用户名: 密码: 验证码:
苹果砧木M9作自根砧或中间砧的致矮机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嫁接不但使园艺作物具有更强适应性和抗性,同时也改变了接穗的生长发育特性。M9作自根砧或中间砧使苹果树体矮化、丰产,已在苹果生产中广泛应用,但致矮机理尚未完全揭示。随着研究的深入,越来越多的研究表明是由接穗与砧木间相互作用导致了树体内激素的改变而引起,其作用机制尚待深入研究。
     本试验以3年生M9、八棱海棠、富士/M9、富士/M9/八棱海棠和富士/八棱海棠为试材,筛选了苹果中IAA极性运输蛋白PIN和LAX家族成员,采用qRT-PCR方法测定了不同试材茎段韧皮部的PIN、LAX基因家族表达特性。富士/M9和富士/M9/八棱海棠接穗和根系分别外施100mg/L NAA和BA;富士/八棱海棠茎段环剥后涂抹NPA。检测处理后树体内IAA.NAA.Z.BA含量和PIN基因表达的动态变化及树体年新梢生长量的差异。
     苹果中PIN基因家族成员为13个,LAX基-因家族成员为8个,依据与拟南芥的亲缘关系命名MdPIN1-13、MdLAX1-8。在MdPIN的13个成员中,MdPIN8、MdPIN10和MdPIN13在M9、八棱海棠、富士/M9、富士/M9/八棱海棠和富士/八棱海棠茎韧皮部中表达量均高于其他家族成员,且在富士/M9/八棱海棠的中间砧段MdPIN8表达量显著低于接穗和基砧,而富士/八棱海棠在接穗和基砧茎段韧皮部中MdPIN8、MdPIN10和MdPIN13表达量无显著差异,这表明M9中间砧段限制IAA下运是由于MdPIN8的表达量弱。而M9中MdPIN8、MdPIN10和MdPIN13的表达量均显著低于八棱海棠。在MdLAX的8个成员中,MdLAX1、MdLAX8在不同材料茎韧皮部中表达量均显著高于其他家族成员。MdLAX1、MdLAX8在不同砧穗复合体的接穗、基砧(中间砧)茎韧皮部中表达量无差异,这表明MdLAX不是M9中间砧段限制IAA下运的关键因素。
     在富士/M9接穗叶面喷施或根系滴灌NAA后1天,即检测到根系IAA+NAA含量持续上升,7天内维持高含量水平,随后下降。茎韧皮部MdPIN8、MdPIN10基因表达量变化规律与IAA+NAA规律一致,但根系玉米素含量和新梢年生长量与未施用NAA的对照无显著差异,表明IAA供应不足不是M9根系z含量低的原因。富士/M9接穗叶面喷施或根系滴灌BA,提高了叶片的Z+BA含量,根系IAA含量持续上升,至处理后3周分别为初始值的2.5和2.4倍,新梢年生长量显著增加,为对照的3.1倍。这表明外源BA可抵消M9自根砧的致矮作用,Z含量低与致矮性密切相关。富士/M9/八棱海棠根系滴灌NAA,叶片和根系IAA+NAA含量在处理后1天急剧增加,7天内维持高含量水平,随后下降。根系和叶片Z含量自处理后持续上升,直至第2周分别达到106.31和141.04ng/gFW,与0天相比差异显著,新梢年生长量显著增加,为对照的2.9倍。这表明根系Z含量低与根系IAA供应不足密切相关。但富十/M9/八棱海棠接穗叶面喷施NAA,叶片、接穗皮和中间砧皮IAA+NAA含量在1-7天内维持高含量水平,基砧皮和根中IAA+NAA含量始终基本保持稳定,同时在M9中间砧段IAA+NAA的含量高于接穗和基砧。叶片和根系的Z含量在处理后3周内未见显著变化,生长势的恢复弱于NAA根施。MdPIN8、 MdPIN10表达量变化规律与IAA+NAA基本一致,但接穗韧皮部MdPIN8、MdPIN10相对表达量显著高于中间砧和基砧。NPA处理富士/八棱海棠茎皮后第1天,根系IAA含量显著下降,叶片和根系z含量在处理后第3天持续下降,削弱了新梢生长,表明根系IAA供应不足与M9中间砧IAA极性运输受阻密切相关。
     因此认为,M9在作自根砧和中间砧时致矮机理不同。M9自根砧致矮是由于根系Z含量低所致;而M9中间砧致矮是由中间砧段韧皮部PIN8表达量低,限制1AA下运,根系获得IAA不足所致。
Grafting makes the horticultural plants more torlerant to environmental and biotic stress, but also alters the growth and development of the scion. Apple trees grafted onto dwarfing rootstock M9produce dwarfing tree architecture with high yield and were widely used in production. However, there are different hypotheses to explain how to dwarf. After the intensive study, the changes of hormone between scion and rootstock would be the major reason in those increasing studies. The mechanisms whereby rootstocks induce dwarfing on their scion remain unclear.
     The experimental materials were3-year-old M9, Baleng Crab, Fuji/M9, Fuji/M9/Baleng Crab and Fuji/Baleng Crab. The expressions of gene families encoding auxin polar transporters, PIN and LAX, in the phloem of those rootstocks were detected by using qRT-PCR.100mg/L1-naphthaleneacetic acid (NAA) and6-benzylaminopurine (BA) were foliar or root applied to Fuji/M9and Fuji/M9/Baleng Crab or N-1-naphthylphthalamic acid acid (NPA) was applied in the stem of Fuji/Baleng Crab after gridling. Then the IAA, NAA, Z, BA contents, relative expressions of MdPINs and shoot growth were measured.
     There are13members in PIN gene familiy and8members in LAX gene familiy, and they were nominated as MdPIN1-13and LAX1-8respectively based on phylogenetic relationship with Arabidopsis. MdPIN8, MdPIN10and MdPIN13were preferentially and differently expressed in the phloem of M9, Baleng, Fuji/M9, Fuji/M9/Baleng and Fuji/Baleng Crab when compared with other MdPINs. MdPIN8showed a significantly lower expression in interstem than in scion and rootstock of Fuji/M9/Baleng Crab. However, the expression of MdPLN8, MdPIN10and MdPIN13did not change significantly in the scion and the rootstock of Fuji/Baleng Crab. These indicated that lower expression of MdPIN8in the M9interstem phloem limited IAA basipetal transport. Likewise, MdLAXl and MdLAX8were preferentially expressed in the phloem of scion.when compared whit those other MdLAXs. The expressions of MdLAXl and MdLAX8showed no significant change in phloem scion, interstem and rootstock, indicating the expression of MdLAXs was not a key factor that limited IAA basipetal transport in M9.
     In Fuji/M9, foliar or root application of NAA increased root auxin (NAA+IAA) levels on day1, maintained a high levels7days and then decreased in the following days, which have a consistent with the expression of MdPIN8and MdPIN10. But there were no significantly increase in root zeatin contents and shoot growth after NAA treatments compared to that in controls. These indicated the poor root IAA supply was not the reason of the lower Z content in root of M9. After foliar and root application of BA, leaf cytokinin (zeatin+BA) levels increased significantly, root IAA content increased to2.5-fold and2.4-fold respectively when compared to the original value and shoot growth has a significantly increasing to3.1-fold compared to the controls in both foliar and root BA treatments. The results indicated that exogenous BA compensated the lower zeatin contents and relieved the dwarfing effect of M9rootstock. When NAA was root-applied in Fuji/M9/Baleng Crab, the IAA+NAA contents in root and leaf increased on day1, maintained7days and decreased on the following days. the zeatin contents in root and leaf increased significantly up to106.31and141.04ng/g FW respectively on week2. The shoot growth increased significantly to2.9-fold when compared to the controls indicating the lower zeatin contents was closely related to the poor IAA supply in the root. When NAA was foliar sprayed in scion of Fuji/M9/Baleng Crab, IAA+NAA contents in the leaf, scion-bark and interstem-bark increased and maintained high levels, IAA+NAA contents in the rootstock-bark and root didn't change significantly. While IAA+NAA contents in interstem were higher than in scion and rootstock of M9. The zeatin content in the root and leaf did not change significanty3weeks after treatment, but no recovering of shoot growth occurred than NAA root application. The expression of MdPIN8and MdPIN10was consistent with the changes of IAA+NAA content. But the expression of MdPIN8and MdPIN10in the phloem of scion was significantly higher than that in interstem and rootstock. After day1of NPA treatment the stem-bark of Fuji/Baleng Crab, the root IAA contents decreased. The zeatin contents in the root and leaf continuously decreased after day3of treatment and the shoot growth decreased there after. These data indicated that the poor IAA supply in the root was closely related with the limited IAA basipetal transport in M9.
     Taken together, the dwarfing mechanism differed between M9rootstock and M9interstock. The dwarfing of M9rootstocks was due to the weak zeatin synthesis in roots. The dwarfing effect was initiated by inherently lower expression of MdPIN8in the M9interstem phloem, which limited IAA basipetal transport and caused poor root IAA supply.
引文
陈长兰.梨树矮型的生物学特性及其致矮机理的研究:[博士学位论文].沈阳:沈阳农业大学,1996
    洪建源,黄庆文,赵树春,等.红星苹果矮化中间砧试验研究.沈阳农业大学学报,1989,20(1):1-8
    胡国谦,张谷雄,周中建,等.柑橘砧木矮化性与叶片过氧化物酶同工酶特性关系.南京农业大学学报.1993,(1):32-36
    李文斌,刘庚峰,张映南.叶片过氧化物酶活性作为柑橘抗寒性指标的探讨.中国南方果树,1989,.(1):56-59
    刘魁英,赵宗芸,王同坤,等.苹果叶片中吲哚乙酸氧化酶与过氧化物酶活性的相关性.华北农学报,1993,8(增刊):83-88
    刘魁英,赵宗芸.木质部输导阻力对苹果树体矮化的影响.北京农学院学报,1992,2:017
    刘彦红,张志华.果树矮化机理研究进展.河北农业大学学报,2002,25(5):92-94
    吕斌,陈学年,李质怡,等.不同砧木先锋橙叶片POD活性与树体生长势的关系.西南农业学报,1999,12(2):63-67
    孟庆炎.苹果属中发现极抗寒矮化种质资源.中国果树,1991,3:42
    牛自勉,梁德声,房耀仁.苹果砧木脱落酸与树木生长规律的研究.北京林业大学学报,1991,13(3):50~55
    欧毅,毛启才,曹照春,等.不同砧木锦橙叶片过氧化物酶活性与植株生长结果的关系.云南农业大学学报,1994,9(1):23~27
    沙广利.苹果无融合生殖矮化种质创新:[博士学位论文]. 泰安:山东农业大学,2007
    邵开基,牛自勉,张忠仁等.苹果砧木矮化程度与ABA含量的关系.园艺学报,1987,14(1):7~11
    沈隽.华北农业大学果树文集.1977,3:1~16
    石丽雪,沙广利,王斌,等.可用于标记苹果性状的AFLP技术的建立和优化.山东农业科学,2006,2
    石琰景.果树GA生物合成基因:贝壳杉烯氧化酶和20-氧化酶的克隆及表达模式的初步研究[博士学位论文].泰安:山东农业大学,2002
    田义轲.苹果柱型基因作图及贝壳杉烯氧化酶基因cDNA片段克隆[博士学位论文].杨凌:西北农林科技大学,2004
    王彩虹,束怀瑞.利用分子标记研究苹果资源与基因组的进展.果树学报,2001,18(2):104-109
    王彩虹,王倩,戴洪义,等.苹果柱型基因Co的一个AFLP标记的SCAR转换.园艺学报报,2002,29(2):100-104
    王贵平,王金政,师忠轩,等.M系苹果矮化砧木与砧穗组合研究.江西农业学报,2011,23(9):44-46
    王中英,解思敏,杨佩芳,等.苹果矮砧解剖结构研究.果树科学,1988,5(1):6-10
    王中英,赵玉军.矮化中间砧苹果树14C同化物质分配和运转的研究.山西农业科学,1998,26(3):10-14
    王中英.苹果砧木枝条解剖结构与生长势的关系.山西果树,1982,3:9-12
    武维华.植物生理学.北京:科学出版社,2003
    徐继忠,史宝胜,马宝焜,等.苹果不同矮砧与其对应中间砧植株POD、IOD酶活性的研究.中国农业科学,2002,35(4):415~420
    张开春,毕晓颖,李荣旗,等.苹果属(Malus)(?)显性矮化主基因Dw的RAPD分了标记.农业生物技术学报,1999,7(2):184~186
    张新忠,刘玉艳,龙成莲.苹果矮化砧木致矮机理的研究现状与展望.河北农业技术师范学院学报,1996,10(2):62-66
    张玉兰,杨焕芝.枝、叶解剖结构、过氧化物酶活性与山楂属种、株型生长势的关系.内蒙古农业大学学报,1999,20(1):46-51
    赵大中,罗实先,等.柑橘砧木矮化预选指标的解剖学研究.果树学报,1995,12(4):219-223
    钟广炎,聂华堂,陈竹生.叶片过氧化物酶活性用作柑橘矮化砧预选指标的初步研究.中国南方果树,1989,18(1):19-20
    Abod SA, Webster AD. Root and shoot growth of newly transplanted apple trees as affected by rootstock cultivar, defoliation and time after transplanting. Journal of Horticultural Science,1989,64:655-666
    Aloni B, Kami L, Deventurero Q et al. Physiological and biochemical changes at the rootstock-scion interface in graft combinations between Cucurbita rootstocks and a melon scion. Journal of Horticultural Science & Biotechnology, 2008,83:777-783
    Aloni R, Cohen L, Karni H, et al. Hormonal signaling in rootstock-scion interactions. Scientia Horticulturae,2010,127: 119-126
    Atkinson CJ, Else M. Understanding how rootstocks dwarf fruit trees. The Compact Fruit Tree,2001,34(2):46-49
    Atkinson CJ, Else M, Taylor L, et al. Root and stem hydraulic conductivity as determinants of growth potential in grafted tree of apple (Malus pumila Mill). Journal of Experimental Botany,2003,385:1221-1229
    Beakbane AB, Rogers WS. The relative importance of stem and root in determining rootstock influence in apples. Journal of Horticultural Science,1956,31:91-110
    Bukovac MJ, Wittwer SH, Tukey HB. Effect of stock-scion interrelationships on the transport of 32P and 45Ca in the apple. Journal of Horticultural Science,1958,33:145-153
    Carraro N, Tisdale-Orr TE, Clouse RM, et al. Diversification and expression of the PIN, AUX/LAX, and ABCB families of putative auxin transporters in Populus. Frontiers in Plant Science,2012,3:17
    Dal-Cin V, Velasco R, Ramina A. Dominance induction of fruitlet shedding in Malus x domestica (L. Borkh):molecular changes associated with polar auxin transport. BMC Plant Biology,2009,9:139
    Delbarre A, Muller P, Imhoff V, et al. Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta,1996,198:532-541
    Devoghalaere F, Doucen T, Guitton B, et al. A genomics approach to understanding the role of auxin in apple (Malus x domestica) fruit size control. BMC Plant Biology,2012.12:7
    Feraru E. Friml J. PIN polar targeting. Plant Physiology.2008.147:1553-1559
    Friml J, Benkova E, Blilou I, et al. AtPIN4 Mediates Sink-Driven Auxin Gradients and Root Patterning in Arabidopsis. Cell,2002,108:661-673
    Friml J. Palmerk. Polar auxin transport-old questions and new concepts. Plant Molecular Biology.2002,49(3-4):273-284.
    Friml J, Vieten A, Sauer M, et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature. 2003,426:147-153
    Gao YP, Motosugi H. Sugiura A. Rootstock effects on growth and flowering in young apple trees grown with ammonium and nitrate nitrogen. Journal of the American Society for Horticultural Science,1992,117:446-452
    Galweiler L, Gua C, Muller A, et al. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science,1998,282:2226-2230
    Gur A, Samish R. The role of auxin and auxin destruction in the vigour effect induced by various apple rootstocks. Beitrage Biol. Pflanzen,1968,45:91-111
    Jensen P, Makalowska I, Altman N, et al. Rootstock-regulated gene expression patterns in apple tree scions. Tree Genetics & Genomes,2010,6:57-72
    Jindal KK. Stomate number, pore size and their correlation with growth of apple rootstocks. In:Chadha TR (ed) Advances in research on temperate fruits. University of Horticulture and Forestry,1986
    Jones OP. Effects of rootstocks and interstocks on the xylem sap composition in apple trees:Effects on nitrogen, phophorus and potassium content. Annals of Botany,1971,35:825-836
    Jones OP. Endogenous growth regulators and rootstock/scion interactions in apple and cherry trees. International Symposium on Growth Regulators in Fruit Production,1985,179:177-184
    Kamboj JS. Studies of the dwarfing mechanism of apple rootstock. PhD thesis:Wye College, University of London,1996
    Kamboj JS, Browning G, Quinlan J, et al. Polar transport of [3H]-IAA in apical shoot segments of different apple rootstocks. Journal of Horticultural Science,1997,72(5):773-780
    Kamboj JS, Blake PS, Quinlan JD, et al. Identification and quantitation by GC-MS of zeatin and zeatin riboside in xylem sap from rootstock and scion of grafted apple trees. Plant Growth Regulation,1999,28:199-205
    Letham DS. Cytokinins as phytohormones:sites of biosynthesis, translocation, and function of translocated cytokinin. In: Cytokinins:chemistry, activity, and function. Boca Raton FL:CRC Press,1994,57-80
    Li HL., Zhang H, Yu C, et al. Possible roles of auxin and zeatin for initiating the dwarfing effect of M9 used as apple rootstock or interstock. Acta Physiologiae Plantarum,2012,34:235-244
    Lockard RG, Schneider GW. Stock and scion growth relationships and the dwarfing mechanism in apple. Horticultural Reviews,1981,3:315-354
    Ludwig, Muller J. Indole-3-butyric acid in plant growth and development. Plant Growth Regulation,2000,32(2-3): 219-230.
    Marler TE. Drought leaf gas exchange chlorophyll fluorescence of field-grown papaya. Journal of the American Society for Horticultural Science,1998,123(4):714-718
    Martin GC, Stahly EA. Endogenous growth regulating factors in bark of EM IX and XVI apple trees. Journal of the American Society for Horticultural Science,1967.91:31-37
    Michalczuk L. Indole-3-acetic acid level in wood, bark and cambial sap of apple rootstocks differing in growth vigour. Acta Physiologiae Plantarum,2002,24:131-136
    Mider SS. Eldridge BJ. Use of 6-benzylamino purine and promalin for improved canopy development in selected apple cultivars. Scientia Horticultural,1986,28:355-368
    Moncalean P, Alonso P, Centeno ML, et al. Organogenic responses of Pinus pinea cotyledons to hormonal treatments:BA metabolism and cytokinin content. Tree physiology,2005,25(1):1-9.
    Morris DA. Friml J, Zazimalove E. The transport of auxins. In:Davies PJ (ed) Plant hormones:biosynthesis, signal t ransduction. action [M]. Dordrecht:Kluwer Academic Publisher,2004:437-470.
    Normanly, Sovin JP, Cohen JD. Auxin metabolism in plan t hormones:Biosynthesis, signal transduction, action [A]. In: Davies PJ (ed) Plant hormones:biosynthesis, signal transduction, action [M]. Dordrecht:Kluwer Academic Publisher,2004:36-62.
    Olien WC, Lakso AN. Effect of rootstock on apple (Malus domestica)tree water relations. Physiologia Plantarum,1986, 67:421-430
    Pattison RJ, Catala C. Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. The Plant Journal,2012,70:585-598
    Peng J, Peng FT, Wei SC. Effect of nitrogen forms on IPT3 expression and hormone content of Pingyitiancha. Scientia Agriculture Sinica,2008,41(11):3716-3721
    Phillips AL, Ward DA, Uknes S, et al. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiology,1995,108:1049-1057
    Popenoe J, Barritt BH. Branch induction by growth regulators and leaf removal in 'Delicious' apple nursery stock. HortScience,1988.23:859-862
    Rogers WS, Beakbane B. Stock and scion relation. Annual Review of Plant Physiology,1957,8:217-236
    Santos F, Teale W, Fleck C, et al. Modelling polar auxin transport in developmental patterning. Plant Biology,2010,12 (s1):3-14
    Smulders M, Van de Ven E, Croes A, et al. Metabolism of 1-naphthaleneacetic acid in explants of tobacco:Evidence for release of free hormone from conjugates. Journa of Plant Growth Regulation,1990,9(1-4):27-34
    Soumelidou K, Morris D, Battey N, et al. Auxin transport capacity in relation to the dwarfing effect of apple rootstock. Journal of Horticultural Science,1994,69(4):719-725
    Staden JV, Davey JE. The synthesis, transport and metabolism of endogenous cytokinins. Plant Cell and Environment, 2006,2:93-106
    Tanaka H, Dhonukshe P, Brewer P, et al. Spatiotemporal asymmetric auxin distribution:a means to coordinate plant development. Cellular Molecular Life Sciences,2006,63:2738-2754
    Tubbs RF. Research field in the interaction of rootstocks and scions in woody etennials part2. Horticulture Abstracts, 1973,43(6):325-335
    Tubbs RF. Growth relations of rootstock and scion in apple. Journal of Horticultural Science,1980,55:181-189
    Van Hooijdonk BM. PhD thesis:Massey University, Palmerston North, New Zealand,2009
    Velasco R, Zharkikh A, Affourtit J, et al. The genome of the domesticated apple (Malus x domestica Borkh.). Nature Genetics,2010,42:833-839
    Volz RK, Gibbs HM, Popenoe J. Branch induction on apple nursery tree:Effects of growth regulators and defoliation. New Zealand Journal of Crop and Horticultural Science.1994,22:277-283
    Wertheim SJ. Estabrooks EN. Effect of repeated sprays of 6-benzylaminopurine on the formation of sylleptic shoots in apple in the fruit tree nursery. Science Horticultural-Amsterdam,1994,60:31-39
    Woodward AW, Bartel B, Auxin:regulation, action, and interaction. Annals Botany,2005,95(5):707-735.
    Wu K, Li L. Gage DA, et al. Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from the long-day plant spinach. Plant Physiology,1996.110:547-554
    Xiao HS. Huang QH. Zhang FX. et al. Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proceedings of the National Academy of Sciences,2002,99: 8360-8365
    Yabava UL, Dayton DF. The relation of endogenous abscisic acid to the dwarfing capability of East Mailing apple rootstocks. Journal of the American Society for Horticultural Science,1972,97:701-706
    Zaimalova E, Keek P, Skpa P, et al. Polar transport of the plant hormone auxin-the role of PIN-FORMED (PIN) proteins. Cellular Molecular Life Sciences,2007,64:1621-1637
    Zhang XZ., Zhao YB., Wang GP, et al. Dynamics of endogenous cytokinins during phase change in Malus domestica Borkh. Acta Horticulturae,2008,774:29-33
    Zhang YG,Cheng JH, Han ZH, et al. Comparison of methods for total RNA isolation from Malus Xiaojinensis and cDNA LD-PCR amplification. Biotechnology Information,2005,4:50-53
    Zhou Y, Huang L, Zhang Y, et al. Chill-induced decrease in capacity of rubp carboxylation and associated H2O2 accumulation in cucumber leaves are alleviated by grafting onto figleaf gourd. Annals of Botany,2007,100: 839-848

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700