂技术,分别制备了厚度为200μm和400gm的非晶合金涂层(AMCs)。涂层化学成分分布均匀,孔隙率较小,分别为1.25%和1.45%。SEM下未观察到晶粒和晶界形态,TEM下发现存在少量晶体相,利用DSC法测定涂层中非晶相的含量,分别为74.9%和70.1%,证明涂层以非晶态结构为主。XRD分析显示,涂层中主要晶体相包括Fe2C、Cr7C3、Cr2B、M23C6和极少量的氧化物。显微维氏硬度测量表明涂层最高硬度可达900HV左右,平均硬度分别为828.3HV和713.2HV,涂层性能优良。
     以13Cr钢组分为基础,设计了铁基高铬合金的成分,并利用等离子熔炼装置制备了铁基高铬合金(FHCs)。用光谱仪测定了合金的化学成分,发现合金成分成分均匀,满足设计要求,属于超级13Cr系列。XEM形貌观察表明,合金组织由层片状马氏体构成,晶粒细小呈树枝状。XRD物相分析证实,合金的物相主要由马氏体相和Fe-Cr合金相组成。维氏测试结果显示合金的硬度达到296HV,高于普通0Cr13不锈钢。
     利用自制的冲刷磨损实验装置进行了冲刷磨损实验,对四种不同材料材料的冲刷磨损性能进行了总结评价,’冲刷磨损抗力由高到低分别为:非晶合金涂层>激光熔覆层>铁基高铬合金>P110钢。其中非晶合金涂层和激光熔覆层表现出较强的抗冲刷磨损性能,是比较理想的抗冲刷磨损材料。铁基高铬合金可以应用于强腐蚀环境并具有较强冲刷的工况中。四种材料的冲刷磨损机理不同,P110钢、低Cr激光熔覆层和铁基高Cr合金属于典型的塑性冲刷磨损,高Cr激光熔覆层属于脆性冲刷磨损,非晶涂层冲刷磨损规律与脆性材料类似,但冲刷磨损机理明显不同。
Fracturing technology is commonly used in the field of oil and gas production, its main function is to increase the channels of oil and gas flow, the permeability of hydrocarbon reservoir will be enhanced and then the production of oil and gas will be promoted. In fracturing process, given the requirements of high fracturing efficiency, high pressure and sand content fracturing technology are used, the erosion wear of string and downhole tools become more and more serious, which may lead to erosion failure and severely affect the normal production of fracturing. To reveal the erosion wear mechanisms, different material was prepared and comprehensive experiments on erosion were conducted in this paper. The corrosion and wear properties of different materials were evaluated, and the material with excellent erosion resistance was found.
     The29CrMo44with P110grade was adopted as experimental materials, which were quenched at930-940℃and tempered at50℃, whose microstructures were tempered sorbite. The grain size of the materials are level5-8, yield strength870MPa, tensile strength921MPa, hardness21.5HRC, elongation19.5%, and mechanical properties are fine.
     The laser cladding coatings (LCCs) with the20%Cr,30%Cr and40%Cr were prepared on the P110substrate by laser cladding. The dilution ratios of the LCCs were7%,5%and6%, respectively. The microstructure of the cross-section were planar crystal, swelling crystal and dendrite crystal, and mainly of martensite with few retained austenite with ferrite. The cladding region were mainly for gamma a(Fe,Ni), and too much of Cr with the C element, gradually formed a Cr23C6, Cr7C3etc. The highest hardness of the LCCs (higher than P110) was513HV, and the average hardness were350HV,376HV and462HV, respectively.
     A Fe-Cr-Mo-Mn-W-B-C-Si master alloy was prepared by induction-melting of high-purity elemental constituents in a copper crucible. The powders were produced by high pressure argon gas atomization. The as-atomized powders were analysed by scanning electron microscope (SEM), transmission electron microscope (TEM) and X ray diffraction (XRD) phase, with the characteristics of completely amorphous and particle sizes in the range of less than45mm. The amorphous metallic coatings (AMCs) with the thickness of200and400μm were prepared by high-velocity oxy-fuel (HVOF) thermal spraying. The coatings present a typical layer structure of uniform chemical composition, which exhibited low porosity of1.25%and1.45%. There exist no evident grain boundaries in AMCs. The composite structure formation of some nanocrystallite phases embedded in the amorphous matrix by TEM. The major crystalline phases were composed of Fe2C, Cr7C3, M23C6, Cr2B, and some oxides by XRD. The micro-hardness of the AMCs were higher than900HV, which the average hardness were828.3HV and713.2HV, respectively.
     The Fe-based high chromium alloys(FHCs) were designed and prepared by plasma furna ce based on the composition of13Cr Steel. The accurate chemical composition of the prepare d alloys was tested by spectroscope, and the results show the contents are homogeneous whic h meet the design demands and the alloys are among super13Cr series. The SEM observation indicates that the main microstructures are lath martensite, and the grains are fine and branch ed. The phase is mainly composed of martensite and Fe-Cr phase which are proven by XRD. The Vickers hardness of the prepared alloys can reach296HV, which is higher than normal0Crl3.
     The erosion wear tests were conducted using a self-made jet apparatus for erosion wear. The erosive wear resistance of AMCs, LCCs, FHCs and P110decreased in the order as follows:AMCs>LCCs>FHCs>P110. The AMCs and LCCs exhibited highest erosive wear resistance, which were the optimal materials served in the erosive wear environments. FHCs were suitable for severe corrosive and abrasive environments. The erosive wear mechanism different from each other. The mechanism of the FHCs was brittle deformation, while those of P110, LCCs and FHCs were plastic deformation. The erosive wear behavior of AMCs similar to that of brittle materials, but with a different erosive wear mechanism.
引文
[1]范文敏,徐媛.国外压后返排的理论研究与推荐做法[J].钻采工艺,2000,05:44-46.
    [2]何艳青,张焕芝.未来全球油气技术展望[J].石油科技论坛,2010,29(3):1-14.
    [3]Jody R Augustine. How Do We Achieve Sub-Interval Fracturing[J]. SPE 147179,2011.
    [4]姜晓霞,李诗卓,李曙.金属的腐蚀磨损[M].北京:化学工业出版社,2003:1-4.
    [5]杨金华,朱桂清,张焕芝等.值得关注的国际石油工程前沿技术[J].石油科技论坛,2012,31(4):43-50.
    [6]Simon Chipper field. Hydraulic Fracturing[J]. JPT, March 2010.
    [7]张子明.水平井压裂技术发展现状[J].中外能源,2009,(09):39-44.
    [8]刘英杰,成克强.磨损失效分析基础[M].北京:机械工业出版社,1991:43
    [9]Finnie I, Stevick G R, Ridgely J R. The influence of impingement angle on the erosion of ductile metals by angular abrasive particles[J]. Wear,1992(152):91-98.
    [10]Branch R M. Impact dynamics with applications to solid particle erosion [J].International Journal of Impact Engineering,1988(7):37-53.
    [11]Sundararajan G, Shewmon P G.A new model for the erosion of metals at normal incidence[J]. Wear,1983(84):237-258.
    [12]Finnie I. Some observations on the erosion of ductile metals[J]. Wear,1972(19):81-90.
    [13]Bitter J G A study of erosion phenomena[J]. Wear,1983(6):5-21.
    [14]Levy A V. The erosion of structure alloys, ceramets and in situ oxide scales on steels[J]. Wear,1988(127):31-52.
    [15]Rogers M, Hutchings IM. Coatings and surface treatments for protection against low-velocity erosion-corrosion in fluidized beds[J]. Wear,1995,186-187:238-246.
    [16]邵荷生,曲敬信.摩擦与磨损[M].北京:煤炭工业出版社,199:91-92.
    [17]Tilly G P. A two stage mechanism of ductile erosion[J]. Wear,1973(23):87-96.
    [18]郑玉贵,姚治铭等.液固双相流冲刷腐蚀试验装置的研制及动态电化学测试[J].腐蚀科学与防护,1993,5(4):286-290.
    [19]郑玉贵,姚治铭,龙康等.液/固双相流冲刷腐蚀实验装置的研制及动态电化学测试[J].腐蚀科学与防护技术,1993,5(4):286-290.
    [20]阎永贵,郑玉贵,姚治铭等.突扩管条件下材料的冲刷腐蚀机理研究Ⅰ碳钢[J].中国腐蚀与防护学报,2000,20(5):23-41.
    [21]郑玉贵,姚治铭,李生春等.外加电位对0Cr18Ni9Ti不锈钢冲刷腐蚀行为的影响[J].化工机械,1994,21(2):78-81.
    [22]郑玉贵,姚治铭,何莉等.泥浆型冲刷中冲刷和腐蚀交互作用研究综述[J].材料科学与工程,1994,12(4):27-31.
    [23]郑玉贵,姚治铭,张玉生等.冲刷与腐蚀的交互作用与耐冲刷腐蚀合金设计[J].金属学报,2000,36(1):51-54.
    [24]刘国宇,鲍崇高,张安峰等.不锈钢与碳钢的液固两相流冲刷腐蚀磨损研究[J].材料工程,2004,5(6):76-95.
    [25]代真,沈士明,丁国铨等.金属在固液两相流体中的冲刷腐蚀及其防护[J].腐蚀与防护,2007,28(2):87-89.
    [26]金威贤,雒娅楠等.金属材料实海冲刷腐蚀检测[J],金属腐蚀与防护学报,2008,28(6):337-340.
    [27]吴成红,毛旭辉等.多相流动淡水体系中碳钢冲刷腐蚀电化学行为的研究[J].材料保护,2001,34(11):3-5.
    [28]雍兴跃,刘景军,林玉珍等.金属在流动氯化物体系中流动腐蚀的EIS研究[J].金属学报,2005,41(8):871-875.
    [29]张继信,樊建春,詹先觉等.水力压裂工况下42CrMo材料冲刷磨损特性研究[J].石油机械,2012,(04):100-103.
    [30]张继信,樊建春,张来斌等.30CrMo合金钢的冲刷磨损性能研究[J].润滑与密封,2012,(04):15-18.
    [31]姜心,张来斌,樊建春等.冲刷角度对40CrNi2Mo材料冲刷磨损性能的影响[J].润滑与密封,2012,(06):2426+45.
    [32]Y. G. Zheng, F.Yang, Z. M. Yao, W. Ke. On the critical flow velocity of Cu-Ni alloy BFe30-1-1 in flowing artificial seawater[J]. Zeitschrift Fur Metallkunde 2000; 91.
    [33]邢建东,高义民,张国赏.不锈钢与碳钢的液固两相流冲刷腐蚀磨损研究[J].材料工程,2004,11:38-40.
    [34]吴成红,甘复兴.金属在两相流动水体中的冲刷腐蚀[J].材料保护,2000,33:33-35.
    [35]F. Y. Lin, H. S. Shao. The effect of impingement angle on slurry erosion[J]. Wear,1991,141: 279-289.
    [36]A. V. Levy, P. Yau. Erosion of steels in liquid slurries[J]. Wear,1984,98:163-182.
    [37]A. V. Levy, G. Hickey. Liquid-solid particle slurry erosion of steels. Wear 1987;117:129-146.
    [38]丁一刚,王慧龙,郭兴蓬等.金属在液固两相流中的冲刷腐蚀[J].材料保护,2001,34:16-18.
    [39]Z. Feng, A. Ball. The erosion of four materials using seven erodents-towards an understanding[J]. Wear,1999,233:674-684.
    [40]Said Bouzid, Nourredine Bouaouadja. Effect of impact angle on glass surfaces eroded by sand blasting. Journal of the European Ceramic Society,2000,20:481-488
    [41]S. M. Wiederhom, B.J. Hockey. Effect of material parameters on the erosion resistance of brittle materials. Journal of Materials Science,1983,18:766-780
    [42]V. Heuer, G Walter, I.M. Hutchings. High temperature erosion of fibrous ceramic components by solidparticle impact. Wear,1999,233-235:257-262
    [43]K. Anand. Flux effects in solid particle erosion. Wear,1987,118:243-257
    [44]P.H. Shipway, I.M. hutchings. The role of particle properties in the erosion of brittle materials. Wear,1996,193:105-113
    [45]N. Krishnamurthy, M.S. Murali, B. Venkataraman, et.al. Characterization and solid particle erosion behavior of plasma sprayed alumina and calcia-stabilized zirconia coatings on Al-6061 substrate. Wear,2012,274-275:15-27
    [46]S. Lathabai. The effect of grain size on the slurry erosive wear of Ce-TZP ceramics. Scripta Materialia,2000,43(5):465-470
    [47]林玉珍.在流动条件下磨损腐蚀的研究进展[J].全面腐蚀控制,1996,10(4):1-3.
    [48]田兴岭,林玉珍等.碳钢在液/固双相管流中的磨损腐蚀机理研究[J].北京化工大学学报,2003,30(5):40-43.
    [49]郑玉贵,姚治铭,柯伟.流体力学因素对冲刷腐蚀的影响机制[J].腐蚀科学与防护技术,2000,12(1):36-40.
    [50]Copson H R. Effects of Velocity on Corrosion by Water[J]. Ind. and Eng. Chem.,1952,44: 1745.
    [51]Shemilt L W, Cha C Y, Fiadzigbe E. Steel pipe corrosion under flow conditions-III.Effect of sulphate ion[J]. Corrosion Science,1980,20:443-455.
    [52]Clem N J, Coronado M P, Mody R.K. Utilizing Computational Fluid Dynamics (CFD) Analysis as a Design Tool in Frac-Packing Applications To Improve Erosion Life[C]. SPE Annual Technical Conference and Exhibition,2006,9:24-27.
    [53]Li J, Hamid S, Oneal D. Prediction of Tool Erosion in Gravel-Pack and Frac-Pack Applications Using Computational Fluid Dynamics (CFD) Simulation[C]. Offshore Technology Conference,2005,3:2-5.
    [54]李国美,王跃社,孙虎等.节流器内液-固两相流固体颗粒冲刷数值模拟[J].石油学报,2009,30(1):145-148
    [55]王尊策,徐艳,李森等.深层气井压裂管柱突扩结构内流态及磨损规律模拟[J].大庆石油学院学报,2010,34(5):87-91
    [56]API SPEC 5CT-2011, Specification for Casting and Tubing[S]. American Petroleum Institute,2011:98-109.
    [57]吕祥鸿,樊治海等.研究了阳离子对P110钢高温高压二氧化碳腐蚀反应过程的影响[J].腐蚀科学与防护,2005,17(12),69-74.
    [58]刘会,朱世东,赵国仙,吕祥鸿.动态和静态下CO2分压对P110钢腐蚀行为的影响[J],腐蚀与防护,2009,30(8):551-554.
    [59]刘会,赵国仙等.Cl对油套管用P110钢腐蚀速率的影响[J].石油矿场机械,2008,37(11):44-48.
    [60]刘会,赵国仙等.H2S气体对5Cr和P110钢的腐蚀行为[J].内蒙古石油化工,2008,18(8):15-18.
    [61]万里平,孟英峰等.P110钢在有机盐完井液中的腐蚀行为[J].钻井液与完井液.2007,24(1):17-19.
    [62]朱世东,白真权,尹成先,林冠发,尹志福.P110钢抗冲刷腐蚀行为研究[J].材料工程,2009,23(8):28-32.
    [63]赵国仙,吕祥鸿等.流速对P110钢腐蚀行为的影响[J].材料工程,2008,14(8):5-8.
    [64]雷卡林,乌格洛夫,科科拉.材料的激光加工[M].王绍水译,北京:科学出版社,1982:123-138.
    [65]沃道瓦托夫,维依科,契尔南等.激光在工艺中的应用[M].朱裕栋译,北京:机械工业出版社,1984:96-115.
    [66]K. A. Chiang, Y. C. Chen. Microstructure characterization and microscopy analysis of laser cladding Stellite 12 and tungsten carbide[J]. Jonrnal of Materials Processing Technology,2007, 182(1-3):297-302.
    [67]C. Navas, R. Colaco, J. de Damborenea et al.. Abrasive wear behaviour of laser clad and flame sprayed-melted NiCrBSi coatings[J]. Surface Coating Technology,2006,200(24): 6854-6862.
    [68]Gao Yali, Wang Cuns han, Yao Man et al.. The resistance to wear and corrosion of laser-cladding Al2O3 ceramic coating on Mg alloy[J]. Applied Surface Science,2007,253(12): 5306-5311.
    [69]徐斌,楼白杨,白万金等.激光熔覆制备SiC/Ni基复合涂层及其耐冲刷性能[J].中国激光,2008,No.37301:147-150.
    [70]董刚,白万金,张九渊等.激光熔覆Ni基合金SiC涂层耐冲刷性能的研究[J].表面技术,2004,02:36-37+42.
    [71]张栋,马向东,刘睿等.激光熔覆Ni基WC合金的固体粒子冲刷磨损研究[J].润滑与密封,2008,No.20307:64-65+79.
    [72]陈清宇,富伟,纪岗昌.激光重熔WC-Co涂层冲刷性能[J].热加工工艺,2008,No.25517:125-126+128.
    [73]李养良,赵小军,陈清宇等.紫铜表面激光熔覆镍基合金的组织与性能[J].金属热处理,2012,37:62-65.
    [74李涌泉,谢发勤,周俊等.DZ125高温合金表面激光熔覆Co基合金的组织和冲刷性能研究[J].摩擦学学报,2010,30:53-56.
    [75]石岩,张宏,刘双宇等.高硬度多微孔小型零件激光表面精密熔覆钴基合金涂层提高耐冲刷性能研究[J].机械工程学报,2011,47(02):95-101.
    [76]秦承鹏,郑玉贵.17-4PH不锈钢表面激光熔覆钴基合金涂层的空蚀行为研究[J].腐蚀科学与防护技术,2011,23(03):209-213.
    [77]韩彬,李美艳,王勇.高铬铸钢激光熔覆NiAl涂层高温冲刷性能[J].焊接学报,2012,33(08):1-4+113.
    [78]W.L.Johnson. Bulk glass-forming metallic alloys:Science and technology[J]. MRS Bull. 1999(24):42-56.
    [79]A.Inoue. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Mater. 2000(48):279-306.
    [80]A.L.Greer, E.Ma. Bulk metallic glasses:At the cutting edge of metals research[J]. MRS Bull. 2007(32):611-615.
    [81]J.J.Gilman. Metallic glasses. Phys.Today.1975 (28):46-53.
    [82]P.Duwez, S.C.H.Lin. Amorphous ferromagnetic phase in iron-carbon-phosphorus Alloys. J.Appl.Phys.1967 (38):4096-4097.
    [83]O.Kohmoto, K.Ohya, N.Yamaguchi, H.Fujishima, T.Ojima. Magnetic properties of zero magnetostrictive amorphous Fe-Co-Si-B alloys. J.Appl.Phys.1979(50):5054-5056.
    [84]Y.Yoshizawa, S.Oguma, K.Yamauchi. New Fe-based soft magnetic-alloys composed of ultrafine grain-structure. J.Appl.Phys.1988 (64):6044-6046.
    [85]K.Suzuki, N.Kataoka, A.Inoue, A.Makino, T.Masumoto. High saturation magnetization and soft magnetic-properties of bcc Fe-Zr-B alloys with ultrafine grain-structure. Mater. Trans. JIM 1990 (31):743-746.
    [86]A.Inoue, Y.Shinohara, J.S.Gook. Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting. Mater.Trans.JIM 1995 (36):1427-1433.
    [87]S.J.Pang, T.Zhang, K.Asami, A.Inoue. Formation of bulk glassy Fe75-x-yCrxMoyC15B10 alloys and their corrosion behavior. J.Mater.Res.2002 (17):701-704.
    [88]S.J.Pang, T.Zhang, K.Asami, A.Inoue. Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasses with high corrosion resistance. Acta Mater.2002 (50):489-497.
    [89]Z.P.Lu, C.T.Liu, J.R.Thompson, W.D.Porter. Structural amorphous steels. Phys.Rev.Lett.2004 (92):245503.
    [90]V.Ponnambalam, S.J.Poon, GJ.Shiflet. Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J.Mater.Res.2004 (19):1320-1323.
    [91]D.Branagan. Method of modifying iron-based glasses to increase crystallization temperature without changing melting temperature. U.S.Patent Application. No.20040250929. filed Dec.16, 2004.
    [92]D.Branagan. Properties of amorphous/partially crystalline coatings. U.S.Patent Application. No.20040253381. filed Dec.16,2004.
    [93]J.C.Farmer, J.J.Haslam, S.D.Day et. al.. Corrosion characterization of iron-based high-performance amorphous-metal thermal-spray coatings. ASME Pressure Vessels and Piping Conference. Colorado USA.2005 (7):583-589.
    [94]D.J.Branagan, W.D.Swank, D.C.Haggard et. al.. Wear-resistant amorphous and nanocomposite steel coatings. Metall.Mater.Trans.A 2001(32):2615-2621.
    [95]R.B.Rebak, S.D.Day, T.G.Lian et. al.. Environmental testing of iron-based amorphous alloys. Metall.Mater.Trans.A 2008 (39A):225-234.
    [96]J.C.Farmer, J.J.Haslam, S.D.Day et. al.. Corrosion resistance of thermally sprayed high-boron iron-based amorphous-metal coatings:Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. J.Mater.Res.2007 (22):2297-2311.
    [97]F.Otsubo, K.Kishitake, T.Terasaki, et. al.. Residual stress distribution in thermally sprayed self-fluxing alloy coatings. Mater.Trans.2005(46):2473-2477.
    [98]J.C.Farmer, J.J.Haslam, S.D.Day, et. al.. Corrosion resistance of iron-based amorphous metal coatings.2006 ASME Pressure Vessels and Piping Division Conference:Pressure Vessel Technologies for the Global Community. Vancouver Canada.2006:4378-4384.
    [99]J.C.Farmer, J.S.Choi, S.D.Day, et. al.. High performance coatings for spent fuel containers and components. Proceedings of the ASME Pressure Vessels and Piping Conference. Texas USA. 2007 (7):539-544.
    [100]X.Q.Liu, Y.GZheng, X.C.Chang, et. al.. Microstructure and properties of Fe-based amorphous metallic coating produced by high velocity axial plasma spraying. J. Alloy.Compd.2009 (484): 300-307.
    [101]A.P.Wang, T.Zhang, J.Q.Wang. Ni-based fully amorphous metallic coating with high corrosion resistance. Philos.Mag.Lett.2006 (86):5-11.
    [102]H.S.Ni, X.H.Liu, X.C.Chang, et. al.. High performance amorphous steel coating prepared by HVOF thermal spraying. J.Alloy.Compd.2009 (467):163-167.
    [103]X.Q.Liu, Y.GZheng, X.C.Chang, et. al.. Influence of HVOF thermal spray process on the microstructures and properties of Fe-based amorphous/nano metallic coatings, Mater. Sci.Forum 2010 (633-634):685-694.
    [104]Newton L. E. CO2 Corrosion in Oil and Gas Production[C]. NACE. Corrosion 84, New Orleans (USA),1984:131-166.
    [105]G. Mclntire, J. Lippert, J. Yudelson. The Effect of Dissolved CO2 and O2 on the Corrosion of Iron[J]. Corrosion.1990,46(2):91.
    [106]G. Schmitt. Studies on the Corrosion Mechanism of Unalloyed Steel in Oxygen-Free Carbon Dioxide Solutions[J]. Corrosion.1983,1 (1):44.
    [107]A. Ikeda, M. Ueda, S. Mukai. CO2 behavior of carbon and Cr steels[J]. Corrosion. 1984,4(3):289.
    [108]Palacios C. A, Shadley J. R. Characteristics of Corrosion Scales on Steels in a CO2-Saturated NaCl Brine[J]. Corrosion.1991,47(2):122-127.
    [109]谭宏斌,刘道新,张晓化,鲜宁,管湘芝.2Cr13不锈钢表面电火花强化及磨损和冲刷行为研究[J].机械科学与技术,2007,05:662-667.
    [110]奚运涛,刘道新,韩栋,韩增福.低温离子渗氮提高2Cr13不锈钢的冲刷磨损与冲刷腐蚀抗力[J].材料工程,2007,11:76-81.
    [111]郭超,韩长军,辛敏东,李俊峰.OCr13Al不锈钢管束冲刷原因分析及对策[J].腐蚀科学与防护技术,2012,03:236-238.
    [112]杨莉,杨涟,穆云超,梅瑛,郭艳青.离子氮化对2Cr13钢冲刷磨损性能的影响[J].热加工工艺,2003,03:31-32.
    [113]姜胜利,郑玉贵,乔岩欣,陈世铎.高速喷射式冲刷腐蚀实验装置的研制及其实时动态电化学测试.腐蚀科学与防护技术,2009:
    [114]姜胜利,郑玉贵,乔岩欣,等.喷射式液固双相流冲刷腐蚀实验装置.中国实用新型专利;专利号:200720014413.0.
    [115]姜胜利,郑玉贵,乔岩欣,等.喷射式液固双相流冲刷腐蚀实验装置.中国发明专专利,专利号:200710012708.9.
    [116]骆素珍.硕士学位论文[D].沈阳:中国科学院金属腐蚀与防护研究所,2000.
    [117]Stack M M, Wang H W. Simpl ifying the erosion-corrosion mechanism map for erosion of thin coat ings in aqueous slurries [J]. Wear,1999,234-235.
    [118]Syrett B C. Erosion-corrosion of copper-nickle alloys in sea water and other aqueous environments-a literature review [J]. Corrosion,1976,32:242-252.
    [119]王健云,周育英,周清木等.工业纯钛和00Cr25Ni22Mo2不锈钢的冲刷腐蚀[J].中国腐蚀与防护学报,2000,20(2):123-127
    [120]唐英,杨杰.激光熔覆镍基粉末涂层的研究[J].热加工工艺,2004,2:16-17
    [121]张松,张春华,孙泰礼等.激光熔覆钴基合金组织及其抗腐蚀性能[J].中国激光,2001,28(9):860-864.
    [122]魏仑.激光熔覆镍基金属陶瓷涂层的研究[D].昆明:昆明理工大学2001.
    [122]张庆茂.送粉激光熔覆应用基础理论的研究[D].博士学位论文.北京:中国科学院,2000,12.
    [124]吕海燕,李双明,钟宏等.激光表面快凝下Nd13.5Fe79.75B6.75过包晶合金的组织演化[J].中国有色金属学报,2009,19(2):322-327.
    [125]胡汉起.金属凝固原理[M].北京:机械工业出版社,2000:59-107.
    [126]唐英,杨杰.激光熔覆镍基粉末涂层的研究[J].热加工工艺,2004,2:16-17
    [127]Finnie I. McFadden D H. On the velocity dependence of ductile metals by solid particles at low angles of incidence[J]. Wear,1978,48:181-190.
    [128]Przybylowicz J, Kusinski J. Laser cladding and erosive wear of Co-Mo-Cr-Si coatings[J]. Surface and Coatings Technology,2000,125:13-18.
    [129]S.J.Pang, T.Zhang, K.Asami et. al.. Bulk glassy Fe-Cr-Mo-C-B alloys with high corrosion resistance. Corros.Sci.2002 (44):1847-1856.
    [130]X.Q.Liu, Y.G.Zheng, X.C.Chang et. al.. Microstructure and properties of Fe-based amorphous metallic coating produced by high velocity axial plasma spraying. J.Alloy.Compd.2009 (484):300-307.
    [131]D.J.Branagan, M.C.Marshall, B.E.Meacham et. al.. Wear and corrosion resistant amorphous/nanostructure steel coatings for replacement of electrolytic hard chromium. ITSC 2006 Proc. Washington USA.2006(5):1-6.
    [132]J.Stokes, L.Looney. HVOF system definition to maximise the thickness of formed components. Surf.Coat.Technol.2001 (148):18-24.
    [133]J. Stokes. The theory and application of the HVOF thermal spray process. Dublin: Dublin City University,2005:32-40.
    [134]C.Verdon, A.Karimi, J.L.Martin. A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1:microstructures. Mater.Sci.Eng.A 1998 (246): 11-24.
    [135]N.L.Lee, G.B.Fisher, R.Schulz. Sputter deposition of a corrosion-resistant amorphous metallic coating. J.Mater.Res.1988 (3):862-871.
    [136]M.P.Planche, B.Normand, H.Liao et. al.. Influence of HVOF spraying parameters on in-flight characteristics of Inconel 718 particles and correlation with the electrochemical behaviour of the coating. Surf.Coat.Technol.2002 (157):247-256.
    [137]K.Dobler, H.Kreye, R.Schwetzke. Oxidation of stainless steel in the high velocity oxy-fuel process. J.Therm.Spray Technol.2000 (9):407-413.
    [138]O.Maranho, D.Rodrigues, A.Boccalini, A. Sinatora. Influence of parameters of the HVOF thermal spray process on the properties of multicomponent white cast iron coatings. Surf.Coat.Technol.2008 (202):3494-3500.
    [139]B.R.Marple, R.S.Lima. Process temperature/velocity-hardness-wear relationships for high-velocity oxyfuel sprayed nanostructured and conventional cermet coatings. J.Therm.Spray Technol.2005 (14):67-76.
    [140]E.Lugscheider, C.Herbst, L.D.Zhao. Parameter studies on high-velocity oxy-fuel spraying of MCrAlY coatings. Surf.Coat.Technol.1998 (109):16-23.
    [141]刘家俊编.材料磨损原理及其耐磨性[M].北京:清华大学出版社,1993:176.
    [142]A.Neville, T.Hodgkiess, J.T.Dallas. A study of the erosion-corrosion behavior of engineering steels for marine pumping applications. Wear 1995 (186):497-507.
    [143]J.Farmer, F.Wong, J.Haslam, J.Estill, D.Branagan, N.Yang, C.Blue. Development, processing and testing of high-performance corrosion-resistant HVOF coatings. Global 2003 Topical Meeting at the American Nuclear Society Conference. California USA.2003 (8):1-6.
    [144]G.T.Burstein, K.Sasaki. Effect of impact angle on the slurry erosion-corrosion of 304L stainless steel. Wear 2000 (240):80-94.
    [145]J.M.Perry, A.Neville, V.A.Wilson, T.Hodgkiess. Assessment of the corrosion rates and mechanisms of a WC-Co-Cr HVOF coating in static and liquid-solid impingement saline environments. Surf.Coat.Technol.2001 (137):43-51.
    [146]M.Bjordal, E.Bardal, T.Rogne, T.G.Eggen. Erosion and corrosion properties of WC coatings and duplex stainless steel in sand-containing synthetic sea water. Wear 1995 (186-187):508-514.
    [147]V.A.D.Souza, A.Neville. Corrosion and synergy in a WC-Co-Cr HVOF thermal spray coating-understanding their role in erosion-corrosion degradation. Wear 2005 (259): 171-180.
    [148]田世昌.奥氏体耐蚀合金的应用[J].石油化工技术设备.1993,15(5):43-45.
    [149]徐金璋.合金元素和组织对马氏体不锈钢的耐蚀性和硬度的影响[J].上海钢研.2001,(2):40-44.
    [150]刘玉荣,业冬,徐军.13Cr超级马氏体不锈钢的组织[J].材料热处理学报.2011,32(12):66-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700