用户名: 密码: 验证码:
奶花芸豆对干旱胁迫及烯效唑调控的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是影响作物生长发育最主要的生态境因子,也是对作物产量最重要的限制因子之一。阐明水分亏缺对芸豆生长发育及产量的影响对于丰富作物干旱胁迫研究,解决本地区芸豆生产实际问题具有重要的理论和现实意义。本试验以奶花芸豆为研究对象,于2012年和2013年在黑龙江八一农垦大学实验场进行。采用不同浓度PEG-6000溶液模拟干旱,测定了种子萌发、生理指标的变化。通过人工控水的盆栽试验研究了不同程度、不同时期、不同时间干旱胁迫及复水对奶花芸豆形态、生理和产量的影响,建立了奶花芸豆干物质积累的动态模型。同时,利用烯效唑进行拌种处理的方法,研究其对干旱的调控作用。主要研究结果如下:
     1.利用PEG-6000模拟干旱,研究发现,轻度胁迫并未明显影响种子的萌发,而且还有一定的促进作用。随着胁迫强度增加,种子萌发呈明显降低的趋势。MDA、游离Pro、保护酶活性、可溶性蛋白质和可溶性糖含量的变化则呈单峰曲线趋势。
     2.干旱胁迫下,芸豆株高、叶面积、比叶重、叶片保水能力均降低,茎粗变细。随着胁迫强度增加、时间延长,变化幅度增大,但叶片保水能力变化不大。不同生育时期胁迫对株高的影响顺序为苗期>花期>结荚期。叶面积随着发育进程的推进,受影响程度加重。苗期干旱胁迫使叶绿素a含量升高,随着发育进程推进呈下降趋势,胁迫强度越大、降幅越大。叶绿素总量和叶绿素b的变化规律与叶绿素a基本相同。叶绿素a与b比值无明显的规律。
     复水后,冠层形态指标的反应比较滞后,而后由于补偿作用得到一定程度的恢复。株高的反应,在苗期干旱胁迫5d、花期和结荚期轻度胁迫,补偿作用最明显,而重度胁迫补偿作用相对较差弱。茎粗对胁迫及复水反应均不明显。叶面积,在花期产生激发作用,最终结荚期补偿效应最强,花期和苗期次之。比叶重,在苗期和花期轻度胁迫5d出现等量补偿,花期其他处理出现部分补偿,结荚期则表现为伤害补偿或无补偿。叶片保水能力,在苗期出现等量补偿,而花期和结荚期补偿效应不明显。叶绿素a含量,在苗期胁迫5d、花期胁迫10d及结荚期胁迫均能等量补偿。叶绿素b含量,在苗期和结荚期胁迫5d,表现为等量补偿。叶绿素a与b比值,在苗期和结荚期轻度胁迫10d和花期胁迫5d,均能等量补偿。叶绿素总量的变化规律与叶绿素a基本相同。
     3.干旱胁迫使芸豆主根增长,根粗变细,侧根总长增加,根系活力减小,随胁迫强度越大,变幅越大。胁迫时间延长,苗期、花期和结荚期的不同指标变化各异。胁迫使根系总吸收面积减小,强度越大、时间越长,降幅越大。苗期,根系活跃吸收面积在轻度干旱胁迫时上升,随胁迫时间延长增量减小;苗期重度胁迫、花期和结荚期胁迫使活跃吸收面积降低,随着胁迫强度增加、时间延长,降幅急剧增加。活跃吸收面积率变化规律与活跃吸收面积相一致。
     复水后,主根长、主根粗及侧根总长均表现出滞后效应,其他指标表现不明显。主根长在苗期和花期胁迫5d产生等量补偿,侧根总长在花期和结荚期表现为等量补偿。主根粗在苗期补偿效应最强,表现出等量补偿。根系活力均能等量补偿。总吸收面积在苗期和花期胁迫5d表现为等量补偿。根系活跃吸收面积在苗期轻度胁迫5d及胁迫10d表现为等量补偿,根系活跃吸收面积率变化规律与活跃吸收面积相同。
     4.干旱胁迫下,芸豆叶片SOD活性均下降,胁迫强度增加,时间延长,降幅加大。MDA含量、POD和CAT活性在干旱胁迫下上升,胁迫强度越高、时间越长,上升趋势越明显,各指标在结荚期受干旱胁迫影响程度最大。复水后,POD和CAT活性表现为激发作用。最终SOD在苗期和结荚期出现等量补偿,花期胁迫出现伤害补偿。CAT活性、MDA含量在复水后,基本能等量补偿。CAT活性补偿作用的变化没有规律,苗期胁迫5d和结荚期胁迫产生等量补偿,苗期胁迫10d产生部分补偿,而花期胁迫5d和10d分别产生了伤害补偿和超补偿效应。
     5.干旱胁迫,可溶性蛋白含量除结荚期胁迫10d增加外,其他处理均减少,随胁迫强度增加而降幅增大。随胁迫时间延长,苗期和结荚期降幅增大,花期降幅减小,影响程度顺序为苗期>结荚期>花期。可溶性糖和游离Pro含量在干旱胁迫下提高,随胁迫强度增加,增幅加大。随胁迫时间延长,脯氨酸含量在苗期重度胁迫下降低,其他处理均提高,随发育进程推进,增幅加大。可溶性糖含量在苗期和花期增幅减小;结荚期轻度胁迫时含量提高,重度胁迫变化不大。复水后,可溶性蛋白含量表现出激发反应,可溶性糖在花期和结荚期也均出现激发反应,最终两者均为等量补偿,且可溶性蛋白在苗期胁迫10d出现超补偿现象。脯氨酸含量在复水后出现滞后效应,最终苗期胁迫10d为等量补偿,其他处理为部分补偿甚至伤害补偿。
     6.干旱胁迫使芸豆冠层干重减小,根部干重增加,根冠比提高。冠层干重和根冠比在胁迫强度增加时降幅加大。随胁迫时间延长,苗期和结荚期降幅加大,花期降幅减小。根部干重随胁迫强度增加,时间延长,增幅加大。复水后,冠层干重、根部干重和根冠比均先后产生滞后效应,最终在苗期和花期均能等量补偿,而结荚期,尤其是结荚期胁迫10d补偿效果较差。
     7.干旱胁迫对单荚粒数影响不明显,单株荚数、粒重和单株产量呈减小趋势。随胁迫强度增加、时间延长而降幅增加。单株荚数在结荚期明显降低,粒重和单株产量在花期和结荚期均明显降低,其他生育时期变化不明显。随胁迫强度增加,时间延长,百粒重降幅加大。干物质增长的动态曲线呈“S”型,与Logistic增长模型相吻合。复水后产生一定的补偿作用,苗期等量补偿,花期和结荚期仅为部分补偿。
     8.干旱胁迫后用烯效唑拌种,在一定浓度范围内,除株高和MDA含量降低外,其他冠层及根系形态和生理指标、保护酶活性、渗透调节物质、冠层及根干重、根冠比等均上升。最终在产量及构成因素中,百粒重和单株产量均增加,单株荚数、单荚粒数变化不显著。但烯效唑拌种浓度较高时,除株高外,均产生与中低浓度相反的变化趋势。
Drought is one of the main environmental factors that affects crop growth and development, and is also one of the most important limiting factors for crops. To understand the effects of water deficit on the growth and yield of speckled kidney bean is significant for both the studies of drought stress and the problem solving theoretically and practically.
     This project was carried out in agronomic experimental base of Heilongjiang Bayi Agricultural University in2012and2013using speckled kidney bean as the subject. PEG-6000(polyethylene glycol6000) of different concentrations was applied to seeds of speckled kidney bean to simulate drought stress. The seed germination and physiological characteristics were measured in this study. Pot experiments were carried out by artificial water control to study the changes of morphological, physiological characteristics and yield of speckled kidney bean under drought stress and rewater in the aspects of stages, severity and duration. According to the study, the dynamic models of dry matter accumulation of speckled kidney bean were established. Regulation of drought was investigated by uniconazole waterless-dressed seed.
     The main results were shown as follows:
     1. In the experiment of PEG-6000modifying drought stress, seed germination was not significant suppressed, but enhanced a little under mild drought stress. With the increase of drought stress, the seed germination was inhibited, protective enzyme activities and the content of protein were first increased and then decreased, while the contents of MDA, Pro and soluble sugar were increased in a unimodal curve trend.
     2. Drought stress in each stage altered the canopy characteristics of speckled kidney bean, and resulted in decreases in the plant height, leaf area, specific leaf weigh, water retention capacity of leaf and main stem diameter. More obvious variations were observed under stricter drought stress and longer stress duration, but there is no significant difference in leaf relative water component. The plant height in the growth period was varied in an ascending order of pod-setting stage, flowering stage and seedling stage. The leaf area was more severely affected by drought stress during growth.
     The content of chlorophyll a increased under drought stress in seedling stage, and then was observed a decline tendency with the development of the plant. The more serious the drought stress, the greater the decline. The trends of the level of chlorophyll b and total chlorophyll were almost the same as that of chlorophyll a, and the ratio of chlorophyll a to b was random. Canopy morphological and physiological biochemical parameters showed hysteresis effect after rewater, and then were restored to a certain degree by the compensation effect.
     The plant height had obvious compensation effect in seedling stage under a5-day drought stress and mild drought stress in flowering and pod-setting stage. But compensation effect was relatively poor under severe drought stress. The response of main stem diameter to the changes of drought stress and rewater was not obvious.
     Leaf area showed priming effect in flowering stage, eventually, the compensation effect of pod-setting stage is the best, followed by that of flowering stage and seedling stage.
     Specific leaf weight had equivalent compensation effect in seedling and flowering stage under5-day mild drought stress, partial compensation effect in flowering stage under other drought stress, and damage or no compensation effect in pod-setting stage.
     Water retention capacity of leaf showed equivalent compensation effect in seedling stage, but had no obviously compensation effect in flowering and pod-setting stage. The content of chlorophyll a had equivalent compensation effect in seedling stage under5-day drought stress,10-day flowering stage and5-day pod-setting stage. The content of chlorophyll b showed equivalent compensation effect after a5-day stress in seedling and pod-setting stage. The ratio of chlorophyll a to b had equivalent compensation effect in seedling and pod-setting stage under10-day mild drought stress and5-day flowering stage stress. The content of total chlorophyll had the same trend as that of chlorophyll a.
     3. Drought stress leaded to an increase of length of main and lateral roots, but resulted in a decrease of the diameter of main root and the vitality of root, the more serious the drought stress, the more obvious the variation. Along with the prolonged period of drought stress, the parameters were not changed in the same way between stages. The total root absorption area was appeared in declining trend. Higher drought stress and longer stress duration will lead to a greater declination.The root active absorption area was increased in seedling stage under mild drought stress. The increment reduced under longer stress duration.
     The root active absorption area was decreased in seedling stage under severe drought stress. The serious drought stress and the long stress duration resulted in great the declination of absorption area in flowering and pod-setting stages.
     The ratio of active absorption area had the same tendency as that of the root active absorption area. All of the lengths of main roots, lateral roots and the diameter of main roots showed hysteresis effect after rewater, other parameters were not obvious.
     Length of main roots was produced equivalent compensation effect in seedling stage, and in5-day flowering stage. The total length of lateral roots was observed equivalent compensation effect in flowering and pod-setting stage. The diameter of main root was observed equivalent compensation effect in seedling stage. The vitality of root had equivalent compensation effect in each stage. The total root absorption area had equivalent compensation effect in seedling stage and in5-day flowering stage, the root active absorption area had equivalent compensation effect in seedling stage under5-day mild drought stress and10-day drought stress. The trend of the ratio of active absorption area was the same as that of the root active absorption area.
     4. Drought stress resulted in a decline of SOD activity, the more serious the drought stress and the longer the stress duration, the greater the decline. Drought stress leaded to increases of POD activity, CAT activity and content of MDA, the more serious the drought stress and the longer the stress duration, the greater the increase. All of the parameters were affected the most by drought stress in pod-setting stage. POD and CAT activities had priming effect; SOD activity had equivalent compensation effect in seedling and pod-setting stage, and damage compensation effect occurred in flowering stage.
     POD activity and the content of MDA were produced equivalent compensation effect by and large. Compensation effect was changed irregularly in CAT activity. Rewater produced equivalent compensation effect in seedling stage under5-day drought stress and pod-setting stage, and partial compensation effect in seedling stage for10-day, while produced respectively damage and over compensation effect in5-day and10-day flowering stage.
     5. Drought stress caused the accumulation of soluble protein decreased in each stage except in10-day pod-setting stage, the more serious the drought stress, the greater the decline; the longer the stress duration, the greater the decline in seedling and pod-setting stage and the smaller the decline in flowering stage. The impact in seedling stage is larger than that in pod-setting stage which is larger than that in flowering stage. Drought stress increased the content of Pro and soluble sugar, the more serious the drought stress, the greater the increase. The longer the stress duration, the greater the decline of the content of Pro in seedling stage under severe drought stress, the later the developmental process, the greater the increase. Drought stress decreased the increment amplitude of the content of soluble sugar in seedling and flowering stage, and increased the content of soluble sugar in pod-setting stage under mild drought stress. There were no obvious variations in severe drought stress.
     The content of soluble protein had priming effect in each stage after rewater, so did the content of soluble sugar in flowering and pod-setting stage. All of them had equivalent compensation effect, and the content of soluble protein had over compensation effect in seedling for10-day. Rewater raised hysteresis effect to the content of Pro, in the end rewater produced equivalent compensation effect in seedling stage for10-day, and partial or damage compensation effect in other treatments.
     6. Drought stress decreased canopy dry weight, increased root dry weight as well as ratio of root to canopy. The more serious the drought stress, the greater the decline of canopy dry weight and ratio of root to canopy. Long stress duration leaded to the big declination in seedling and pod-setting stages, and small declination in flowering stage.
     The root dry weight increased intensely in response to serious drought stress and long stress duration. Rewater leaded hysteresis effect to canopy and root dry weight, and ratio of root to canopy. Final equivalent compensation effect occurred in seedling and flowering stage, while poor compensation effect occurred in pod-setting stage and in the10-day stress treatment especially.
     7. during harvest period, drought stress decreased pod number and yield of per plant as well as the100-grain weight, the more serious the drought stress and the longer the stress duration, the greater the decline, but there had no significant influence on the grain number per pod. Drought stress let pod number per plant decrease significantly in pod-setting stage, but the100-grain weight and the yield per plant were the same in flowering stage as in pod-setting stage.
     The100-grain weight was changed dynamically in s-shape curve under drought stress, the more serious the drought stress and the longer the stress duration, the greater the decline. Changes of dry substance accumulation can be described by logistic model which could give objective demonstration, the fitted effect was better. Rewater produced equivalent compensation effects in seedling stage, but partial compensation effect in flowering and pod-setting stage, and didn't change significantly in other stages.
     8. After drought stress, seeds were waterless-dressed with uniconazole that is within certain concentration ranges. All of the canopy morphological and physiological parameters, protective enzyme activities, osmoregulation substance, canopy and root dry weight, ratio of root to canopy increased with increasing uniconazole concentration, except the plant height and the content of MDA which decreased significantly. The final yield and composition factors, pod number per plant and grain number per pod didn't change significantly, while the100-grain weight and the yield per plant were increased. However, when the seeds were treated with high concentrations uniconazole, all the parameters except plant height had the opposite tendency comparing to those under lower uniconazole concentration.
引文
1.白建芬,裴玉贺,赵秋霞,等.2012.干旱胁迫下玉米幼苗几种生理生化指标的变化.山东农业科学,44(3):25-28.
    2.白伟,孙占祥,刘晓晨,等.2009.苗期水分胁迫对大豆器官平衡和产量的影响.大豆科学,28(1):59-62.
    3.白岩,张艳,杨潮,等.2012.白术比叶重与地下根茎干重变化规律及相关性研究.中药材,32(7):1013-1016.
    4.鲍思伟,陈彤.2001.水分胁迫对蚕豆(Vicia faba L)生长的影响.台州师专学报,23(3):59-61.
    5.曹慧,兰彦平,曹冬梅,等.2000.水分胁迫对短枝型苹果叶片活性氧清除酶类活性的影响.山西农业科学,28(4):48-51.
    6.曹宛虹.1994.作为叶绿体H2O2分解系统关键的抗坏血醣过氧化物酶.植物生理学通讯,30(6):452-458.
    7.柴玉琳.2011.干旱胁迫及复水对高粱水分传导特性的影响.杨凌:西北农林科技大学硕士学位论文.
    8.陈建勋,王晓峰.2002.植物生理学实验指导.广州:华南理工大学山版社.
    9.陈金平,李利红,周新国,等.2006.共生期十壤水分对麦棉套种冬小麦比叶重、WUE和产量的影响.西北植物学报,26(5):1048-1052.
    10.陈菁,石伟琦,孙光明,等.2012.干旱胁迫对菠萝苗期生长及叶绿素含量的影响.热带农业科学,32(7):9-11.
    11.陈军,戴俊英.1994.水分胁迫下玉米叶片光合作用、膜脂过氧化作用及超微结构变化的关系.玉米科学,2(4):36-40.
    12.陈晓远,罗远培.2002.不同生育期复水对受旱冬小麦的补偿效应研究.中国生态农业学报,10(1):35-37.
    13.陈由强,朱锦懋,叶冰莹.2000.水分胁迫对芒果(Mangifera indica L)幼叶细胞活性氧伤害的影响.生命科学研究,4(1):60-64.
    14.程建峰,陈根云,沈允钢.2012.植物叶片特征与光合性能的关系.中国生态农业学报,20(4):466-473.
    15.程仕明.2010.烯效唑对半夏珠芽期耐干旱特性的影响.雅安:四川农业大学硕士学位论文.
    16.程旺大.2001.水稻节水高效栽培的生理生态效应及对产量品质的影响.杭州:浙江大学硕士学位论文.
    17.池书敏,李广敏,史吉平,等.1997.玉米抗旱机理研究进展.河北农业大学学报,20(4):11-15.
    18.崔江慧,李霄,常金华.2011.PEG模拟干旱胁迫对高粱幼苗生理特性的影响.中国农学通报,27(9):160-165.
    19.崔素霞,黄惠英,王蒂.1997.烯效唑诱导小麦植株形态变化及其与内源激素的关系.西北植物学报,17(6):5-11.
    20.崔维佳,常志云,李宁.2013.干旱胁迫对大豆生理生态及产量的影响.水资源与水工程学 报,24(4):20-24.
    21.崔秀敏,王秀峰,许衡.2005.甜椒对不同程度水分胁迫复水的生理生化响应.中国农学通报,21(5):225-229.
    22.丁国华.2013.耐旱杂草稻对干旱胁迫的生理响应与表达谱分析.沈阳:沈阳农业大学博士学位论文.
    23.东先旺,刘树堂.1999.玉米高产群体光合特性的研究.华北农学报,14(2):36-41.
    24.董志强.贾秀领.张丽华,等.2009.水分胁迫对不同基因型夏大豆冠层发育及耗水量的影响.大豆科学,28(5):811-819,819.
    25.窦超银,于景春,于秀琴.2013.干旱胁迫对辽西半干旱区玉米生长和产量的影响.灌溉排水学报,32(4):84-87.
    26.范苏鲁,苑兆和,冯立娟,等.2011.干旱胁迫对大丽花生理生化指标的影响.应用生态学报,22(3):651-657.
    27.房江育,张仁.2001.无机营养和水分胁迫对春小麦叶绿素、丙二醛含量等的影响及其相关性.甘肃农业大学学报,36(1):89-94.
    28.冯妍.2011.太阳辐射减弱下冬小麦生物量变化的大田试验与模拟研究.南京:南京信息工程大学硕士学位论文.
    29.伏兵哲,兰剑,李小伟,等.2012.PEG-6000干旱胁迫对16个苜蓿品种种子萌发的影响.种子,31(4):10-14.
    30.高蕾.2009.干旱胁迫对大豆幼苗生理及其显微结构的影响.哈尔滨:东北农业大学硕士学位论文.
    31.高暝,李毅,种培芳,等.2011.渗透胁迫下不同地理种源白刺的生理响应.草业学报,20(3):99-107.
    32.高世斌.2004.玉米耐早相关性状的QTL分析.成都:四川农业大学硕士学位论文.
    33.高天鹏,安黎哲,冯虎元.2009.增强UV-B辐射和干旱对不同品种春小麦生长产量和生物量的影响.中国农业科学,42(6):1933-1940.
    34.高小宽,刘国杰,白丽荣.2012.聚乙二醇(PEG)模拟干旱胁迫对野生大豆与栽培大豆萌发的影响.大豆科学,31(6):1027-1029.
    35.高悦,朱永铸,杨志民.2012.干旱胁迫和复水对冰草相关抗性生理指标的影响.草地学报,20(2):336-341.
    36.高占旺,庞万福,宋伯符.1995.水分胁迫对马铃薯的生理反应.马铃薯杂志,9(1):1-6.
    37.葛体达.2004.夏玉米对干早胁迫的响应与适应机制的研究.莱阳:莱阳农学院硕士学位论文.
    38.关华,韩惠芳,杨文钰,等.2002.烯效唑对小麦苗期生长的调控效应(Ⅱ).中国农学通报,(4):56-58,89.
    39.关义新,戴俊英,徐世昌,等.1997.玉,米花期干旱及复水对植株补偿生长及产量的影响.作物学报,23(6):740-745.
    40.管秀娟,赵世伟,王俊振,等.2001.不同生育时期干旱对冬小麦根冠生长发育的影响.华北农学报,16(4):71-76.
    41.郭慧,马均,李树杏,等.2013.孕穗期水分胁迫对水稻部分生理特性与产量补偿效应的研究.南方农业学报,44(9):1448-1454.
    42.郭晓丽,时丽冉,王广才,等.2013.干旱胁迫对不同高粱品种生理特性的影响.江苏农业科学,41(2):91-93.
    43.韩蕊莲,李丽霞,梁宗索.2003.水分胁迫下沙棘叶片细胞膜透性与渗透调节物质研究.西北植物学报,13(1):23-27.
    44.郝树荣,郭相平,张展羽.2009.作物干旱胁迫及复水的补偿效应研究进展.水利水电科技进展,29(1):81-84.
    45.郝再彬,苍晶,徐仲,等.2004.植物生理实验.北京:哈尔滨工业大学山版社.
    46.何玮,蒋安,王琳,等.2013.PEG干旱胁迫对红三叶抗性生理生化指标的影响研究.中国农学通报,29(5):5-10.
    47.洪法水,张帆.1999.玉米幼苗萎蔫过程中某些理化性质变化的研究.西北植物学报,19(1):71-74.
    48.侯玉虹,陈传永,郭志强.2008.作物高产群体干物质积累动态模型的构建及生长特性分析.玉米科学,16(6):90-95.
    49.胡承伟,张学昆,邹锡玲,等.2013.PEG模拟干旱胁迫。下甘蓝型油菜的根系特性与抗旱性.中国油料作物学报,35(1):048-053.
    50.胡海燕,贺杰,赵俊杰.2013.碱性pH条件下小麦幼苗保护酶活性的变化动态.河南科技学院学报,41(5):1-5.
    51.胡田田,康绍忠.2005.植物抗旱性中的补偿效应及其在农业节水中的应用.生态学报,25(4):885-891.
    52.胡秀丽.2007.水分胁迫积累的ABA诱导抗氧化防护系统的信号级联.西北植物学报,27(5):0859-0863.
    53.胡展育.2007.植物受虫害后的补偿作用.文山师范高等专科学校学报,20(4):106-109.
    54.黄承建,赵思毅,王龙昌,等.2012.干旱胁迫对苎麻叶绿素含量的影响.中国麻业科学,34(5):208-212.
    55.黄国存,崔四平,马春红.1995.干旱对小麦幼苗SOD活性和CAM水平的影响.华北农学报,10(1):40-44.
    56.黄开健,杨华铨.2001.秋玉米高产栽培技术的最佳密度和施肥量研究.玉米科学,9(1):74-77.
    57.黄明丽,邓西平,周生路,等.2007.二倍体、四倍体和六倍体小麦产量及水分利用效率.生态学报,27(3):1113-1121.
    58.黄瑞冬,孙璐,肖木辑,等.2009.持绿型高粱B35灌浆期对干旱的生理生化响应.作物学报,35(3):560-565.
    59.黄玉山,罗广华,关棨文.1997.镉诱导植物的自由基过氧化损伤.植物学报,39(6):522-526.
    60.霍红,张勇,陈年来,等.2011.干旱胁迫下五种荒漠灌木苗期的生理响应和抗旱评价.干旱区资源与环境,25(1):185-189.
    61.蒋龙,尹俊,孙振中.2009.4种画眉草抗旱性比较.草业科学,26(11):64-72.
    62.蒋明义,郭绍川.1996.水分亏缺诱导的氧化胁迫和植物的抗氧化作用.植物生理学通讯,32(2):144-150.
    63.蒋明义,荆家海,王韶唐.1991.水分胁迫与植物膜脂过氧化.西北农业大学学报,19(2):88-94.
    64.景蕊莲,胡蓉海.1999.作物产量形成的生理学基础.北京:中国农业出版社,155-164.
    65.居辉,兰霞,李建民,等.2000.不同灌溉制度下冬小麦产量效应与耗水特性研究.中国农业大学学报,5(5):23-29.
    66.康利平,王羽梅,张禄.2005(专辑).水分胁迫对豇豆幼苗水分状况、气孔变化及生理生化指标的影响.华北农学报,21-23.
    67.孔丽红,赵玉路,周福平.2007.简述小麦干物质积累运转与高产的关系.山西农业科学,35(8):6-8.
    68.雷振生,林作揖.1996.淮麦区高产小麦品种产量结构及其生理基础的研究.华北农学报,11(1):70-75.
    69.黎秀卿,王文止,吕潇.1998.北方春大麦区大麦蛋白质含量与生态条件的关系.山东农业科学,(2):20-21.
    70.李波.2006.不同水分胁迫下烯效唑浸种对大豆苗期生长及产量的影响.成都:四川农业大学硕十学位论文.
    71.李德全,邹琦,程炳嵩.1992.十壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质.植物生理学报,8(1):37-44.
    72.李德顺,刘芳,马永光.2010.玉米根系与抗旱性的关系研究.杂粮作物,30(3):195-197.
    73.李芬,康志钰,邢吉敏,等.2014.水分胁迫对玉米杂交种叶绿素含量的影响.云南农业大学学报,29(1):32-36.
    74.李凤海,朱敏,葛云侠.2012.PEG处理幼苗和盆栽水分胁迫不同玉米自交系抗旱性研究.种子,3l(11):40-46.
    75.李凤英,黄占斌.2001.夏玉米不同生育阶段干湿变化的补偿效应研究.中国生态农业学报,9(3):61-63.
    76.李冠甲.2012.干旱胁迫下不同冬小麦品种形态及生理性状差异.郑州:河南农业大学硕士学位论文.
    77.李广敏,关军锋.2001.作物抗旱生理与节水技术.北京:气象出版社,6.
    78.李国强,汤亮,张文宇.2009.不同株型小麦干物质积累与分配对氮肥响应的动态分析.作物学报,35(12):2258-265.
    79.李合生.2000.植物生理生化实验原理与技术.北京:高等教育出版社.
    80.李俊庆,芮文利,齐敏忠,等.1996.水分胁迫对不同抗旱性花生生长发育及生理特性的影响.中国农业气象,17(1):11-13.
    81.李莉,钟章成,缪世利.2000.诸葛菜对水分胁迫的生理生化反应和调节适应能力.西南师范大学学报(自然科学版),25(1):33-37.
    82.李宁毅,刘冰,孙莉娟.2010.烯效唑及水杨酸对矮牵牛穴盘苗生长及抗性生理指标的影响.上海农业学报,26(4):64-68.
    83.李宁毅,时彦平,王吉振.2012.水分胁迫下烯效唑对百日草幼苗光合特性及叶解剖结构的影响.西北植物学报,32(8):1626-1631.
    84.李宁毅,宋妍,韩晓芳.2011.干旱胁迫下烯效唑对矮牵牛幼苗水分状况和光合特性的影响.江西农业大学学报,33(6):1062-1066.
    85.李培英,孙宗玖,阿不来提.2010.PEG模拟干旱胁迫下29份偃麦草种质种子萌发期抗早性评价.中国草地学报,32(1):32-39.
    86.李强,王非,何淼.2013.土壤水分胁迫对荻光合生理特性的影响.草业科学,30(7):1031-1035.
    87.李勤报,梁厚果.1989.小麦幼苗呼吸速率时水分胁迫的反应.兰州大学学报(自然科学版),25(4):82-87.
    88.李青苗,杨文钰.2003.烯效唑浸种对玉米壮苗的生理效应.玉米科学,11(4):74-75,89.
    89.李清泉.2007.芸豆的应用价值及高产栽培技术.内蒙古农业科技,(4):115.
    90.李薇,雷丽萍,徐照丽,等.2012.玉溪烟叶有机氯、拟除虫菊酯类杀虫剂农药残留分析.西南农业学报,(1):173-178.
    91.李向义,Thomas F M,Foetzki A,等.2003.自然状况下头状沙拐枣对水分条件变化的响应.植物生态学报,27(4):516-521.
    92.李雪华,蒋得明,阿拉木萨,等.2002.科尔沁沙地4种植物抗旱性的比较研究.应用生态学报,13(11):1385-1388.
    93.李运朝.2004.玉米抗旱性鉴定研究进展.玉米科学,12(1):63-68.
    94.梁银丽,陈培元.1996.土壤水分和氮磷营养对冬小麦根苗生长的效应.作物学报,22(4):476-482.
    95.廖红,严小龙.2000.低磷胁迫下菜豆根构型性状的QTL定位.农业生物技术学报,8(1):67-70.
    96.刘彬.2008.水分胁迫对玉米幼苗形态建成、生理代谢及根系吸水的影响.北京:中国科学院研究生院博士学位论文.
    97.刘崇怀.1993.水分胁迫对葡萄叶片碳水化合物含量的影响.葡萄栽培与酿酒,(4):3-5.
    98.刘传飞,严晓华.1998.烯效唑和多效唑在大豆叶片和土壤中的降解动态比较(简报).植物生理学通讯,(5):350-352.
    99.刘传飞.1997.烯效唑在土壤中的吸附、迁移及大田中降解的动态.江西农业学报,(2):30-34..
    100.刘海涛,齐红岩,刘洋,等.2006.不同水分亏缺程度对番茄生长发育、产量和果实品质的影响.沈阳农业大学学报,37(3):414-418.
    101.刘丽君,林浩,唐晓飞,等.2011.干旱胁迫对不同生育阶段大豆产量形态建成的影响.大豆科学,30(3):405-412.
    102.刘丽平,欧阳竹,武兰芳,等.2012.阶段性干旱及复水对小麦光合特性和产量的影响.应用生态学报,31(11):2797-2803.
    103.刘灵,何若天.1995.水分胁迫对玉米苗期膜损伤及有关酶活性的影响.广西农业大学学报,14(3):195-200.
    104.刘梦雨,陈培元.1990.水分胁迫条件下气孔与非气孔因素对小麦光合的限制.植物生理通讯,(4):24-27.
    105.刘晓英,罗远培,石元春.2002.考虑水分胁迫滞后影响的作物生长模型.水利学报,(6):32-37.
    106.刘永辉.2013.夏玉米不同生育期对水分胁迫的生理反应与适应.干旱区资源与环境,27(2):171-175.
    107.刘有军,刘世增,康才周,等.2013.青海云杉种子萌发特性.干旱区研究,30(5):877-881.
    108.刘展鹏.2007.模拟干旱胁迫及复水条件下玉米生长补偿效应.南京:河海大学硕士学位论文.
    109.卢少云,陈斯曼,陈斯平,等.2003.ABA、多效唑和烯效唑提高狗牙根抗旱性的效应.草业学报,12(3):100-104.
    110.陆定志.1983.叶片的衰老及其调节控制.植物生理生化进展,(2):20-52.
    111.陆建飞,黄不生.丁艳锋等.1998.持续十壤水分胁迫对水稻物质积累和运转的影响.江苏农业学报,14(3):135-140.
    112.路丙社,白志英,崔建州,等.2004.干旱胁迫对阿月浑子叶片光合作用的影响.河北农业大学学报,27(1):43-46.
    113.吕丽华.2005.不同水分条件下的小麦生理特性和产量性状表现差异.保定:河北农业大学硕十学位论文.
    114.马树庆,王琪,张铁林,等.2014.吉林省中部玉米出苗率和产量对播种-山苗期水分胁迫的反应及其气象评估.应用生态学报,25(2):451-457.
    115.马旭俊,朱大海.2003.植物超氧化物歧化酶(SOD)的研究进展.遗传,25(2):225-231.
    116.马艳华.2009.烯效唑对黑麦草抗旱生理特性影响的研究.兰州:兰州大学硕士学位论文.
    117.梅雪英.2004.水分胁迫对小麦生理生态及产量品质影响的研究.合肥:安徽农业大学硕士学位论文.
    118.孟凡超,刘明,于吉琳.2011.水分胁迫对玉米产量及干物质分配的影响.江苏农业科学,39(3):96-98.
    119.孟健男,于晶,苍晶,等.2011.PEG胁迫对两种冬小麦苗期抗旱生理特性的影响.东北农业大学学报,42(1):40-44.
    120.潘瑞炽,豆志杰,叶庆生.1995.茉莉酸甲醋对水分胁迫下花生幼苗SOD活性和膜脂过氧化作用的影响.植物生理学报,21(3):221-228.
    121.潘瑞炽,王小菁,李娘辉.2004.植物生理学(第五版).北京:高等教育出版社,282-296.
    122.潘瑞炽.1996.植物生长延缓剂的生化效应.植物生理学通讯,32(3):161-168.
    123.庞艳梅.2008.水分胁迫对大豆生长发育、生理生态特征及养分的影响.北京:中国农业科学院硕士学位论文.
    124.裴英杰,郑家玲,瘐红,等.1992.用于玉米品种抗旱性鉴定的生理生化指标.华北农学报,7(1):31-35.
    125.蒲伟凤,李桂兰,张敏,等.2010.干旱胁迫对野生和栽培大豆根系特征及生理指标的影响.大豆科学,29(4):615-622.
    126.齐健,宋凤斌,刘胜群.2006.苗期玉米根叶对干旱胁迫的生理响应.生态环境,15(6):1264-1268.
    127.齐伟,王空军,张吉旺,等.2009.干旱对不同耐旱性玉米品种干物质及氮素积累分配的影响.山东农业科学,7:35-38.
    128.齐伟,王空军,张吉旺,等.2009.干旱对不同耐旱性玉米品种干物质及氮素积累分配的影响.山东农业科学,7:35-38.
    129.乔振江,蔡昆争,骆世明.2011.低磷和干旱胁迫对大豆植株干物质积累及磷效率的影响.生态学报,3l(19):5578-5587.
    130.秦文静,梁宗锁.2010.四种豆科牧草萌发期对干旱胁迫的响应及抗旱性评价.草业学报,19(4):61-70.
    131.曲东,王保莉,山仑等.1996.干旱条件下磷对玉米叶SOD和POD活性的影响.西北农业大学学报,24(3):48-52.
    132.任海祥,童淑媛,杜维广,等.2011.结荚鼓粒期十壤水分胁迫对不同大豆品种形态和生理特性的影响.中国油料作物学报,33(4):362-367.
    133.任建宏.2001.干旱胁迫下不同抗旱性小麦品种根中蛋白质代谢的差异.麦类作物学报,21(3):90-92.
    134.任文伟,钱吉,郑师章.2000.不同地理种群在聚乙烯二醇胁迫下含水量和游离脯氨酸含量的比较.生态学报,20(2):349-352.
    135.芮海英,王丽娜,金铃.2013.苗期干旱胁迫对不同大豆品种叶片保护酶活性及丙二醛含量的影响.大豆科学,32(5):647-649,654.
    136.桑玉强,吴文良,张劲松.2006.毛乌素沙地杨树防护林内紫花苜蓿蒸散耗水规律的研究.农业工程学报,22(5):44-49.
    137.山仑,邓西平,张岁岐.2006.生物节水研究现状及展望.中国科学基金,20(2):66-71.
    138.山仑.2003.我国节水农业发展中的科技问题.干旱地区农业研究,21(1):1-5.
    139.沈融,章建新,古丽娜,等.2011.亏缺灌溉对大豆根系生长和养分积累及产量的影响.大豆科学,30(1):62-66.
    140.沈融,章建新,苏广禄,等.2011.不同时期水分亏缺对高产大豆植株地上部分生长的影响.新疆农业大学学报,34(4):297-301.
    141.施积炎,袁小凤,丁贵杰.2000.作物水分亏缺补偿与超补偿效应的研究现状.山地农业生物学报,19(3):226-232.
    142.石玉林,卢良恕.2001.中国农业需水与节水高效农业建设(中国可持续发展水资源战略研究报告集.第4卷).北京:中国水利水电出版社,8.
    143.史吉平,董永华.1995.水分胁迫对小麦光合作用的影响.国外农学-麦类作物,(5):49-51.
    144.宋海星,王学立.2005.玉米根系活力及吸收面积的空间分布变化.西北农业学报,14(1):137-141.
    145.苏淼.2013.山黧豆与豌豆对PEG6000模拟干旱胁迫的生理响应比较分析.兰州:兰州大学硕士学位论文.
    146.孙彩霞,沈秀瑛.2002.作物抗旱性鉴定指标及数量分析方法的研究进展.中国农学通报,18(1):49-51.
    147.孙彩霞,武志杰,张振平.2004.玉米抗旱性评价指标的系统分析.农业系统科学与综合研 究,20(1):43-47.
    148.孙继颖.2007.大豆水分高效利用调控机理与品种遗传多样性分析.呼和浩特:内蒙古农业大学博士学位论文.
    149.孙景宽,张文辉,张洁明,等.2006.种子萌发期4种植物对干旱胁迫的响应及其抗旱性评价研究.西北植物学报,26(9):1811-1818.
    150.孙一荣,朱教军,康宏樟.2008.水分处理对沙地樟子松幼苗膜脂过氧化作用及保护酶活性影响.生态学杂志,27(5):729-734.
    151.孙园园,孙永健,吴合洲,等.2009.水分胁迫对水稻幼苗氮素同化酶及光合特性的影响.植物营养与肥料学报,15(5):1016-1022.
    152.谭勇,梁宗锁,董娟娥,等.2006.水分胁迫对不同产地板蓝根幼苗抗氧化物酶活性和根系活力的影响.华北农学报,21(5):20-23.
    153.檀尊社,陈润玲,赵保献,等.2003.玉米新品种豫玉27群体生理指标的研究.西北农业学报,12(2):3l-35.
    154.陶洪斌,林杉.2006.打孔称重法与复印称重法和长宽校正法测定水稻叶面积的方法比较.植物生理学通讯,42(3):496-498.
    155.陶龙兴.1997.环境条件对烯效唑及多效唑在十壤中降解的影响.浙江农业学报,(5):246-250.
    156.涂玉琴,戴兴临,涂伟凤.2011.芽期PEG模拟干旱胁迫下不同基因型甘蓝型油菜的反应差异研究.干旱地区农业研究,29(6):213-221.
    157.屠豫钦,李秉礼.2006.农药应用工艺学导论.北京:化学工业出版社.
    158.万美亮,邝炎华,陈建勋.1999.缺磷胁迫对甘蔗膜脂过氧化及保护酶系统活性的影响.华南农业大学学报,2(2):58-61.
    159.汪宗立,刘晓忠,李建坤.1988.玉米的涝溃伤害与膜脂过氧化作用和保护酶活性的关系.江苏农业学报,4(3):1-8.
    160.王程,刘兵,金剑,等.2009.调节大豆籽粒生育的生理生态因素.农业系统科学与综合研究,25(2):133-136.
    161.王德权.2012.持绿型高粱、玉米对干旱胁迫响应的生理机制比较研究.沈阳:沈阳农业大学博士学位论文..
    162.王东清,李国旗,苏德喜.2012.干旱胁迫对两种罗布麻渗透调节物质积累和保护酶活性的影响.干旱区资源与环境,26(12):177-181.
    163.王法宏,郑王尧,王树安.1989.大豆不同抗旱性品种根系性状的比较研究Ⅰ、形态特征及解剖组织结构.中国油料,(1):32-37.
    164.王海宁,张建利,冯林,等.2009.温度和干旱胁迫对3种牧草种子萌发的影响.草业科学,26(8):87-92.
    165.王贺正,马均,李旭毅,等.2007.水分胁迫对水稻结实期活性氧产生和保护系统的影响.中国农业科 学,40(7):1379-1387.
    166.王环,胡荣海,昌小平.1996.水分胁迫下小麦地上和地下部的反应及其抗早性研究.西北植物学报,16(2):107-115.
    167.王建林,齐华,房全孝等.2007.水稻、大豆、玉米光合速率的日变化及其对光强响应的滞后效应.华北农学报,22(2):119-124.
    168.王空军,董树亭,胡昌浩,等.2002.我国玉米品种更替过程中根系生理特性的演进Ⅱ.根系保护酶活性及膜脂过氧化作用的变化.作物学报,28(3):384-388.
    169.王空军,郑洪建,刘开昌,等.2001.我国玉米品种更替过程中根系时空分布特性的演变.植物生态学报,25(4):472-475.
    170.王立河,孙斌.2008.潮十麦田钾素对强筋小麦产量与品质的影响.麦类作物学报,28(3):466-470.
    171.王强,张亚芝,魏淑红,等.2008.黑龙江省芸豆生产现状与产业化发展.中国种业,(4):11-12.
    172.王蕊,李新国,李绍鹏,等.2010.干旱胁迫下香蕉幼苗光合生理特性变化.西南林学院学报,30(4):44-49.
    173.王淑英,姜小凤,苏敏,等.2013.水分胁迫对春小麦光合和渗透调节物质的影响.麦类作物学报,33(2):364-367.
    174.王树起,韩晓增,乔云发,等.2009.低分子量有机酸对大豆根系形态和磷素吸收积累的影响.大豆科学,28(2):210-216.
    175.王同朝,黄晓书,陈军营,等.2013.水分胁迫对不同倍性小麦光合和水分利用影响.灌溉排水学报,32(1):18-21.
    176.王同朝,卫利,吴克宁,等.2000.小麦根系对水分亏缺的生物学响应.河南农业大学学报,34(1):17-21.
    177.王维,蔡一霞,杨建昌,等.2011.结实期土壤水分亏缺影响水稻籽粒灌浆的生理原因.植物生态学报,35(2):195-202.
    178.王祥宁,赵培飞,黎霞,等.2011.种球热水除害设备研制及应用效果.安徽农业科学,39(13):7680-7682.
    179.王延琴,杨伟华,许红霞,等.2009.水分胁迫对棉花种子萌发的影响.棉花学报,21(1):73-76.
    180.王艳婷,梁庆平.2013.烯效唑对冬种免耕马铃薯生长及产量的影响.安徽农学通报,19(3):46-49.
    181.王玉杰,王永华,韩磊.2011.不同栽培管理模式对冬小麦花后干物质积累与分配特征及产量的影响.麦类作物学报,31(5):894-900.
    182.王玉洁,郁继华,雍山玉.2007.烯效唑(S3307)浸种对盐胁迫下黄瓜幼苗生理的影响.27(2):139-142.
    183.王月福,于振文,潘庆民,等.1998.水分处理与耐旱性不同的小麦光合特性及物质转运.麦类作物学报,18(3):44-47.
    184.王志强,梁威威,范雯雯,等.2011.不同土壤肥力下冬小麦春季干旱的复水补偿效应.中国农业科学,44(8):1628-1636.
    185.魏传斌,张萍,张凤银,等.2010.龙牙百合在干旱胁迫下的生理变化及耐旱性评价研究.安徽农业科学,38(4):1814-1816.
    186.吴其林.2008.土壤干旱对大豆种子萌发、幼苗生长的影响及复水后的补偿生长研究.成都:四川农业大学硕士学位论文.
    187.吴奇峰,相吉山,董志新.2011.大豆植株不同冠层籽粒干物质积累动态及产量分布.大豆科学,30(4):596-601.
    188.吴琦,张希明.2005.水分条件对梭梭气体交换特性的影响.干旱区研究,22(1):79-84.
    189.吴旭红,郑桂萍,穆有革.1995.水分胁迫对作物形态和生理过程的影响.齐齐哈尔师范学院学报(自然科学版),15(3):37-40.
    190.吴耀荣.2006.ABA与植物胁迫抗性.植物学通报,3(5):511-518.
    191.吴银明,王平,刘洪升,等.2008.分根PEG胁迫对羊草幼苗植物量、活性氧代谢及脯氨酸含量的影响.甘肃农业大学学报,43(2):114-119.
    192.吴永美,吕炯章,王书健,等2008.植物抗旱生理生态特性研究进展.杂粮作物,28(2):90-93.
    193.武斌,李新海,肖木辑,等.2007.53份玉米自交系的苗期耐旱性分析.中国农业科学,40(4):665-676.
    194.武冲,仲崇禄,牟振强,等.2012.模拟水分胁迫对不同种源麻楝种子萌发能力的影响.西北植物学报,32(4):0774-0780.
    195.武永胜.2009.持绿型小麦抗旱性的研究.杨凌:西北农林科技大学硕十学位论文.
    196.肖银玉.2012.烯效唑浸种和秧苗喷施效果试验.福建农业科技,(9):7-10.
    197.谢甫绨,董钻,孙艳环,等.1994.不同生育时期干旱对大豆生长和产量的影响.沈阳农业大学学报,25(1):13-16.
    198.邢跃先,李凤海,吴凤新,等.2007.出苗后干旱对玉米丝黑穗病发病的影响.玉米科学,15(2):127-129.
    199.徐俊森,杨细明,郑天汉,等.2000.干旱胁迫对术麻黄小枝细胞膜伤害机理的研究.防护林科技,(专刊):164-167.
    200.许耀照,曾秀存,王勤礼,等.2010.PEG模拟干旱胁迫对不同黄瓜品种种子萌发的影响.中国蔬菜,(14):54-59.
    201.轩春香,牛俊义,张红萍,等.2008.水分胁迫对豌豆根系生长及产量的影响.甘肃农业大学学报,14(5):45-49.
    202.薛吉全,张仁和,马国胜.2010.种植密度、氮肥和水分胁迫对玉米产量形成的影响.作物学报,36(6):1022-1029.
    203.闫春娟,王文斌,涂晓杰,等.2013.不同生育时期干早胁迫对大豆根系特性及产量的影响.大豆科学,32(1):59-62,67.
    204.闫艳红,杨文钰,张静,等.2010.叶面喷施烯效唑对大豆产量及品质的影响.草业学报,19(4):251-254.
    205.闫志利.2009.豌豆对水分胁迫的响应及复水效应研究.兰州:甘肃农业大学博士学位论文.
    206.严美玲,李向东,林英杰,等.2007.苗期干旱胁迫对不同抗旱花生品种生理特性、产量和品质的影响.作物学报,33(1):113-119.
    207.严平,梅雪英.2004.节水栽培对小麦产量构成及品质的影响.江苏农业科学,(6):32-35.
    208.颜华,贾良辉,王根轩.2002.植物水分胁迫诱导蛋白的研究进展.生命的化学,22(2):165-168.
    209.杨传杰,罗毅,孙林,等.2012.水分胁迫对覆膜滴灌棉花根系活力和叶片生理的影响.干旱区研究,29(5):802-810.
    210.杨春杰,张学昆,邹崇顺,等.2007.PEG-6000模拟干旱胁迫对不同甘蓝型油菜品种萌发和幼苗生长的影响.中国油料作物学报,29(4):425-430.
    211.杨景宁,王彦荣.2012.模拟干旱胁迫对四种荒漠植物种子萌发的影响.草业学报,21(6):23-29.
    212.杨文钰,关华,韩惠芳,等.2005.烯效唑干拌种对小麦种子萌发过程中DNA合成的影响.核农学报,19(2):148-150.
    213.杨文钰,关华.2002烯效唑对小麦苗期生长的调控效应.中国农学通报,(2):38-41.
    214.杨秀红.2000.大豆不同品种根部性状的比较研究.哈尔滨:东北农业大学硕十学位论文.
    215.姚庆群,谢贵水.2005.干旱胁迫下光合作用的气孔与非气孔限制.热带农业科学,25(4):80-85.
    216.尹宝重,王艳,张月辰.2011.干旱胁迫对红小豆苗期生理生化特性的影响.贵州农业科学,39(7):65-67.
    217.尹飞.2004.玉米对水分胁迫响应的基因型差异及其生理机制研究.郑州:河南农业大学硕士学位论文.
    218.雍太文,刘小明,肖秀喜,等.2013.不同种子处理对苗期干旱胁迫条件下大豆农艺性状、产量及品质的影响.大豆科学,32(5):620-624.
    219.于守江,梁成双,王焱.2009.黑龙江垦区芸豆生产现状与发展对策.现代化农业,(3):24-25.
    220.余秋海,武志海,沈秀瑛等.2003.水分胁迫下玉米叶片气孔密度、大小及显微结构的变化.吉林农业大学学报,25(3):239-242.
    221.余如刚,杜雪玲,陈楚,等.2012.PEG胁迫对三种豆科牧草种子萌发及幼苗生理影响.干旱地区农业研究,30(5):99-103.
    222.鱼小军,土芳,白小明.2005.草坪草抗旱性研究现状.草业科学,22(2):96-100.
    223.原保忠,王静,赵松林.1998.植物补偿作用机制初探.生态学杂志,6(4):12-15.
    224.岳桂东.2008.玉米干旱胁迫相关基因的克隆与分析.济南:山东大学博士学位论文.
    225.曾彦军,王彦荣,萨仁,等.2002.几种早生灌木种子萌发对干旱胁迫的响应.应用生态学报,13(8):953-956.
    226.张晨妮,周青平,颜红波,等.2010.PEG-6000对老芒麦种质材料萌发期抗旱性影响的研究.草业科学,27(1):119-123.
    227.张法全,王小燕,于振文.2009.公顷产10000kg小麦氮素和干物质积累与分配特性.作物学报,35(6):1086-1096.
    228.张红萍,李明达.2003.干旱胁迫对作物生理特性影响的研究进展.农业科技与信息,(23):6-7.
    229.张红萍,牛俊义,轩春香.2008.干旱胁迫及复水对豌豆叶片脯氨酸和丙二醛含量的影响.甘肃农业大 学学报,43(5):50-94.
    230.张敬荣.1995.不同供水量及各生育期干旱对大豆油脂脂肪酸含量的影响.东北农业大学学报,26(1):82-88.
    231.张烈君.2006.水稻水分胁迫补偿效应研究.南京:河海大学硕士学位论文.
    232.张明生,谭峰.2001.水分胁迫下甘薯叶绿素a/b比值的变化及其与抗旱性的关系.种子,(4):1-2.
    233.张明生,谢波,谈锋,等.2003.甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究.中国农业科学,36(1):13-16.
    234.张秋英,李发东,高克昌,等.2005.水分胁迫对冬小麦光合特性及产量的影响.西北植物学报,25(6):1184-1190.
    235.张淑杰,张玉书,纪瑞鹏,等.2011.水分胁迫对玉米生长发育及产量形成的影响研究.中国农学通报,27(12):68-72.
    236.张涛.2010.化学调控和种植模式对甜高粱生长发育和生理的影响.南宁:广西大学硕十学位论文.
    237.张卫星,朱德峰,林贤青,等.2010.干旱胁迫对不同穗型超级稻品种产量及穗部性状的影响.干旱地区农业研究,28(1):255-260.
    238.张宪政.1994.植物生理学实验技术.沈阳:辽宁科学技术出版社,20-43.
    239.张燕之,周毓街,邹吉承,等.1996.水稻抗旱性鉴定方法与指标研究III.旱作水稻的主要农艺性状与其抗旱性指标.辽宁农业科学,(2):6-8.
    240.张智猛,戴良香,宋文武,等.2012.不同花生基因型对干旱胁迫的适应性.中国油料作物学报,34(4):377-383.
    241.张智猛,宋文武,丁红,等.2013.不同生育期花生渗透调节物质含量和抗氧化酶活性对土壤水分的响应.生态学报,33(14):4257-4265.
    242.赵晨,罗毅,袁国富,等.2001.作物水分胁迫指数与土壤含水量关系探讨.中国生态农业学报,9(1):34-36.
    243.赵宏伟,李秋祝,魏永霞.2006.不同生育时期干旱对大豆主要生理参数及产量的影响.大豆科学,25(3):329-332.
    244.赵姣,郑志芳,方艳茹,等.2013.基于动态模拟模型分析冬小麦干物质积累特征对产量的影响.作物学报,39(2):300-308,
    245.赵坤.2010.干旱胁迫条件下春大豆生理生化特性研究.哈尔滨:东北大学硕士学位论文.
    246.赵丽英.2005.小麦对水分亏缺的阶段性反应及其机制研究.杨凌:西北农林科技大学博士学位论文.
    247.赵明,李建国,张宾,等.2006.论作物高产挖潜的补偿机制.作物学报,32(10):1566-1573.
    248.郑若良,宋志荣.2003.干旱胁迫对辣椒生理机制的影响研究.河北农业科学,(1):11-15.
    249.郑盛华.2007.水分胁迫对玉米生理生态特性影响的研究.北京:中国农业科学院研究生院硕士学位论文.
    250.周立国.2010.水稻水分胁迫相关基因克隆及功能验证.武汉:华中农业大学博士学位论文.
    251.周玲艳,许泽龙,秦华明,等.2011.PEG处理对不同水稻品种生长和生理特性的影响.仲恺农业工程学院学报,24(4):1-4.
    252.周瑞莲,王刚.1997.水分胁迫下豌豆保护酶活力变化及脯氨酸积累在其抗旱中的作用.草业学报,6(4):39-43.
    253.朱虹,祖元刚,王文杰,等.2009.逆境胁迫条件下脯氨酸对植物生长的影响.东北农业大学学报,37(4):86-89.
    254.左文博,吴静利,杨奇,等.2010.干旱胁迫对小麦根系活力和可溶性糖含量的影响.华北农学报,25(6):191-193.
    255.Alia S, Saradhi P.1991. Proline accumulation under heavy metal stress. Plant Physiol,138(5): 554-558.
    256.Apel K,Hirt H.2004.REACTIVE OXYGEN species:metabolism,oxidative stress, and signal transduction. Annual Review of Plant Physioloyg and Plant Molecular Biology,55(1):373-399.
    257.Asseng S,Ritchie J T,Smucker A J M,et al.1998. Root growth and water uptake during water deficit and recovering in wheat.Plant and Soil,201 (2):265-273.
    258.Bannister P.1986. Observation on water potential and drought-resistance of trees and shrubs after a period of summer drought around Dunedin. New Zealand Journal of Botany,24(3):387-392.
    259. Baum J A,Scandalios J G.1979. Developmental expression and intracellular localization of superoxide dismutases in Maize. Differentiation,13 (2):133-140.
    260.Bawa A K,Sen D N.1992. Ecophysiological studies of some arid zone grasses:water relations. Current Agricu-1 ture,16(1-2):51-57.
    261.Benjamin J G,Nielsen D C.2006.Water deficit effects on root distribution of soybean, field pea and chickpea.Field Crop Res,97(2-3):248-253.
    262.Blanco I A,Rajaram S,Kronstad W E,et al.2000.Physiological performance of synthetic hexaploid wheat-derived populations.Crop Science,40(5):1257-1263.
    263.Bowler C, Montagu M V, Inze D.1992. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology,43 (1):83-116.
    264.Boyer J S.1982.Plant Productivity and Environment. Science,218 (4571):443-448.
    265.Bray E A,Bailey-Serres J,Weretilnyk K.2000.Responses to abiotic stresses[C]//Buchanan B, Gruissem W,Jones R. Biochemistry and Molecular Biology of Plants.Rockville:American Society of Plan t Physiologists:1158-1203.
    266.Bueno P, del Rio L.1992.Purification and properties of glyoxysomal cuprozinc superoxide dismutase from watermelon cotyledons (Citrullus vulgaris Schrad). Plant Physiology,98 (1):331-336.
    267.Bueno P, Varela J, Gimeenez-Gallego G, et al.1995.Peroxisomal copper, zinc superoxide dismutase. Characterization of the isoenzyme from watermelon cotyledons. Plant Physiology,108 (3):1151-1160.
    268.Cechin I,Rossi S C,Oliveira V C,et al.2006.Photosynthetic responses and proline content of mature and young leaves of sunflower plants under water deficit. Photosynthetica,44(1):143-146.
    269.Chaves M M, Oliveira M M.2004, Mechanisms underlying plant resilience to water deficits:prospects for water-saving agriculture. Journal of Experimental Botany,55(407):2365-2384.
    270.Con C G M.1992. Hot-water treatment and cold storage to control the bulb mite Rhizoglyphus robini on lilies bulbs. Acta Hort,32(5):797-804.
    271.Csonka L N,Micorbiol.1989.Physioligical and genetic responses of bacteria to osmotic stress. Microbiol. Mol Biol. Rev,53(1):121-147.
    272.Dedove D C, Wattiaux R C.1996.Functions of plysosomes research.Plant Physiology,128:435-492.
    273.Demir Y,Kocacaliskan I.2002.Effect of Nacl and proline on bean seedlings cultured in vitro.Biologia Plantarum,45 (4):597-599.
    274.Demiral T,Turkan 1.2005.Comparative lipid peroxidation,antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance.Environmental and Experimental Botany,53:247-257.
    275.Desrosiers M F.1996.Cellular responses to endogenous electrochemical gradients in morphological development. Advanced space research,17(6/7):27-33.
    276.Dhindsa R S. Matowe W.1982. Drought tolerance in two mosses:Correlated with enzymatic defence against lipid peroxidation. Journal Experimental Botany,32(1):79-91.
    277.Dijkstra P,Lambers H.1989.Plant analysis of specific leaf area and photosynthesis of two inbred lines of Plant ago major differing in relative growth rate.New phytol,l 13:283-290.
    278.Dure L.1993. Plant responses to cellular dehydration during environment stress. Plant Physiology, 103(10):91-93.
    279.Gullo M L,Nardini A,Salleo S,et al.1998.Changes in root hydraulic conductance (KR) of Olea oleaster seedlings following drought stress and irrigation.New Phytol,140(l):25-31.
    280.Hanson A D.1977. Evaluation of free proline accumulation as an index of drought resistance using two contrasting barley cultivars.Crop Sci,17:720-726.
    281.Hlavinka P,Trnka M, Semeradova D, et al.2009. Effect of drought on yield variability of key crops in Czech Republic. Agricultural and Forest Meteorology,149(3-4):431-442.
    282.Hoecker N,Keller B,Piepho H P,et al.2006.Manifestation of heterosis during early corn (Zea mays L) root development.Theor Appl Genet,112:421-429.
    283.Hoekstra F, Golovina E, Buitink J.2001. Mechanisms of plant desiccation tolerance. Trends in Plant Science,6 (9):431-438.
    284.Hsiao T C.1973.Plant responses to water stress.Annual Reviews in Plant Physiology,24 (1):519-570.
    285.Hu Y C,Shao H B,Chu L Y,et al.2006. Relationship between water use efficiency(WUE) and production of different wheat genotypes at soil water deficit.Colloids and Surfaces B:Biointerfaces, 53(2):271-277.
    286.Huang Z Y,Zhang X S,Zheng G H,et al.2003.Influence of light,temperature,salinity and storage on seed germination of Haloxylon ammodendron.J Arid Environ,55(3):453-464.
    287.Hunt R.1982.Plant Growth Analysis. London:Edward Arnold Publishers.
    288.Ibrahim L, Proe M F, Cameron AD.1998-Interactive effects of nitrogen and water availabilities on gas exchange and whole plant carbon allocation in poplar. TreePhysiol,18(7):481-487.
    289.James E B.2004.Soybean cultivar differences on light interception and leaf area index during seed filling.Agronomy Journal,96(1):305-311.
    290.Jastrow J,Miller R.1993.Neighbor influences on root morphology and mycorrhizal fungus colonization in tallgrass prairieplants.Ecology,72:561-569.
    291.Jin J,Liu X B,Wang G H.2004.Some eco-physiological characteristic R4-R5 stage in relation to soybean yield differing in maturities.Scientia Agricultura Sinica,3(6):425-434.
    292.Jones M M, Rawson H M.1979.Influence of rate of development of leaf water deficits upon photosynthesis, leaf conductance, water use efficiency and osmotic potential in sorghum. Plant Physiology,45(2):103-111.
    293.Khajeh-Hosseini M,Powell A A,Bingham I J.2003.The interaction between salinity stress and seed vigour during germination of soybean seeds. Seed Sci & Technol,31(3):715-725.
    294.Kopka J, Provart N J, Mller-Rober B.1997. Potato guard cells respond to drying soil by a complex change in the expression of genes related to carbon metabolism and turgor regulation. Plant Journal, 11(4):871-882.
    295.Kramer J P.1983.Water deficits and plant growth.In Kramer J P(ed.). Water relations of plant. Academic Press,354-359.
    296.Kriediman P E,W J S Downton.1998.Photosynthesis[A].Paleg L G, Aspinall D. The physiology and biochemistry of drought resistance in plants. Sydney:Academic Press.
    297.Leu L M,Zhou W J.1998.Alleviation of waterlogging damage in winter rape by application of uniconazole:Effects on morphological characteristics,hormones and photosynthesis.Field Crops Research,59(2):121-127.
    298.Liu F L, Jensen C R, Aadersen M N.2004. Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development its implication in altering pod set. Field Crops Research,86(1):1-13.
    299.Magnani F,Mencuccini M,Grace J.2000.Age-related de-cline in stand productivity:The role of structural accli-mation under hydraulic constraints.Plant,Cell and Environment,23:251-263.
    300.Mallick N,Mohn R H.2000.Reactive oxygen species:response of algal cells.Journal of Plant Physiol,157:183-193.
    301.Masoumi H,Darvish F, Daneshian J, et al.2011.Chemical and biochemical responses of soybean(Glycine max L) cultivars to water deficit stress.Australian Journal of Crop Science, 5.(5):544-553.
    302.Matters G L, Scandalios J G.1986.Effect of the free radical-generating herbicide paraquat on the expression of the superoxide dismutase (Sod) genes in maize. Biochimica et Biophysica Acta,882 (1):29-38.
    303.Mehra V,Tripathi J,Powell A A.2003.Aerated hydration treatment improves the response of Brassica juncea and Brassica campestris seeds to stress during germination.Seed Sci & Technol,31(1):57-70.
    304.Melchior W, Steulle E.1993. Water transport in onion roots. Change of axial hydraulic conductivities during root development. Plant Physiology,101:1305-1315.
    305.Michel B E.1983.Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes.Plant Physiol,72:66-70.
    306.Morgan J M.1984.Osmo regulation and water stress in higher Plant. Ann Rev Plant PHysiology, 35:299-319.
    307.Morrison J M,Harvery D V,Elroy R C.1999.Physiological changes from 58 year of genetic improvement of short season soybean cultivars in canada.Agronomy Journal,91:685-689.
    308.Munn S R.2002.Comparative physiology of salt and water stress. Plant Cell and Environment, 25(2):239-250.
    309.Nibr, Pallardy S G.1992. Stomatal and non-stomatal limitations to net photosynthesis in seeding of woody angiosperms. Plant Physiol,99:1502-1508.
    310.Nobel P.s.(陈炳嵩等译).1984.生物物理学导论.北就:科学出版社,90-98.
    311.Ogawa K,Kanematsu S,Asada K.2006.Intra-and extra-cellular localization of "Cytosolic" CuZn-superoxide dismutase in spinach leaf and hypocotyl. Plant and Cell Physiology,37 (6):790-799.
    312.Palta J A, Kbata T, Turner N C, et al.1994. Remobilization of carbon and nitrogen in wheat as influenced by post-anthesis water deficits. Crop Sci,34(1):118-124.
    313.Patel P K, Hemantaranjian A.2012.Salicylic acid induced alteration in dry matter pattiong antioxidant defence system and yield in chickpea(Cicer arietinum L) under drought stress.Asian Journal of Crop Science,4(3):386-102.
    314.Peman J,Voltas J,Gil-Pelegrin E.2006.Morphological and functional variability in the root system of Quercus ilex L. subject to confinement:consequences for affortestation.Ann For Sci,63(4):425-430.
    315.Pergitzer K S,Dickm ann D I,Hendrick R,et al.1990.Whole tree carbon and nitrogen partitioning in young hybrid poplars.Tree Physiol,7(1-4):79-93.
    316.Quartacci M. F, Navari-Izzo F.1992.Water stress and free radical mediated changes in sunflower seedlings. Journal of plant physiology,139 (5):621-625.
    317.Royo C, Blanco R.1999.Growth analysis of five spring and five winter Triticale genotypes. Agronomy Journal,91(2):305-311.
    318.Rubio G,Walk T,Ge Z.2001.Root gravitropism and below-ground competition among neighbouring plants:a modeling approach.Annals of Botany,88(5):929-940.
    319.Saratha K,Hume D J,Godfrey C.2001.Genetic improvement in short season soybeans:I. Dry matter accumulation,partitioning,and leaf area duration.Crop Science,41(2):391-398.
    320.Schaffner A R.1998.Aquaporin function,structure and expression:Are there more surprise to surface in water relation.Planta,204(2):131-139.
    321.Sekimoto H, Nishikawa A.1994.Effects of gibbrellin biosynthesis inhibitor (uniconazole) and ammonium nitrogen on elongation of rice second leaf. Japanese Journal of Soil Science and Plant Nutrition,65(2):190-193.
    322.Sekimoto H,Nishikawa A.1994.Effects of gibbrellin biosynthesis inhibitor (uniconazole) and ammonium nitrogen on elongation of rice second leaf. Japanese Journal of Soil Science and Plant Nutrition,65(2):190-193.
    323.Sharme B R, Chaudhary T N.1983.Wheat root growth, gain yield and water uptake as influenced by water depth me and depth of nitrogen placement in a sand. Agriculture water management,6:365-373.
    324.Sharp R E.2002.Interaction with ethylene:changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant, cell and environment,25:1055-1064.
    325.Singh T N.Aspinall D,Palag L G.1972.Proline accumulation and varietal adaptability to drought in barley.Net New Boil,236(67):188-190.
    326.Smucker A J,Aiken R M.1992. Dynamic root responses to water deficits.Soil Science,154(4):281-289.
    327.Solomon A, Beer S, Waisel Y, et al.1994. Effects of NaCl on the carboxylating activity of Rubisco from Tamarix jordanis in the presence and absence of proline-related compatible solutes. Physiologia Plantarum,90(1):198-204.
    328.Takahashi S, et al.2000. Plant and Cell. Physiology,41(7):898-903.
    329.Takaki M.1990.Effet of water stress on seed germination and seedling growth inOryza sativaL.Biologia Plantarum(Praha),32(3):238-240.
    330.Tsang E W,Bowler C,Herouart D,et al.1991.Differential regulation of superoxide dismutases in plants exposed to environmental stress. The Plant Cell,3(8):783-792.
    331.Voldeng H D,Cober E R,Hume D J,et al.1997.Fifty-eight years genetic improvement of short-season soybean cultivars in Canada.Crop Science,37(2):428-431.
    332.Wenkert W,Lemon E R,Sinclair T R.1978. Leaf elongation and turgor pressure in field-grown soybean. Apron,70(5):761-764.
    333.Wilcox J R.2001.Sixty years of improvement in publicly developed elite soybean lines.Crop Science,41(6):1711-1716.
    334.Wu G, Wilen R W, Robertson A J,et al.1999.Isolation, chromosomal localization, and differential expression of mitochondrial manganese superoxide dismutase and chloroplastic copper/zinc superoxide dismutase genes in wheat. Plant Physiology,120 (2):513-520.
    335.Yang J S, Zhang JH, Ye Y X,et al.2004.Involvement of abscisic acid and ethylene in the responses of rice grains to water stress during filling.Plant, cell and environment,27:1055-1064.
    336.Zhai J L, Feng R G, Xu J.2003. Constraining factors to sustainable utilization of water resources and their countermeasures in China. Chinese Geographical Science,13(4):310-316.
    337.Zhang J,Kirkham M B.1994.Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant and Cell Physiology,35 (5):785-791.
    338.Zhang J,Kirkham M B.1996.Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytologist,132 (3):361-373.
    339.Zhu D,Scandalios J.1993.Maize mitochondrial manganese superoxide dismutases are encoded by a differentially expressed multigene family. Proceedings of the National Academy of Sciences of the United States of America,90 (20):9310-9314.
    340.Zhu G J,Jiang G M,Hao N B,et al.2002.Relationship between eco-physiological features and grain yield in different soybean varieties.Acta Botanica Sinica,44(6):725-730.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700