用户名: 密码: 验证码:
石灰性土壤上供锌对不同基因型小麦生长及锌吸收的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌是动植物必需微量元素,锌通过植物进入食物链,直接或通过动物间接进入人类的膳食中,进而影响人体的营养平衡及身体健康。对以小麦为主食的人群来说,小麦籽粒锌是人体锌的最主要来源,因此小麦籽粒锌含量低极易导致敏感人群出现缺锌,而解决此问题最有效途径是提高小麦籽粒锌含量,其主要方法通过施用锌肥及锌高效基因型小麦筛选。本研究通过水培、盆栽及田间试验方法,探讨石灰性土壤中CaCO3对锌有效性的影响,施用锌肥对土壤中不同形态锌含量比例的影响,同时评价不同冬小麦基因型的锌效率及对锌肥后效的反应,以期提高小麦营养品质。本研究得到以下主要结论:
     (1)通过营养液培养试验,研究了供Zn条件下添加CaCO3对3种基因型冬小麦(远丰998、中育6号、小偃22)幼苗生长及Zn吸收的影响。结果表明:供Zn和添加CaCO3对小麦幼苗生长量和根冠比均无显著性影响,3种基因型小麦间亦无显著性差异;添加CaCO3诱发了小麦叶片失绿黄化。无论供Zn还是不供Zn,添加CaCO3对3种基因型小麦根、茎、叶各部分的Zn含量及累积量均无显著性影响;与不供Zn处理相比,供Zn会大幅度提高根、茎、叶的Zn含量和累积量,供Zn使远丰998、中育6号、小偃22小麦植株Zn含量分别增加80.0%、104.8%和139.6%,缺Zn敏感型小麦远丰998植株Zn含量和累积量的增加幅度远小于不敏感型小麦中育6号和小偃22。供Zn和添加CaCO3对小麦幼苗根、茎、叶中P含量均无显著性影响,但远丰998小麦根、茎、叶3部分的P含量均明显低于其它两种非敏感型小麦。供Zn使小麦根、茎、叶3部分的P/Zn大幅度降低,添加CaCO3也使P/Zn呈现降低的趋势。不供Zn条件下添加CaCO3能诱发小麦失绿黄化但又不降低Zn吸收量。表明在水培条件下高含量CaCO3对小麦Zn吸收并未产生明显的抑制作用。
     (2)土培试验设置了由低到高的土壤CaCO3含量梯度,以探讨CaCO3对土壤有效Zn含量、两种基因型小麦(远丰998,中育6号)生长发育及Zn、Fe营养的影响。结果表明:与不施Zn相比,施Zn使土壤有效Zn含量增加了3.22倍;高含量CaCO3使土壤有效Zn含量有所降低,新施入的有效态Zn仅有1.3%被小麦吸收,大部分则转化为无效态Zn;CaCO3含量达到111.8 g/kg时,可明显抑制小麦对Fe的吸收,进一步提高CaCO3含量抑制作用有所减弱;两种小麦基因型生长存在明显的差异,中育6号的根冠比和分蘖数都显著高于远丰998;施Zn可显著增加小麦Zn含量和吸收量,CaCO3含量达到111.8 g/kg可显著降低小麦根的Zn含量,对其他部分影响不明显;此外,施Zn可增加叶片的Fe含量和转运率。
     (3)选择10种当地主要小麦基因型,在石灰性土壤上进行连续两年的田间试验,仅在第一年施入锌肥,两年内均施氮肥,测定第二季小麦种植前、灌浆期及收获期不同土层中不同形态锌含量。结果表明,在有效锌含量低的石灰性土壤施用锌肥可增加小麦籽粒锌含量;种植小麦可以使土壤表层有效锌含量增加;施入土壤中的锌增加了交换态、松结合态、碳酸盐结合态、氧化锰结合态锌含量,可为第二季小麦生长提供锌源,而第二季小麦生长后,这些形态锌含量下降,与不施锌肥处理相比,施锌处理仅矿物态锌含量高于不施锌处理,从而锌的潜在供应源减少,肥效降低,但有效锌含量仍保持较高水平,能否供下一季小麦生长所需还有待进一步研究;施氮肥增加了小麦对锌的吸收,但土壤自身能补充这部分消耗;氮锌配施增加了小麦对锌的吸收,同时也降低了施锌肥增加的有效锌含量。
     (4)大田试验结果还表明,石灰性土壤上施锌取得了一定的增产效果,但不同基因型增产效果不同,其中武农148、新麦13、陕优253为锌高效基因型,西杂1号、陕优225、小偃22为锌低效基因型;施锌肥可增加锌低效基因型小麦籽粒锌含量,而锌高效基因型对锌肥的后效反应较差。施氮肥主要有利于叶片生长,可以提高分蘖数和叶绿素SPAD值,并且施氮肥和锌肥可以减缓叶片黄化。10种小麦基因型籽粒锌转运率为46.3-64.8%,可见小麦吸收到地上部的锌只有一半被转移进入籽粒,而茎、叶、颖壳中还含有不少的锌。施锌肥增加了大部分基因型锌转运率,但增加幅度有限,少部分基因型转运率有所降低。
Zinc is an essential micronutrient for plant and animal, it enters into to the food chain through plant, and it enters the diets of human being directly or through animal indirectly, so the balance of nutrition and the health of buman being is affected by zinc. Zinc in wheat grain is the most important source of zinc nutrition to people whose stape food mainly depends on wheat food. So zinc deficiency of wheat grain can lead to zinc deficiency of sensitive people easily. And the most useful approach to solve this problem is to increase the zinc concentration of wheat grain, application of zinc fertilizer and screening the wheat genotypes with high zinc efficiency at present. This study was to investigate effects of calcacium carbonate on the availability of soil zinc in calcareous soil, and the effects of zinc fertilization on the effects of zinc concentration and bioavailability of different types, the wheat genotypes with high zinc efficiency or with better response on residual effect in the soil were expected to be screened to improve the nutrition qulity of wheat. The main results of this study are as follows:
     (1) High concentration calcium carbonate in calcareous soils usually limits plant Zn uptake. In this paper, a solution culture experimentwas conducted to study the effects of CaCO3 addition with or no Zn supply on the growth and Zn up take of three genotypes winter wheat seedlings. The results showed that Zn supply or CaCO3 addition had no significant effects on seedlings biomass and root/canopy ratio, and there was no significant difference among the three genotypes. CaCO3 addition led to leaf chlorosis. No matter with or no Zn supply, CaCO3 addition had no significant effects on the Zn concentration and accumulation in wheat root, stem, and leaf. Zn supply increased the Zn concentration in Yuanfeng 998, Zhongyu 6, and Xiaoyan 22 by 80.0%, 104.8% and 139.6%, respectively. For Yuanfeng 998, a sensitive genotype to Zn-deficiency, the increment of Zn concentration and accumulation was much lower than that of Zhongyu 6 and Xiaoyan 22, non-sensitive genotypes to Zn-deficiency. Zn supply or CaCO3 addition had no significant effects on the P content in root, stem, and leaf, but the corresponding P content of Yuanfeng 998 was obviously lower than that of the other two genotypes. Zn supply greatly decreased the P/Zn ratio in root, stem and leaf, and CaCO3 addition also showed the same tendency. Under Zn-deficiency, CaCO3 addition caused leaf chlorosis, but did not decrease wheat plant Zn up take. In conclusion, at least under solution culture condition, high concentration calcium carbonate had no obvious inhibitory effect on plant zinc uptake, and whether this situation was true in calcareous soils is worthy to be further investigated.
     (2) High content of calcium carbonate in calcareous soil is one of major factors which cause zinc deficiency of crops. In this research, varied amounts of calcium carbonate was added artificially to the calcareous soil and different levels of calcium carbonate was formed to investigate the effect of calcium carbonate on available zinc content in soil, the growth situation as well as Zn, Fe nutrition of two different wheat genotypes (Yuanfeng 998, Zhongyu 6). The obtained results showed that, the available Zn content of soil increased over 3 times at harvest from the initial 0.65 mg/kg at beginning of culture when adding Zn fertilizer (40 mg/kg) to soil; high content of calcium carbonate decreased the availability of zinc, and only about 1.3% of zinc added was taken up by wheat plants during the culture period, and most of newly added available zinc was transformed into unavailable form. The uptake of Fe by wheat plants was inhibited significantly when calcium carbonate content was high as 111.8 g/kg, however, the inhibition would become weaker when adding more calcium carbonate to soil. There existed obvious differences for their growth between two tested wheat genotypes, the ratio of root/shoot and tillering number of Zhongyu 6 was higher significantly than that of Yuanfeng 998. The Zn concentration and content of wheat plants was greatly increased following Zn application, the Zn concentration of root was inhibited when calcium carbonate was added to 111.8 g/kg, whereas it was not obvious for other parts of wheat plants. In addition, the Fe concentration of leaf and translocation efficiency was increased with Zn application.
     (3) 10 genotypes which were planted in Shaanxi Guanzhong Plain Area mainly were chosen in this study, a field experiment was carried out on calcaous soil for two years in succession, Zn fertilizer was applied in the first year, no zinc fertilization in the second year, but nitrogen fertilization was conducted in the continouns two years. The soil zinc contents of different forms in 0-20 cm and 20-40 cm soil depths was determined before wheat sowing, the filling stage and maturity stage, respectively. The results obtained showed that the Zn concentration in wheat grain could be increased by zinc fertilization on calcareous soil in which had low level of available zinc contend. The available Zn content in topsoil could be increased by planting wheat, the content of EX-Zn, WBO-Zn, CARB-Zn and OXMn-Zn were all increased by zinc fertilization, and these different forms of Zn could be utilized by wheat plants in the next year, furthermore, the contents of these various forms of Zn decreased after the wheat harvest, only the content of MIN-Zn was higher in soil at Zn fertilization compared to no zinc fertilization, so the potential Zn source in the soil reduced, and the zinc fertilizer response was decreased, but the available Zn content was still in high level, so it is worth further studying the residual effect of Zn fertilizer applied on the growth of wheat in the years that followed; application of nitrogen fertilizer increased the absorbtion of Zn from soil to wheat, but the soil can compensate the consumption by itself; To the combination of nitrogen and Zn fertilization, application of nitrogen fertilizer increased the absorbtion of Zn to wheat, but decreased the available zinc content in the soil which increased by zinc fertilization at the same time.
     (4) Grain yield and Zn concentration of wheat grain were also investigated in the experiment to screen the genotypes with high Zn efficiency and with better response on residual effect in the soil. Zn fertilization increased grain yield to some extent, but there existed obvious genotypic difference of the increasing effects, among the 10 genotypes tested, Wunong148, Xinmai13 and Shanyou253 were three genotypes with high Zn efficiency; Xiza1, Shanyou225 and Xiaoyan22 were three genotypes with low Zn efficiency. The Zn concentration in grain of wheat geontypes with low Zn effiency could be increased by application of Zn fertilizer, but Zn fertilizer reponses of the genotypes with high Zn efficiency was not significant. Nitrogen fertilization was mainly beneficial for leaf growth, and it could increase the numbers of tillers and the chlorophyll SPAD values, the leaf chlorosis could be alleviated by application of nitrogen and zinc fertilizers. The result of this study showed that the range of translocation ratio of Zn to the grain was 46.3-64.8%, indicating that only about half of the total Zn taken up was translocated to the wheat grain, so a great deal of Zn remained in the shell, leaf and stem, reusing or increasing the translocation ratio could enhance the utilization of Zn fertilizer. The Zn translocation ratios of a majority of genotypes were increased by Zn fertilization, but the extent was not so large, and the zinc tranlocation ratios of a few of genotypes were decreased.
引文
[1] Welch R M. Zinc concentrations and forms in plants for humans and animals [A]. In: A D Robson (Ed.), Zinc in Soil and Plants [M]. Kluwer Academic Publishers, Dordrecht, the Netherlands. 1993, 183-195
    [2] Graham R D, Welch R M. Breeding for stable food crops with high micronutrient density [A]. Agricultural Strategies for Micronutrients, Working paper No. 3, IFPRI, Washington, D C, 1996
    [3] HarvestPlus, Breeding Crops for Better Nutrition. HarvestPlus: Medium Term Plan, 2005-2007. International Centre for Tropical Agriculture (CIAT), International Food Policy Research Institute (IFPRI), 2004, 6
    [4] Welch R M, Graham R D. Breeding for micronutrients in staple food crops from a human nutrition perspective [J]. Journal of Experimental Biology, 2004, 55: 353-364
    [5] Cakmak I, Kalayci M, Ekiz H, et al. Zinc deficiency as a practical problem in plant and human nutrition in Turkey: A NATO-science for stability project [J]. Field Crops Research. 1999, 60: 175-188
    [6] Cakmak I, Sari N, Marschner H, et al. Phytosiderophore release in bread and durum wheat genotypes differing in zinc deficiency [J]. Plant and Soil, 1996b, 180: 183-189
    [7] Cakmak I, Yilmaz A, Kalayci M, et al. Zinc deficiency as a critical problem in wheat production in Central Anatolia [J]. Plant and Soil, 1996a, 180: 165-172
    [8] Rengel Z, Graham R D. Importance of seed Zn content for wheat growth on Zn-deficient soil. I. Vegetative growth [J]. Plant and Soil, 1995a, 173: 259-266
    [9] Rengel Z, Graham R D. Wheat genotypes differ in Zn efficiency when grown in chelate-buffered nutrient solution. I. Growth [J]. Plant and Soil, 1995b, 176: 307-316
    [10] 谢振翅, 钱金红, 李家书等. 水稻锌素营养及氮、磷、钾、锌配合施用的研究[A]. 中国农业科学院土壤研究所主编. 国际平衡施肥学术讨论会论文集[C]. 北京: 农业出版社,1989, 171-179
    [11] 迟锡增主编. 微量元素与人体健康[M]. 北京: 化学工业出版社, 1997
    [12] Smith J C. The Vitamin A, Zinc connection [J]. Micronutrients and Agriculture, 1996, (1): 16-17
    [13] 李兴国, 卢健鸣, 李萍. 锌与人体健康[J]. 山西食品工业, 2000, (2): 45-46
    [14] Alina K P, honry K P. Trace elements in soil and plants [M]. CRC Press. London, 1996
    [15] Cakmak I, Erenoglu B, ozturk B, et al. Morphological and physiological differences in response of cereals to zinc deficiency [J]. Euphytica, 1998, 100, 349-357
    [16] Treeby M, Marschner H, R?mheld V. Mobilization of Iron and other Micronutrients from a Calcareous Soil by Plant-Borne, Microbial, and Synthetic Metal Chelators [J]. Plant Soil, 1989, 114, 217-226
    [17] Rengel Z, Graham R D. Uptake of Zinc from Chelate-Buffered Nutrient Solutions by Wheat Genotypes Differing in Zinc Efficiency [J]. Exp Bot, 1996, 47, 217–226
    [18] Cakmak I, Sari N, Marschner H, et al. Dry Matter Production and Distribution of Zinc in Bread and Durum Wheat Genotypes Differing in Zinc Efficiency [J]. Plant Soil, 1996, 180, 173-181
    [19] 龙新宪, 杨肖娥. 植物育种途径改善人类的铁、锌营养[J]. 广东微量元素科学, 1998, 5(9): 5-10
    [20] 赵景石, 李卫平, 兰建闻. 锌与健康以及食品强化补锌剂[J] . 中华卫生监督与健康杂志, 2002, 2(1): 18-20
    [21] 林晓明, 田伟, 郭燕梅等. 北京山区学龄儿童机体锌状况及血清锌水平分析[J]. 中国儿童保健杂志, 2002, 10(4): 227-229
    [22] 陈学存. 人体锌缺乏研究进展[J]. 国外医学卫生分册, 1992, (3): 161-165
    [23] 刘哲华. 锌对人体健康影响的研究进展[J]. 微量元素与健康研究, 2000, 17(4): 72-73
    [24] 刘铮. 我国土壤中锌含量的分布规律[J]. 中国农业科学, 1994, 27(1): 30-37
    [25] 谢建治, 刘树庆, 李博文等. 锌处理对白菜营养品质的影响[J]. 园艺学报, 2004, 31(5): 668-669
    [26] 韩文炎, 徐充文, 伍炳华. 铜与锌对茶树生育特性及生理代谢的影响Ⅱ . 锌对茶树的生长和生理效应[J]. 茶叶科学, 1994, 14(1): 23-29
    [27] 李华. 施锌对马铃薯产量和品质的影响[J]. 山西农业大学学报, 1997, 17(3): 270-272
    [28] 高俊杰, 于新英. 施锌对油菜生长产量和品质的影响[J]. 北方园艺, 1998, 122: 16-17
    [29] 曾庆芳. 石灰性土壤棉花的施锌效果研究[J]. 中国棉花, 1996, 23(11): 21-22
    [30] 杨利华, 郭丽敏, 傅万鑫. 施锌对玉米氮磷钾肥料利用率、产量及籽粒品质的影响[J]. 中国生态农业学报, 2003, 11(2): 41-43
    [31] 裴雪霞, 党建友, 王姣爱. 钾、锌、锰配施对冬小麦产量及品质的影响[J]. 麦类作物学报, 2002, 22(2): 60-64
    [32] 郝明德, 魏孝荣, 党廷辉. 旱地长期施用锌肥对小麦吸锌及产量的影响[J]. 生态环境, 2003, 12(1): 46-48
    [33] Cayton M T C, Reyes E D, Neue H U. Effect of zinc fertilization on the mineral nutrition of rice differing in tolerance to zinc deficiency [J]. Plant and soil. 1985, 319-327
    [34] Boawn L C. Residual availability of fertilizer zinc. Soil Sci. Soc. Am. Proc. 1974, 38: 800-803
    [35] Yilmaz A, Ekiz H, Gultekin I, et al. Effect of seed zinc content on grain yield and zinc concentration of wheat grown in zinc-deficient calcareous soils [J]. Journal of Plant Nutrition, 1998, 21: 2257-2264
    [36] Graham R D, Asher J S, Hynes S C. Selecting zinc-efficient cereal genotypes for soil of soil of low zinc status [J]. Plant Soil, 1992, 146: 241-250
    [37] Erdal I, Yilmaz A, Taban S, et al. Phytic acid and phosphorus concentrations in seeds of wheat cultivars grown with and without zinc fertilization [J]. Journal of Plant Nutrition, 2002, 25(1): 113-127
    [38] Cakmak O, Oztürk L, Karanlik S, Ozkan H, Kaya Z, Cakmak I. Tolerance of 65 durum wheat genotypes to zinc deficiency in a calcareous soil [J]. Journal of plant nutrition, 2001, 24(11): 1831-1847
    [39] 吴兆明, 王玉琦, 孙景信. 不同品系小麦和小黑麦种子中金属元素含量的比较研究[J]. 作物学报, 1996, 22(50): 565-567
    [40] 张勇, 王德森, 张艳等. 北方冬麦区小麦品种籽粒主要矿物质元素含量分布及其相关性分析[J]. 中国农业科学, 2007, 40(9): 1871-1876
    [41] 李强. 锌对小麦生长发育及产量影响的研究[J]. 耕作与栽培, 2003(3): 52-53
    [42] 刘铮, 吴兆明主编. 中国科学院微量元素学术交流会会刊[C]. 北京: 科学出版社. 1980
    [43] 袁可能. 植物营养元素的土壤化学[M]. 北京:科学出版社, 1983
    [44] 韩凤祥, 胡霭堂, 秦怀英等. 我国某些旱地土壤中锌的形态及其有效性[J]. 土壤, 1990, (6): 302-306
    [45] 朱克庄, 王学贵. 陕西省缺锌土壤的分布及锌肥的应用[J]. 西北农业大学学报, 1991, 19(2): 49-53
    [46] 孙桂芳, 杨光穗. 土壤—植物系统中锌的研究进展[J]. 华南热带农业大学学报, 2002, 8(2): 22-30
    [47] 蒋廷惠, 胡霭堂, 秦怀英. 土壤中锌的形态分布及其影响因素[J]. 土壤学报, 1993, 30(3): 260-266
    [48] 刘福来. 土壤—植物系统中锌的研究概况[J]. 土壤学报, 1998, (5): 10-14
    [49] 蒋廷惠, 胡霭堂, 秦怀英. 锌在不同土壤中的形态分配[J]. 土壤肥料,1990, (6): 30-32
    [50] 魏世强, 陈荣, 刘东. 四川主要土壤锌形态和含量的研究[J]. 西南农业大学学报,1990, 12(6): 600-603
    [51] 马义兵,夏荣基. 土壤微量元素研究Ⅰ石灰性中锌的分组方法研究[J]. 北京农业大学学报, 1988, 14(2): 149-155
    [52] 莫争, 王春霞, 陈琴等. 重金属Cu, Pb, Zn, Cr, Cd在土壤中的形态分布和转化[J]. 农业环境保护,2002, 21(1): 10-17
    [53] 汪洪, 刘新保, 褚天铎等. 锌肥对作物产量、子粒锌及土壤有效锌含量的后效[J]. 土壤肥料, 2003, (1): 3-6, 9
    [54] Marschner H. Mineral Nutrition of Higher Plants [M]. London: Academic Press Inc. LTD. 1986, 510-523
    [55] Hodgson, J.F. et al. Micronutriemt cation Complexing in soil solution from calcarous soil [J]. Sci. Am. Proc, 1996, 30: 723-725
    [56] 韩凤祥, 胡霭堂, 秦怀英等. 酸性、中性与石灰性土壤中外源可溶性锌的形态及活性[J].中国环境科学,1992, 12(2): 108-112
    [57] 高明, 车福才, 魏朝富等. 长期施用有机肥对紫色水稻土锰铁铜锌形态的影响[J]. 植物营养与肥料学报, 2000, 6 (1): 256-260
    [58] 郭胜利, 余存祖, 戴鸣钧. 有机肥对石灰性土壤中锌、锰生物有效性的影响[J]. 华北农学报, 1996, 11(4): 63-68
    [59] 蒋廷惠, 胡霭堂, 秦怀英等. 土壤中锌、铜、铁、锰形态区分方法的选择[J]. 环境科学学报, 1990, 10(3): 280-286
    [60] 曾昭华. 长江中下游地区地下水中化学元素的背景特征及形成[J]. 地质学报, 1996, (3): 262-269
    [61] Curtin D, Smillie G W. Soil solution composition as affected by liming and incubation [J]. Soil Sci Soc Am J, 1983, 47(4): 701-707
    [62] Lindsay W L. Chemical equilibria in soils [M]. New York: JohnWiley, Sons, 1979: 211-220
    [63] 于天仁主编. 土壤化学原理[M]. 北京, 科学出版社, 1987
    [64] 刘世全, 张世熔, 伍钧等. 土壤pH与碳酸钙含量的关系[J]. 土壤, 2002, (5): 279-288
    [65] 钱金红, 谢振翅. 碳酸盐对土壤锌解吸影响的研究[J]. 土壤通报, 1994, 31(1): 105-108
    [66] 陆景陵主编. 植物营养学(上册) [M]. 中国农业大学出版社. 2003: 151-154
    [67] John M K. In Proc intl conf on Heavy metals in the Environ [M], Tronto: Ontario, Canada, 1975, 365-377
    [68] 林玉锁, 薛家骅. 锌在石灰性土壤中的吸附[J]. 土壤学报, 1987, 24(2): 135-141
    [69] Ao T Y, Chaney R L, Korcak R F, et al. Influence of soil moisture level on apple ironchlorosis development in a calacareous soil [J]. Plant soil, 1987, 104: 85-92
    [70] Bertoni G M, Pissaloux A, Sayag D R. Bicarbonate-pH relationship with iron chlorosis in white lupine [J]. Plant Nutr, 1992, 15: 1509-1518
    [71] 田霄鸿, 李生秀, 宋书琴. 碳酸氢根和铵态氮共同对菜豆生长及养分吸收的影响[J]. 园艺学报, 2002, 29(4): 337-342
    [72] 田霄鸿, 张茜, 李生秀. 生长介质中 CaCO3 质量分数及水分状况与 HCO3-的关系[J]. 生态环境, 2005, 14(2): 230-233
    [73] Yang X, R?mheld V, Marschner H. Effect of bicarbonate on root growth and accumulation of organic acids in Zn-inefficient and Zn-efficient rice cultivars (Oryza sativa L.) [J]. Plant and Soil, 1994, 164: 1-7
    [74] 李春花, 褚天铎, 杨清等. 灌溉水中 HCO3-对菜豆吸收利用土壤有效养分的影响[J]. 植物营养与肥料学报, 1997, 3(4): 329-333
    [75] 徐晓燕, 杨肖娥, 杨玉爱. HCO3-对不同水稻品种 Zn 吸收运输的影响[J]. 应用与环境生物学报, 2001, 7(6): 532-535
    [76] Nikolic M, R?mheld V. Does high bicarbonate supply to roots change availability of iron in the leaf apoplast? [J]. Plant and Soil, 2002, 241: 67-74
    [77] Malic R S, Karwasra S P S, Khera A P. Effect of chloride and bicarbonate on sulphur uptake and dry matter yield of Raya [J]. Annals of Arid Zone, 1992, 31(3): 195-197
    [78] Yang X, R?mheld V, Marschner H. Effect of bicarbonate and root zone temperature on the uptake of Zn, Fe, Mn and Cu by different rice cultivars (Oryza sativa L.) grown in calcareous soil [J]. Plant and Soil, 1993, 155/156: 441-445
    [79] Yang X, R?mheld V, Marschner H. Application of chelator-buffered nutrient solution technique in studies on zinc nutrition in rice plant (Oryza sativa L.) [J]. Plant and Soil, 1994a, 163: 83-94
    [80] Hajiboland R, Yang X E, R?mheld V. Effects of bicarbonate and high pH on growth of Zn-efficiency and Zn-inefficient genotypes of rice, wheat and rye [J]. Plant and Soil, 2003, 250: 349-357
    [81] Forno D A, Yoshida S, Asher C J. Zinc deficiency in rice. Ⅱ . Studies on two varieties differing in susceptibility to zinc deficiency [J]. Plant and Soil, 1975, 42: 551-563
    [82] 徐晓燕, 杨肖娥, 杨玉爱. 水稻品种对石灰性土壤缺 Zn 耐性机理的研究[J]. 土壤学报, 2000, 37(3): 396-401
    [83] Srivastava P C, Dobermann A, Ghosh D. Assessment of zinc availability to rice in Mollisols of North India [J]. Commun. Soil. Sci. Plant Anal., 2000, 31(15 & 16): 2457-2471
    [84] 赵同科. 植物锌营养研究综述与展望[J]. 河北农业大学学报, 1996, 19(1): 103-107
    [85] Neue H U, Quijano C, Senadhira D, et al. Strategies for dealing with micronutrient disorders and salinity in lowland rice systems [J]. Field Crops Research, 1998(56): 139-155。
    [86] Viets F G, Boawn C L, Crawford, et al. Zinc contents of bean plants in relation to deficiency symptoms and yi L. C eld [J]. Plant Physiol, 1954(29): 76-79
    [87] 褚天铎, 刘新保, 李春花等. 锌素营养对作物叶片解剖结构的影响[J]. 植物营养与肥料学报, 1995, 1(1): 24-29
    [88] 裴雪霞, 党建友, 吴俊兰. 冬小麦锰、锌、铜营养研究现状[J]. 小麦研究, 2000, 21(2): 28-29
    [89] Erenoglu B, Eker S, Cakmak I, et al. Effect of iron and zinc deficiency on release of phytosiderophores in barley cultivars differing in zinc efficiency [J]. Journal of Plant Nutrition, 2000, 23(11&12): 1645-1656
    [90] 曹恭, 梁鸣早. 锌—平衡栽培体系中植物必需的微量元素[J]. 土壤肥料, 2003(6): 加 1-加 4
    [91] Pearson J N, Rengel Z. Genotypic differences in the production and partitioning of carbohydrates between roots and shoots of wheat growth under zinc or manganese deficiency [J]. Annals of Botany, 1997(80): 803-808。
    [92] 汪洪, 汪立刚, 周卫等. 干旱条件下土壤中锌的有效性及与植物水分利用的关系[J]. 植物营养与肥料学报, 2007, 13(6): 1178-1184
    [93] Cakmak I. Transley Review Review No. 111 Possible roles of zinc in protecting plant cells from damage by reactive oxygen species [J]. New Phytol, 2000(146): 185-205
    [94] van de Mortel J E, Villanueva L A, Schat H, et al. Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens [J]. Plant Physiology, 2006, 142: 1127-1147
    [95] 王景安, 张福锁. 玉米幼苗对短暂供锌的反应及缺锌后再供锌的恢复[J]. 土壤肥料, 2000, 9(3): 25-27, 40
    [96] 王景安, 张福锁. 锌对不同基因型玉米缺锌后的恢复效果及胚乳在缺锌中的作用[J]. 中国生态农业学报, 2003, 11(3): 72-75
    [97] 王景安, 张福锁. 缺锌与低锌对玉米苗期生长发育的影响[J]. 土壤肥料, 1999, 5: 18-20
    [98] Bouis H E. Plant breeding: A new approach for solving the widespread, costly, and complex problem of micronutrients malnutrition [J]. Micronutrients and Agriculture, 1996,(1): 5-6
    [99] Grewal H S, Lu Z G, Graham R D. Influence of subsoil zinc on dry matter production, seed yield and distribution of zinc in oilseed rape genotype differing in zinc efficiency [J]. Plant and soil, 1997, 192: 181-189
    [100] 廖红, 严小龙. 高级植物营养学[M]. 北京: 科学出版社. 2003, 222-223
    [101] Takkar P N, Walker C D. The distribution and correction of zinc deficiency in zinc in soil and plant [J]. The Netherlands, 1993, 151-166
    [102] 刘铮. 微量元素的农业化学[M]. 农业出版社. 1996
    [103] 孙祖琰. 河北土壤微量元素研究会微肥应用[M]. 北京: 农业出版社, 1991, 14-51
    [104] 胡学玉. 不同青菜品种吸收利用土壤锌能力的差异与机制[D]. 武汉: 华中农业大学, 2001, 14-15
    [105] 张效仆. 淮北砂姜黑土区小麦高产高效的施肥技术[J]. 土壤, 1994, 26(1): 13-16
    [106] 叶优良, 韩燕来, 王文亮. 高产小麦氮肥施用研究进展[J]. 中国农学通报, 2006, 22(9): 264-267
    [107] 慕晓茹, 劳家柽, 祁明楣. 大豆氮锌营养研究[J]. 土壤通报, 1990, 21(1): 30-32
    [108] 左余宝, 李书田, 谢晓红. 夏玉米施用钾肥的增产效果及氮磷钾配合施用技术[J]. 土壤肥料, 1995, 2: 31
    [109] 张建平, 张永清. 氮、锌、锰肥配施对油菜产量影响研究[J]. 北方园艺, 2001, (1): 15-17
    [110] 马娟娟, 胡全才, 王景华等. 钾锌肥与氮肥配施对油菜产量的影响[J]. 山西农业大学学报, 2000, 20(2): 148-151
    [111] 杨清, 刘新保, 褚天铎等. 小麦氮、磷与锌配合施用的研究[J]. 中国农业科学, 1995, 28(1): 15-24
    [112] 黄文川, 李录久, 李文高. 小麦氮锌配施效应及增产机理研究[J]. 核农学报, 2000, 14(4): 225–229
    [113] 何忠俊, 华珞, 洪常青. 氮锌交互作用对黄棕壤锌形态的影响[J]. 农业环境科学学报, 2004, 23(2): 209-212
    [114] 张永清, 吴俊兰. 石灰性褐土小白菜优质高产与氮、锌、锰肥配施[J]. 植物营养与肥料学报, 2003, 9(3): 348-352
    [115] 唐新莲, 顾明华, 潘丽梅等. 氮、磷、钾、锌配施对小白菜产量和品质的效应[J].中国土壤与肥料, 2007, (3): 47-51
    [116] 李伶俐, 马宗斌, 王文亮等. 苗期喷施氮、锌肥对麦套夏棉某些生理特性及产量的影响[J]. 河南农业大学学报, 2004, 38(1): 33-35
    [117] 幕晓茹, 劳家柽, 祁明楣. 大豆氮锌营养研究[J]. 土壤通报, 1990, 21(1): 30-32
    [118] 张水旺. 氮锌配施及锌肥不同用量对夏大豆产量及品质的影响[J]. 土壤肥料, 1996, (3): 37-39
    [119] Ozanne P G. The effect of nitrogen on Zinc deficiency in subterranean clover.Aust [J]. J Biol Sci, 1955, 8: 47-55
    [120] Valle B L, Galdes A. The melallo-biochemistry of Zinc enzymes [J]. Adv Enzymol, 1984, 56: 284-430
    [121] Kumar V, Ahlawat V S, Antil R S. Interactions of nitrogen and Zinc in peart millet:1.Effect of nitrogen and Zinc levels on dry matter yield and concentration and uptake of nitrogen and zinc in peart millet [J]. Soil Sci, 1985, 139(4): 351-356
    [122] 李生秀主编. 氮锌相互作用的初步研究[C]. 土壤-植物营养研究文集. 1992
    [123] Satinder D, Shukla V C. Nitrogen-Zinc content in maize as affected by their different sources [J]. J Indian Soci Soi Sci, 1980, 28: 336-341.
    [124] Kumur V, Ahlawat V S, Antil R S, et al. Interactions of nitrogen and Zinc in pearl millet: 2. Effect on concentration and uptake of phosphorus, potassium, iron, manganese and copper [J]. Soil Sci, 1986, 142(6): 340-345.
    [125] Mahendra S, Singh S P, Singh M. Effect of Zinc and phosphorus on absorption of iron and nitrogen by submerged paddy [J]. Soil Sci, 1983, 135(2): 71-78
    [126] Marschner H. Mineral Nutrition of Higher Plants. 2th 2nd edi [M]. London: Academic Press. 1995.
    [127] Porter L K, Thorne D W. Interrelation of carbon dioxide and bicarbonate ions in causing plant chlorosis [J]. Soil Science, 1955, 79(5): 373-382
    [128] He Y, Liao H, Yan X l. Localized supply of phosphorus induces root morphological and architectural changes of rice in split and stratified soil cultures [J]. Plant Soil, 2003, 248: 247-256
    [129] 秦遂初. 作物营养障碍的诊断及其防治[M]. 杭州:浙江科学技术出版社. 1988, 118-128
    [130] 任军, 袁震霖, 张淑芬. 玉米锌素营养基因型差异及遗传特性初探[J]. 玉米科学, 1995, 3(2): 68-70
    [131] Brown J C, Jones W E. A technique to determine iron efficiency in plants [J]. Soil Sci. Soc Am M J, 1976, 40: 398-405
    [132] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 1999: 268-270
    [133] Valcho D Z, Niels E N. Effect of heavy metals on pepper mint and com mint [J]. Plant Soil, 1996, 178: 59-66
    [134] 余国营, 吴燕玉, 王新. 重金属符合污染对大豆生长的影响极其综合评价研究[J]. 应用生态学报, 1995, 6(4): 433-439
    [135] 许桂莲, 王焕校, 吴玉树, 王光灿, 朱光辉. Zn、Cd 及其复合对小麦幼苗吸收 Ca、Fe、Mn 的影响[J]. 应用生态学报, 2001, 12(2): 275-278
    [136] Nikolic M, Kastori R, Miroslac Nikolic, et al. Effect of bicarbonate and Fe supply on Fe nutrition of grapevine [J]. J. Plant Nutri, 2000, 23(11-12): 1619-1627
    [137] R?mleld V. The Chlorosis Paradox: Fe inactivation as a secondary event in chlorotic leaves of Grapevine[J]. J Plant Nutri, 2000, 23(11-12): 1629-1643
    [138] 张福锁. 小麦锌营养对锌吸收的影响[J]. 植物生理学报, 1993, 19(2): 143-148
    [139] Anghinoni I, Barber SA. Phosphorus influx and growth characteristics of corn roots as influenced by phosphorus supply [J]. Agron J, 1980, 72: 685-688
    [140] 郭玉春, 林文雄, 石秋梅等. 低磷胁迫下不同磷效率水稻苗期根系的生理适应性研究[J]. 应用生态学报, 2003, 14(1): 61-65
    [141] 孙海国, 张福锁. 缺磷胁迫下的小麦根系形态特征研究. 应用生态学报, 2002, 13(3): 295-299
    [142] Fredeen A L, Rao I M, Terry N. Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max [J]. Plant Physiol, 1989, 89: 220-280
    [143] Olsen S R. Micronutrient interactions. In: Mortvedt JJ, eds. Micronutrients in Agriculture. Madison, Wisconsin: Soil Soc Sci Soc Am Inc. 1972, 243-264
    [144] 杨志敏, 郑绍建, 胡霭堂等. P、Zn 在小麦细胞内的积累、分布及交互作用的研究[J]. 应用生态学报, 1999, 10(5): 593-595
    [145] 徐晓燕, 杨肖娥, 杨玉爱. 锌从土壤向食物链的迁移[J]. 广东微量元素科学, 1996, 3(7): 21-29
    [146] 刘付程, 史学正, 王洪杰等. 苏南典型地区土壤锌的空间分布特征及其与土壤颗粒组成的关系[J]. 土壤, 2003, 35(4): 330-333
    [147] 李红伟, 李立平, 邢维芹. 不同小尺度下潮土重金属有效性空间变异研究[J]. 土壤, 2006, 38(6): 782-789
    [148] 章明奎. 砂质土壤不同粒径颗粒中有机碳、养分和重金属状况[J]. 土壤学报, 2006, 43(4): 584-591
    [149] 徐茂, 王绪奎, 蒋建兴等. 江苏省苏南地区耕地利用变化特征及其对策[J]. 土壤, 2006, 38(6): 825-829
    [150] Zhang M K, He Z L, Calvert D V, et al. Extractability and mobility of copper and zinc accumulated in sandy soils [J]. Pedosphere, 2006, 16(1): 43-49
    [151] 章明奎, 符娟林, 黄昌勇. 杭州市居民区土壤重金属的化学特性及其与酸缓冲性的关系[J]. 土壤学报, 2005, 42(1): 44-51
    [152] 徐明岗, 季国亮. 恒电荷土壤及可变电荷土壤与离子间相互作用的研究. Ⅲ . Cu2+和 Zn2+的吸附特征[J]. 土壤学报, 2005, 42(2): 225-231
    [153] 杨荣清, 黄标, 孙维侠等. 江苏省如皋市长寿人口分布区土壤及其微量元素特征[J]. 土壤学报, 2005, 42(5): 753-760
    [154] Viets F G, J R, Boawn L C, et al. Zinc contents and deficiency symptoms of 26 crops grown on a zinc-deficient soil [J]. Soil Sci, 1954, 78: 305-316
    [155] 徐晓燕, 杨肖娥, 杨玉爱. HCO3-对不同基因型水稻根生长及养分吸收分配的影响[J]. 应用生态学报, 2001, 12(4): 557-560
    [156] Torun B, Bozbay G, Gültekin I, et al. Differences in shoot growth and zinc concentration of 164 bread wheat genotypes in a zinc-deficient calcareous soil [J]. Journal of Plant Nutrition, 2000, 23: 1251-1265
    [157] 陈玲, 田霄鸿, 李峰等. 碳酸钙和锌对五种基因型小麦生长、锌吸收及营养液中 HCO3-含量和pH 值的影响[J]. 植物营养与肥料学报, 2006, 12(4): 523-529
    [158] 陈丹, 李志洪, 孙晓秋等. 缺锌对玉米吸收锌的动力学及氨基酸分泌的影响[J]. 吉林农业大学学报, 1998, 20(4): 58-60
    [159] Rengel Z, Graham R D. Wheat genotypes differ in Zn efficiency when grown in chelate-buffered nutrient solution. Ⅱ . Nutrient uptake [J]. Plant and Soil, 1995, 176: 317-324
    [160] 彭洪翠, 肖和艾, 吴金水等. 土壤碳酸盐间接测定方法研究及其应用[J]. 土壤, 2006, 38(4): 477-482
    [161] 闫湘, 常庆瑞, 王晓强等. 陕西关中土垫旱耕人为土样区的基层分类研究[J]. 土壤学报, 2005, 42(4): 537-544
    [162] Tan W F, Liu F, Li Y H, et al. Elemental composition and geochemical characteristics of iron-manganese nodules in main soils of China [J]. Pedosphere, 2006, 16(1): 72-81
    [163] He Y, Liao H, Yan X L. Localized supply of phosphorus induces root morphological and architectural changes of rice in split and stratified soil cultures [J]. Plant and Soil, 2003, 248: 247-256
    [164] 陆正松, 董爱平, 石普芳等. 滨海土壤水稻施锌技术研究[J]. 土壤, 1998, 30(6): 328-331
    [165] 吕选忠, 宫象雷, 唐勇. 叶面喷施锌或硒对生菜吸收镉的拮抗作用研究[J]. 土壤学报, 2006, 43(5): 868-870
    [166] 章艺, 史锋, 刘鹏等. 土壤中的铁及植物铁胁迫研究进展[J]. 浙江农业学报, 2004, 16(2): 110-114
    [167] Bagci S A, Ekiz H, Yilmaz A, et al. Effects of zinc deficiency and drought on grain yield of field-grown wheat cultivars in Central Anatolia [J]. J. Agron. Crop Sci., 2007, 193: 198-206
    [168] 余存祖, 彭琳, 刘耀宏等. 黄土区土壤微量元素含量分布与微肥效应[J]. 土壤学报, 1981, 28(3): 317-326
    [169] 魏孝荣, 郝明德, 张春霞. 黄土高原地区连续施锌条件下土壤锌的形态及有效性[J]. 中国农业科学, 2005, 38(7): 1386-1393
    [170] 杨丽娟, 李天来, 刘妤等. 长期施用有机肥和化肥对菜田土壤锌有效性的影响[J]. 土壤通报, 2005, 36(3): 395-397
    [171] Graham R D, Rengel Z. Genotypic variation in Zn uptake and utilization by plants [A]. In: Robson A D (ed). Zinc in Soils and Plants [M]. Kluwer Academic Publishers, Dordrecht, 1993: 107-114
    [172] Shuman L M, Wang J. Effect of VAM and zinc cadmium iron and manganese content in rhizosphere and non-rhizosphere soil fractions [J]. Comm Soil Sci Plant Anal, 1997, 28: 23-36
    [173] Mench M J, Fargue S. Mental uptake by iron-efficient and in inefficient oats [J]. Plant Soil, 1994, 165: 227-233
    [174] 王世荣, 桂林国, 罗代雄. 新垦淡灰钙土玉米锌肥后效研究[J]. 甘肃农业科技, 2003, (7): 43-44
    [175] Tessler A, Campbell P G C, Blsson M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry, 1979, 51(7): 844-851
    [176] 朱波, 青长乐, 牟树森. 紫色土外源锌、镉形态的生物有效性[J]. 应用生态学报, 2002, 13 (5): 555-558
    [177] 蒋廷惠, 胡霭堂, 秦怀英. 土壤中锌、铜、铁、锰的形态有效性的关系[J]. 土壤通报, 1989, 20(5): 228-231
    [178] 孟庆秋, 张树人. 吉林省主要土壤中微量元素的含量评价及其相关分析[J]. 土壤通报, 1983, 14(6): 26-29
    [179] 于素华, 杨守祥, 刘春生等. 水分淋洗下菜园土壤各形态锌的迁移转化特征[J]. 水土保持学报, 2006, 20(4): 31-34, 39
    [180] 徐卫红, 王正银, 袁德厚等. 不同阴离子形态锌肥对水稻营养及土壤锌形态的影响[J]. 中国生态农业学报, 2006, 14(3): 52-55
    [181] 李玉双, 孙丽娜, 孙铁珩等. 北方常见农作物根际土壤中铅、锌的形态转化及其植物有效性[J]. 生态环境, 2006, 15(4): 743-746
    [182] Kalbasi K, Racz G J, Lewen-Rudgers L A. The reaction of products and solubility of some zinc compounds applied in some Manitoba soils [J]. Soil Science, 1978, 125: 55-64
    [183] 郭海彦, 周卫军, 张杨珠等. 湖南省主要茶园土壤锌的形态及其有效性[J]. 土壤, 2007, 39(4): 497-502
    [184] 同延安, 高宗, 刘杏兰, 朱克庄. 有机肥及化肥对塿土中微量元素平衡的影响. 土壤学报, 1995, 32(3): 315-320
    [185] Prasad R. Effects of soil properties on different chemical pools of zinc in limy soil [J]. Journal of the Indian Society of Soil Sci, 1998, 36(2): 246-251
    [186] Cakmak I, Dirci R, Torun B. Role of rye chromosomes in improvement of zinc efficiency in wheat and triticate [J]. Plant and Soil, 1997, 196: 249-253
    [187] Khan H R, McDonald G K, Rengel Z. Chickpea genotypes differ in their sensitivity to Zn deficiency [J]. Plant and Soil, 1998, 198: 11-18
    [188] 刘文科, 杜连凤, 刘东臣. 石灰性土壤中铁肥的形态转化及其供铁机理研究[J]. 植物营养与肥料学报, 2002, 8(3): 344-348
    [189] 裴雪霞, 张定一, 王姣爱等. 钾锌锰配施对冬小麦旗叶叶绿素含量的影响[J]. 小麦研究, 2002, 23(3): 33-35
    [190] 韩金玲, 李雁鸣, 马春英等. 施锌对小麦开花后氮、磷、钾、锌积累和运转的影响[J]. 植物营养与肥料学报, 2006, 12(3): 313-320
    [191] Cakmak I, Tolay I, Ozdemir A. Differences in zinc efficiency among and within Diploid, Tetraploid and Hexaploid wheats [J]. Annals of Botany, 1999, 84: 163-171
    [192] 左东峰. 盐渍土冬小麦叶面喷施硼、锌、铁肥优化配比及增产效应研究[J]. 北京农业大学学报, 1992, 18(3): 293-297
    [193] 田士明, 王梅芳, 张韶华等. 锌锰肥对玉米吸收氮磷钾及干物质积累的影响[J]. 土壤肥料, 1999, (1): 44-45
    [194] Schlegel R, Cakmak I, Torun B, et al. Screening for zinc efficiency among wheat relatives and their utilization for alien gene transfer [J]. Euphytica, 1998, 100: 281-286
    [195] 郝虎林, 魏幼璋, 杨肖娥等. 供氮水平对稻株铁、锰、铜、锌含量和稻米品质的影响[J]. 中国水稻科学, 2007, 21(4): 411-416

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700