用户名: 密码: 验证码:
新型深海多柱桁架式平台及立管结构疲劳性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海上油气资源开发由浅海逐渐走向深海区域,为适应深海环境作业要求,很多不同于传统固定式采油平台的新型浮式结构物不断涌现。其中,Spar平台以运动稳定、安装拖航灵活等优点,受到了世界各大石油公司的广泛关注。由于我国南海海域的地理环境和气候条件与墨西哥湾较为相似,而Spar平台在墨西哥湾的成功应用,为该类型平台应用于我国南海深水油气资源开发创造了有益条件,发展潜力巨大。
     本文作为国家自然科学基金专项基金资助项目“深海平台的动力特性研究”、上海市科委重大基础研究课题资助项目“深海单柱式平台关键动力特性的理论与实验研究”以及国家863计划资助项目“深水油气开发工程试验技术”等研究课题的组成部分,旨在研究新型深海多柱桁架式平台(Cell-Truss Spar)在复杂海洋环境下关键节点的疲劳性能以及平台顶端张紧式立管在涡激振动下的疲劳寿命预报方法。本文将理论研究与工程应用紧密结合,在海洋工程结构物疲劳寿命预报方法的理论研究、Spar平台关键节点疲劳性能评估、深海立管涡激振动响应预报以及深海立管涡激振动疲劳寿命预测方法等多方面开展了深入研究,取得了积极的进展。本文开展的主要研究工作如下:
     1.全面回顾和总结了近年来深海Spar平台的发展、海洋结构物疲劳寿命研究方法以及深海立管涡激振动响应和涡激振动疲劳寿命研究等国内外研究成果和进展。对本文的研究对象——上海交通大学海洋工程国家重点实验室提出的新型深海多柱桁架式平台(Cell-Truss Spar)的概念和结构特点进行了介绍。
     2.基于疲劳累积损伤理论和谱分析方法,在南海海域海况条件下开展了Cell-Truss Spar平台各关键节点处的疲劳寿命评估及可靠性分析研究,同时开展了不同类型海域环境对Spar平台关键节点疲劳寿命影响的对比研究,总结了该Spar平台各关键节点疲劳损伤的特点和规律。
     3.通过对疲劳线性累积损伤理论充要条件的理论证明和对规范中推荐采用的裂纹扩展模型的分析评述,指出了传统疲劳谱分析方法存在的局限性。针对该局限性,本文基于谱分析法中的频域信息,采用小波分析技术对疲劳交变应力的随机过程进行时间历程仿真,并结合一定的随机裂纹扩展模型,探索出了一套适用于船舶与海洋工程结构物疲劳寿命评估的时-频混合分析模型,并将该混合分析模型应用于Cell-Truss Spar平台的疲劳寿命评估。该时-频混合分析模型较好地解决了全时域疲劳分析计算量巨大与传统谱分析无法考虑载荷先后顺序影响之间的矛盾。
     4.针对均质等截面深海顶端张紧式立管的特点,结合近年来两类涡激振动实验的现象和重要结论,从振型函数、锁定区域判定、附加质量模型、最大响应幅值以及流体阻尼等5个方面对以往的计算模型进行了改进,建立了深海顶端张紧式立管在非均匀来流下涡激多模态响应的简化分析模型。并应用若干个涡激振动实验结果对预报模型进行了验证,简化分析模型绕开了流体力的求解,可为深海立管及其它海洋工程挠性结构物的初步设计提供依据。
     5.针对变参数的细长立管涡激振动问题,本文基于de Wilde受迫振荡实验的流体力信息并采用能量平衡的思想建立了VIV有限元预报模型。通过与变参数立管模型的VIV实验对比显示,该预报模型能较合理地反映出低质量比系统的涡激响应特性,并克服了简化分析模型只适用于等截面匀质立管的局限性,可以对参数变化较复杂的立管结构开展更为细致的VIV分析工作,在工程应用中也更具通用性。
     6.根据本文建立的涡激振动简化分析模型,推导了横流方向单模态涡激振动疲劳损伤度的计算表达式,提出了立管在均匀流下涡激振动疲劳损伤度的经验公式。研究了环境条件和结构设计参数对立管在涡激振动下疲劳寿命的影响,总结了各因素对疲劳损伤度影响的一般规律。针对涡激横流振动诱发立管轴向共振的现象进行了探讨,给出了诱发立管轴向共振的临界条件和轴向共振对立管疲劳寿命影响的定量计算方法。
     7.根据本文建立的涡激振动有限元计算模型,通过将预报结果与大尺度立管现场观测实验结果的对比分析,推荐了一个适合工程应用的多模态涡激振动疲劳损伤度计算方法。
     8.针对国内外部分学者所提出的立管涡激振动疲劳载荷概率模型进行了分析评述,指出了其不合理性,根据海流长期分布的统计特征建立了涡激振动疲劳载荷长期分布的概率模型,提出了一种适用于深海立管涡激振动疲劳寿命分析的“设计流”方法,并基于该方法对Spar平台的顶端张紧式立管进行了涡激振动疲劳寿命的计算。
     本文的相关理论研究内容及所得到的一些具有参考价值的结论可为进一步开展深海Spar平台及立管结构疲劳寿命评估工作、保障深海工程装备安全提供有益的参考。
With the rapid tendency of the oil and gas exploitations to deep-water areas, more and more new types of floating units have been used to adapt the operation conditions in severe deep sea environment. Among these floating structures, Spar platform has excellent stability, relatively benign motion performance and easy to disassemble, which makes many international oil companies put great efforts on it. Spar platforms have been used successful in Gulf of Mexico for more than one decade which provides instructive conditions for its application in South China Sea for the similar climate conditions in the future.
     The present research in this thesis is a part of the projects of“Research on Dynamic Response of Deep-water Platforms”supported by the National Natural Science Foundation of China,“Theory and Experiment Research on Critical Dynamic Performance of Deep-water Spar Platform”supported by the Key Program for Basic Research of Shanghai Committee of Science and Technology and“Experimental Technology for Deep-water Oil and Gas Exploitations”supported by National High Technology Research and Development Program of China. The purpose of this research is to improve more understanding of fatigue behavior of the novel Cell-Truss Spar platform and the fatigue life prediction method for deep-water top tensioned risers of Spars due to vortex-induced vibrations.
     The present research combined theoretical research and engineering application effectively. The contents cover some main hot issues, including the theoretical research on fatigue life prediction approaches of ocean engineering, fatigue damage assessment of critical joints for Spar platform, vortex-induced vibration (VIV) response prediction and VIV fatigue analysis of deep-water risers. The main contents and contributions of this thesis may be summarized as follows:
     1. An overview of recent research and progress concerning Spar platform and its key technologies, fatigue life prediction approaches of ocean engineering, VIV response of deep-water risers and the fatigue damage due to VIV is presented. The new concept and its structural characteristic of a novel Cell-Truss Spar platform proposed by State Key Laboratory of Ocean Engineering of Shanghai Jiao Tong University are introduced.
     2. Fatigue spectral analysis and reliability assessment of the critical joints of Cell-Truss Spar is carried out based on S-N curve method. Sensitivity analysis of fatigue life with different ocean environments is also studied. The characteristic and regular patterns of fatigue damage are summarized.
     3. The limitations of traditional fatigue spectral analysis is pointed out based on the mathematical proof of the necessary and sufficient condition of the fatigue linear accumulation rules and the commentary on the crack propagation model proposed by vessel and ocean engineering rules, while a new time-frequency domain hybrid model for fatigue analysis is put forward to overcome the limitations. In this hybrid model, frequency information is obtained by spectral analysis and the time series of fatigue cyclic stress is simulated by wavelet transform, while a random crack propagation model is employed. The time-frequency domain hybrid model can solve the contradiction of the huge amount of calculation in full time domain analysis and neglecting the effects of load sequence in traditional spectral analysis method preferably. In addition, the hybrid model is also used to predict the fatigue life of Cell-Truss Spar.
     4. According to the characteristics of deep-water top tensioned risers with homogeneous mass property and diameter, a simplified model is presented to predict the multi-modal response of VIV in non-uniform flow based on the experimental data from self-excited and forced oscillations of rigid cylinders. The predicted values show reasonable agreements with several VIV tests of riser models. The simplified model can obviate the solving of hydrodynamic force, which can be used as a practical method in preliminary design of marine slender structures.
     5. A VIV finite element prediction method is presented based on the experimental information of forced oscillations test by de Wilde to overcome the limitation of VIV simplified prediction model, the VIV finite element prediction model can take account of the intrinsic characteristics of low mass ratio VIV system, and it is more universal which can provide detail analysis in engineering practice for complicated risers in shape.
     6. Based on the VIV simplified prediction model, a cross-flow single-mode VIV-induced fatigue damage prediction model for Top Tensioned Risers (TTRs) is presented and an empirical formula of fatigue damage is obtained under conditions of uniform flow. The effects of environment conditions and design parameters of the structure on VIV fatigue are studied, and the regular patterns of influence factors are summarized. The phenomenon of riser’s axial resonant due to cross-flow VIV is also discussed.
     7. Compared with the large scale model test of deepwater risers, a reasonable prediction method for the multiple mode VIV-induced fatigue damage is recommended for engineering application based on the VIV finite element prediction model.
     8. The inappropriate of probabilistic model for VIV fatigue proposed by a few foreign scholars is pointed out, and a new Design Current Method for deepwater riser’s VIV fatigue analysis is put forward based on the long-term distribution of current. Finally, fatigue life prediction for a TTR of the Cell-Truss Spar platform is carried out based on the new method.
     In conclusion, the theoretical research contents and many valuable conclusions obtained in this thesis will be helpful for the future work on fatigue assessment of Spar platforms and other equipments used in deep-water oil and gas exploitations.
引文
[1] ABS (2003). Guide for the Fatigue Assessment of Offshore Structures. American Bureau of Shipping.
    [2] ABS (2004). Guide for Building and Classing Floating Production Installations. American Bureau of Shipping.
    [3] ABS (2005). Commentary on the ABS Rules for Building and Classing Mobile Offshore Drilling Units. American Bureau of Shipping.
    [4] ABS (2005). Guide for Building and Classing Subsea Riser Systems. American Bureau of Shipping.
    [5] ABS (2006). Rules for Building and Classing Mobile Offshore Drilling Units.
    [6] Adams, A.J., Thorogood, J.L. (1998). On the choice of current profiles for deep-water riser design. SPE Annual Technical Conference and Exhibition, New Orleans.
    [7] Allen, D.W., Dension, E.B., Bos, J. (1994). Vortex-induced vibration of cylindrical structures in sheared flow. Data Reports 1-7, Shell E & P Technology Co., Houston, USA.
    [8] Anand, N.M. (1985). Free span vibrations of submarine pipelines in steady and wave flows. Ph.D. Thesis, Norwegian Institute of Technology, Trondheim, Norway.
    [9] Anon (1995). Deep oil technology details Gulf of Mexico spar structure. Oil and Gas Journal, 93(21): 22-23.
    [10] API (1993). Recommended Practice for Design, Selection, Operation and Maintenance of Marine Drilling Riser Systems. API-RP-16Q. American Petroleum Institute.
    [11] API (1998). Design of Risers for Floating Production Systems and Tension-Leg Platforms. API-RP-2RD. American Petroleum Institute.
    [12] API (2002). Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms—Working Stress Design. API-RP-2A. American Petroleum Institute.
    [13] Bai, Y., Bai, Q. (2005). Subea Pipelines and Risers. Elsevier Science Ltd.
    [14] Bangs, A.S., Miettinen, J.A., Mikkola, T.P.J., et al. (2002). Design of the Truss Spars for the Nansen/Boomvang field development. Proceedings of the Offshore Technology Conference, Houston, USA, Paper No.OTC14090.
    [15] Baarholm, G.S., Larsen, C.M., Lie, H., et al. (2004). Simplified model for evaluation of fatigue from vortex induced vibrations of marine risers. Proceedings of the 23rd International Conference on Offshore Mechanics and Arctic Engineering, Vancouver, Canada, Vol.3, 799-806.
    [16] Baarholm, G.S., Larsen, C.M., Lie, H. (2006). On fatigue damage accumulation from in-line and cross-flow vortex-induced vibrations on risers. Journal of Fluids and Structures, 22(1): 109-127.
    [17] Bearman, P., Johanning, L., Owen, J. (2001). Large scale laboratory experiments on vortex-induced vibration. Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil, Vol.1, 987-995.
    [18] Benaroya, H., Wei, T. (2000). Hamilton’s principle for external viscous fluid-structure interaction. Journal of Sound and Vibration, 238(1): 113-145.
    [19] Benasciutti, D., Tovo, R. (2005). Spectral methods for lifetime prediction under wide-band stationary random processes. International Journal of Fatigue, 2005, 27(8): 867-877.
    [20] Bishop, R.E.D., Hassan, A.Y. (1964). The lift and drag forces on a circular cylinder in a flowing fluid. Proceedings of Royal Society of London, Series A, 277: 32-75.
    [21] Blevins, R.D. (1990). Flow-Induced Vibration. Van Nostrand Reinhold, New York.
    [22] Bokaian, A. (1990). Natural frequencies of beams under tensile axial loads. Journal of Sound and Vibration, 142(3): 481-498.
    [23] Bokaian, A. (1994). Lock-in prediction of marine risers and tethers. Journal of Sound and Vibration, 175(5): 607-623.
    [24] Bokalrud, T., Karlsen, A. (1981). Probabilistic fracture mechanics evaluation of fatigue failure from weld defects in butt weld joints. Proceedings of Conference on Fitness for Purpose Validation of Welded Constructions, London, Paper 28.
    [25] Bowness, D., Lee, M.M.K. (2000a). Prediction of weld toe magnification factors for semi-elliptical cracks in T-butt joint. International Journal of Fatigue, 22(5): 369-387.
    [26] Bowness, D., Lee, M.M.K. (2000b). Weld toe magnification factors for semi-elliptical cracks in T-butt joints-Comparison with existing solutions. International Journal of Fatigue, 22(5): 389-396.
    [27] BS 7608 (1993). Code of Practice for Fatigue Design and Assessment of Steel Structures. British Standards Institution, London.
    [28] BS 7910 (2005). Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures. British Standards Institution, London.
    [29] Bui-Quoc, T. (1981). An interaction effect consideration in cumulative damage on a mild steel under torsion loading. Proceeding of the 5th International Conference on Fracture, Cannes, France, 2625-2633.
    [30] Bui-Quoc, T. (1982). Cumulative damage with interaction effect due to fatigue under torsion loading. Experimental Mechanics, 22(5): 180-187.
    [31] Bukkapatnam, K., Satish, T.S., Sadananda, K. (2005). A genetic algorithm for unified approach-based predictive modeling of fatigue crack growth. International Journal of Fatigue, 27(10-12):1354-1359.
    [32] Carberry, J., Sheridan, J., Rockwell, D. (2001). Forces and wake modes of an oscillating cylinder. Journal of Fluids and Structures, 15(3-4): 523-532.
    [33] Carberry, J. (2002). Wake states of a submerged oscillating cylinder and of a cylinder beneath a free-surface. Ph.D. Thesis, Monash University, Melbourne, Australia.
    [34] Chaboche, J.L., Lesne, P.M. (1988). A non-linear continuous fatigue damage model. Fatigue and Fracture of Engineering Materials and Structures, 11(1): 1-17.
    [35] Chaplin, J.R., Bearman, P.W., Huera Huarte, F.J., et al. (2005a). Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current. Journal of Fluids and Structures, 21(1 SPEC. ISS.): 3-24.
    [36] Chaplin, J.R., Bearman P.W., Cheng, Y., et al. (2005b). Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser. Journal of Fluids and Structures, 21(1 SPEC. ISS.): 25-40.
    [37] Cheng, G.X., Plumtree, A. (1998). A fatigue damage accumulation model based on continuum damage mechanics and ductility exhaustion. International Journal of Fatigue, 20(7): 495-501.
    [38] Chui, C.K. (1992). An introduction to wavelets. Academic Press, Boston.
    [39] Corten, H.T., Dolan, T.J. (1956). Cumulative fatigue damage. Proceedings of International Conference on Fatigue of Metals, London, Vol.1, 56-62.
    [40] Cui, W.C. (2002). A state-of-the-art review of fatigue life prediction method for marine structures. Journal of Marine Science and Technology, 7(1): 43-56.
    [41] Cui, W.C. (2003). A feasible study of fatigue life prediction for marine structures based on crack propagation analysis. Journal of Engineering for the Maritime Environment, 217(5): 11-23.
    [42] de Wilde, J.J., Huijsmans, R.H.M. (2001). Experiments for high Reynolds number VIV on risers. Proceedings of the 11th International Offshore and Polar Engineering Conference, Stavanger, Norway, Vol.3, 400-405.
    [43] de Wilde, J.J., Sworn, A., Cook, H., et al. (2004). Cross section VIV model test for novel riser geometries. Proceedings of the 16th Deep OffshoreTechnology Conference, New Orleans.
    [44] DNV (1992). Structural Reliability Analysis of Marine Structures. DNV Classification Notes No.30.6. Det Norske Veritas.
    [45] DNV (2001). Dynamic Risers. DNV-OS-F201. Det Norske Veritas.
    [46] DNV (2005). Fatigue Design of Offshore Steel Structures. DNV-RP-C203. Det Norske Veritas.
    [47] Donahue, R.J., Clark, H.M., Atanmo, P., et al. (1972). Crack opening displacement and the rate of fatigue crack growth. International Journal of Fracture Mechanics, 8(2): 209-219.
    [48] Donald, K., Paris, P.C. (1999). An evaluation ofΔKeff estimation procedure on 6061-T6 and 2024-T3 aluminum alloys. International Journal of Fatigue, 21: S47-S57.
    [49] Elber, W. (1970). Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics, 2(1): 37-45.
    [50] Facchinetti, M.L., de Langre, E., Biolley, F. (2004). Coupling of structure and wake oscillators in vortex-induced vibrations. Journal of Fluids and Structures, 19(2): 123-140.
    [51] Fatemi, A., Yang, L. (1998). Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials. International Journal of Fatigue, 20(1): 9-34.
    [52] Feng, C.C. (1968). The measurement of vortex induced effects in flow past stationary and oscillating circular and d-section cylinders. Master’s Thesis, Department of Mechanical Engineering, University of British Columbia, Canada.
    [53] Finn, L.D., Maher, J.V., Gupta, H. (2003). The Cell Spar and vortex induced vibrations. Proceedings of the Offshore Technology Conference, Houston, USA, Paper No.OTC15244.
    [54] Fisher, F.J., Gopalkrishnan, R. (1998). Some observations on the heave behavior of Spar platforms. Journal of Offshore Mechanics and Arctic Engineering, 120(4): 221-225.
    [55] Forman, R.G., Kearney, V.E., Engle, R.M. (1967). Numerical analysis of crack propagation in cyclic-loaded structures. Journal of Basic Engineering, 89(3): 459-464.
    [56] Freudenthal, A.M., Heller, R.A. (1959). On stress interaction in fatigue and cumulative damage rule. Journal of the Aerospace Science, 26(7): 431-442.
    [57] Fu, B., Haswell, J.V., Bettess, P. (1993). Weld magnification factors for semi-elliptical surface cracks in fillet welded T-butt joint models. International Journal of Fracture, 63(2): 155-171.
    [58] Furnes, G.K., Hassanein, T., Halse, K.H., et al. (1998). Field study of flow induced vibrations on a deepwater drilling riser. Proceedings of the 30th Offshore Technology Conference, Houston, USA, Vol.2, 199-208.
    [59] Gabbai, R.D., Benaroya, H. (2005). An overview of modeling and experiments of vortex-induced vibration of circular cylinders. Journal of Sound and Vibration, 282(3-5): 575-616.
    [60] Golos, K., Ellyin, F. (1988). A total strain energy density theory for cumulative fatigue damage. Journal of Pressure Vessel Technology, 110(1): 36-41.
    [61] Gopalkrishnan, R. (1993). Vortex induced forces on oscillating bluff cylinders. D.Sc. Thesis, Department of Ocean Engineering, MIT, USA.
    [62] Govardhan, R., Williamson, C.H.K. (2000). Modes of vortex formation and frequency response of a freely vibrating cylinder. Journal of Fluid Mechanics, 420: 85-130.
    [63] Govardhan, R., Williamson, C.H.K. (2005). Revealing the effect of Reynolds number on vortex-induced vibrations using controlled negative and positive damping. Proceedings of the 4th Conference on Bluff Body Wakes and Vortex-Induced Vibrations, Santorini, Greece, 69-71.
    [64] Govardhan, R.N., Williamson, C.H.K. (2006). Defining the‘modified Griffin plot’in vortex-induced vibration: Revealing the effect of Reynolds number using controlled damping. Journal of Fluid Mechanics, 561: 147-180.
    [65] Grant, R.G., Litton, R.W., Mamidipudi, P. (1999). Highly compliant rigid (HCR) riser model tests and analysis. Proceedings of the 31st Offshore Technology Conference, Houston, USA, Vol.2, 269-277.
    [66] Griffin, O.M., Skop, R.A., Koopmann, G.H. (1973). The vortex-excited resonant vibrations of circular cylinders. Journal of Sound and Vibration, 31(2): 235-249.
    [67] Griffin, O.M., Skop, R.A., Ramberg, S.E. (1976). Modeling of the vortex-induced oscillations of cables and bluff structures. Society for Experimental Stress Analysis Spring Meeting, MD, USA.
    [68] Griffin, O.M., Koopmann, G.H. (1977). The vortex-excited lift and reaction forces on resonantly vibrating cylinders. Journal of Sound and Vibration, 54(3): 435-448.
    [69] Griffin, O.M. (1980). Vortex-excited cross-flow vibrations of a single cylindrical tube. Journal of Pressure Vessel Technology, 102: 158-166.
    [70] Grover, H.J. (1960). An observation concerning the cycle ratio in cumulative damage. Symposium on Fatigue of Aircraft Structure, ASTM STP 274, Philadelphia, 120-124.
    [71] Gurley, K., Kareem, A. (1999). Application of wavelet transforms inearthquake, wind, and ocean Engineering. Engineering Structures, 21, 149-167.
    [72] Guo, H.Y., Wang, Y.B., Fu, Q. (2004). The effect of internal fluid on the response of vortex-induced vibration of marine risers. China Ocean Engineering, 18(1): 11-20.
    [73] Halford, G.R. (1966). The energy required for fatigue. Journal of Materials, 1(1): 3-18.
    [74] Halse, K.H. (2000). Norwegian Deepwater Program: improved predictions of vortex-induced vibrations. Proceedings of the 32nd Offshore Technology Conference, Houston, USA, Vol.2, 557-564.
    [75] Hartlen, R.T., Currie, I.G. (1970) Lift oscillation model for vortex-induced vibration. Journal of Engineering Mechanics, 96: 577-591.
    [76] Hong, S., Choi, Y.R., Park, J.B., et al. (2002). Experimental study on the vortex-induced vibration of towed pipes. Journal of Sound and Vibration, 249(4): 649-661.
    [77] Hover, F.S., Miller, S.N., Triantafyllou, M.S. (1997). Vortex-induced vibration of marine cables: Experiments using force feedback. Journal of Fluids and Structures, 11(3): 307-326.
    [78] Hover, F.S., Techet, A.H., Triantafyllou, M.S. (1998). Forces on oscillating uniform and tapered cylinders in crossflow. Journal of Fluid Mechanics, 363, 97-114.
    [79] Huse, E., Kleiven, G., Nielsen, F.G. (1998). Large scale model testing of deep sea risers. Proceedings of the 30th Offshore Technology Conference, Houston, USA, Vol.2, 189-197.
    [80] Huang, X.P., Moan, T. (2007). Improved modeling of the effect of R-ratio on crack growth rate. International Journal of Fatigue, 29(4): 591-602.
    [81] Huther, M., Parmentier, G., Mahérault, S. (2004). Knowledge limits in cumulative fatigue assessment of marine structures. SEATECH– Fatigue of Marine Structures, Brest France.
    [82] Ibrahim, M.F.E., Miller, K.J. (1979). Determination of fatigue crack initiation life. Fatigue of Engineering Materials and Structures, 2(4): 351-360.
    [83] Iwan, W.D., Blevins, R.D. (1974). A model for vortex-induced oscillation of structures. Journal of Applied Mechanics, 41(3): 581-586.
    [84] Iwan, W.D. (1975). The vortex induced oscillation of elastic structures. Journal of Engineering for Industry, 97(4): 1378-1382.
    [85] Iwan, W.D. (1981). The vortex-induced oscillation of non-uniform structural systems. Journal of Sound and Vibration, 79(2): 291-301.
    [86] Jauvtis, N., Williamson, C.H.K. (2003). Vortex-induced vibration of acylinder with two degrees of freedom. Journal of Fluids and Structures, 17(7): 1035- 1042.
    [87] Jauvtis, N., Williamson, C.H.K. (2004). The effect of two degrees of freedom on vortex-induced vibration at low mass and damping. Journal of Fluids Mechanics, 509: 23- 62.
    [88] Jeans, G., Grant, C., Feld, G. (2002). Improved current profile criteria for deepwater riser design. Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo, Norway, Vol.1, 307-311.
    [89] Jung, D.H., Park, H.I., Koterayama, W. (2003). A numerical and experimental study on dynamics of a highly flexible free hanging pipe in water. Proceedings of the 13th International Offshore and Polar Engineering Conference, Honolulu, USA, 645-651.
    [90] Kaasen, K.E., Lie, H., Solaas, F., et al. (2000). Norwegian Deepwater Program: Analysis of vortex-induced vibrations of marine risers based on full-scale measurements. Proceedings of the 32nd Offshore Technology Conference, Houston, USA, Vol.2, 565-575.
    [91] Kapuria, S., Salpekar, V.Y., Sengupta, S. (1999). Fatigue due to vortex-induced cross flow oscillations in free spanning pipelines supported on elastic soil bed. Proceedings of the 9th International Offshore and Polar Engineering Conference, Brest, France, Vol.2, 197-203.
    [92] Kavanagh, W.K., Imas, L., Thompson, H., et al. (2000). Genesis Spar risers: interference assessment and VIV model testing. Proceedings of the 32nd Offshore Technology Conference, Houston, USA, Vol.2, 521-532.
    [93] Khalak, A., Williamson, C.H.K. (1996). Dynamics of a hydroelastic cylinder with very low mass and damping. Journal of Fluids and Structures, 10(5): 455-472.
    [94] Khalak, A., Williamson, C.H.K. (1999). Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. Journal of Fluids and Structures, 13(7-8): 813-851.
    [95] Kim, W.T., Perkins, N.C. (2002). Two-dimensional vortex-induced vibration of cable suspensions. Journal of Fluids and Structures, 16(2): 229-245.
    [96] Klamo, J.T., Leonard, A., Roshko, A. (2004). On the maximum amplitude in vortex-induced vibrations. Bulletin of the American Physical Society, 49(9), 36.
    [97] Klamo, J.T., Leonard, A., Roshko, A. (2005). On the maximum amplitude for a freely vibrating cylinder in cross-flow. Journal of Fluids and Structures, 21(4): 429-434.
    [98] Klesnil, M., Luká?, P. (1972). Influence of strength and stress history on growth and stabilization of fatigue cracks. Engineering Fracture Mechanics, 4:77-92.
    [99] Krenk, S., Nielsen, S.R.K. (1999). Energy balanced double oscillator model for vortex-induced vibrations. Journal of Engineering Mechanics, 125 (3): 263-271.
    [100] Kujawski, D. (2001a). Enhanced model of partial crack closure for correlation of R-ratio effects in aluminum alloys. International Journal of Fatigue, 23(2): 95-102.
    [101] Kujawski, D. (2001b). Correlation of long and physically short cracks growth in aluminum alloys. Engineering Fracture Mechanics, 68(12): 1357-1369.
    [102] Kujawski, D. (2001c). A new (ΔK+ Kmax)0.5 driving force parameter for crack growth in aluminum alloys. International Journal of Fatigue, 23(8): 733-740.
    [103] Kung, C.J., Wirsching, P.H. (1994). The fatigue/fracture reliability and maintainability process of structural systems: A summary of recent developments. Proceedings of the 6th International Conference on Structural Safety & Reliability, Innsbruck, Austria, Vol.2, 1027-1034.
    [104] Larsen, C.M., Bech, A. (1986). Stress analysis of marine risers under lock-in condition. Proceedings of the 5th International Conference on Offshore Mechanics and Arctic Engineering, Tokyo, Japan, 1986, 450-457.
    [105] Larsen, C.M., Vikestad, K., Yttervik, R., et al. (2000). VIVANA - Theory Manual. MARINTEK, Trondheim, Norway.
    [106] Larsen, C.M., Vikestad, K., Yttervik, R., et al. (2001). Empirical model for analysis of vortex induced vibrations: Theoretical background and case studies. Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil, Vol.1, 581-593.
    [107] Le Cunff, C., Fontaine, E., Biolley, F. (2002). Riser fatigue due to currents and waves. Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo, Norway, Vol.1, 197-202.
    [108] Leira, B.J., Meling, T.S., Larsen, C.M., et al. (2005). Assessment of fatigue safety factors for deep-water risers in relation to VIV. Journal of Offshore Mechanics and Arctic Engineering, 127(4): 353-358.
    [109] Lie, H., Kaasen, K.E. (2006). Modal analysis of measurements from a large-scale VIV model test of a riser in linearly sheared flow. Journal of Fluids and Structures, 22(4): 557-575.
    [110] Lie, H., Larsen, C.M., Vandiver, J.K (1997). Vortex induced vibrations of long marine risers; model test in a rotating rig. Proceedings of the 16th International Conference on Offshore Mechanics and Arctic Engineering, Yokohama, Japan, Vol.1, 241-252.
    [111] Lie, H., Mo, K., Vandiver, J.K. (1998). VIV model of a bare-and a staggered buoyancy riser in a rotating rig. Proceedings of the 30th Offshore TechnologyConference, Houston, USA, Vol.2, 177-187.
    [112] Lighthill, M.J. (1986). Fundamentals concerning wave loading on offshore structures. Journal of Fluid Mechanics, 173: 667–681.
    [113] Lin, N.K., Hartt, W.H. (1984). Time series simulations of wide-band spectra for fatigue tests of offshore structures. Journal of Energy Resources Technology, 106(11): 466-472.
    [114] Lu, R.R., Wang, J.J., Erdal, E. (2003). Time domain strength and fatigue analysis of Truss Spar heave plate. Proceedings of the 13th International Offshore and Polar Engineering Conference, Honolulu, United States, 272-279.
    [115] Luo, Y.H., Lu, R., Wang, J., et al. (2001). Time-domain fatigue analysis for critical connections of Truss Spar. Proceedings of the 11th International Offshore and Polar Engineering Conference, Stavanger, Norway, Vol.1, 362-368.
    [116] Luo, Y.H., Wang, J.J., Lu, R.R. (2003). Spar topsides-to-hull connection fatigue - time domain vs. frequency domain. Proceedings of the 13th International Offshore and Polar Engineering Conference, Honolulu, United States, 280-284.
    [117] Lyons, G.J., Patel, M.H. (1986). A prediction technique for vortex induced transverse response of marine risers and tethers. Journal of Sound and Vibration, 111(3): 467-487.
    [118] Lyons, G.J., Patel, M.H. (1989). Application of a general technique for prediction of riser vortex-induced response in waves and current. Journal of Offshore Mechanics and Arctic Engineering, 111(2): 82-91.
    [119] Lyons, G.J., Vandiver, J.K., Larsen, C.M., et al. (2000). Vortex induced vibrations measured in service in the Foinaven dynamic umbilical and comparison with predictions. Proceedings of the 7th International Conference on Flow Induced Vibrations, Lucerne.
    [120] Lyons, G.J., Vandiver, J.K., Larsen, C.M., et al. (2003). Vortex induced vibrations measured in service in the Foinaven dynamic umbilical, and lessons from with predictions. Journal of Fluid and Structures, 17(8): 1079-1094.
    [121] Maher, J., Finn, L. (2000). A combined time-frequency domain procedure to estimate riser fatigue caused by heave-induced vortex-induced vibration. Proceedings of the 32nd Offshore Technology Conference, Houston, USA, Vol.2, 541-546.
    [122] Maher, J.V., Weaver, T.O., Thomas, H., et al. (2005). Red Hawk hull design and topsides interfaces. Proceedings of the Offshore Technology Conference, Houston, USA, Paper No.OTC17428.
    [123] Manson, S.S., Nachigall, A.J., Freche, J.C. (1961). A proposed new relation for cumulative damage in bending. American Society for Testing and Materials, 61: 679-703.
    [124] Manson, S.S., Halford, G.R. (1981). Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage. International Journal of Fracture, 17(2): 169-192.
    [125] Manson, S.S., Halford, G.R. (1985). Reexamination of cumulative fatigue damage analysis. Engineering Fracture Mechanics, 25(5-6), 539-571.
    [126] Marco, S.M., Starkey, W.L. (1954). A concept of fatigue damage. Transaction of the ASME, 76: 627-632.
    [127] Massel, S.R. (2001). Wavelet analysis for processing of ocean surface wave records. Ocean Engineering, 28(8): 957–987.
    [128] Masuda, K., Ikoma, T., Kondo, N., et al. (2006). Forced oscillation experiments for VIV of circular cylinders and behaviors of VIV and lock-in phenomenon. Proceedings of 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany.
    [129] McEvily, A.J., Groeger, J. (1977). On the threshold for fatigue crack growth. Proceedings of 4th International Conference on Fracture, Waterloo, Canada, Vol.2, 1293-1298.
    [130] McEvily, A.J., Ritchie, R.O. (1998). Crack closure and the fatigue-crack propagation threshold as a function of load ratio Fatigue and Fracture of Engineering Materials & Structures, 21(7): 847-855.
    [131] Meggiolaro, M.A., de Castro, J.T.P. (2003). On the dominant role of crack closure on fatigue crack growth modeling. International Journal of Fatigue, 25(9-11): 843-854.
    [132] Mekha, B.B. (2002). On the wave and VIV fatigue of steel catenary risers connected to floating structures. Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo, Norway, Vol.1, 57-63.
    [133] Meling, T.S., Eik, K.J., Nygaard, E. (2002). An assessment of EOF current scatter diagrams with respect to riser VIV fatigue damage. Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo, Norway, Vol.1, 85-93.
    [134] Miller, K.J., Ibrahim, M.E. (1981). Damage accumulation during initiation and short crack growth regimes. Fatigue of Engineering Materials and Structures, 4(3): 263-277.
    [135] Miller, K.J. (1993). Materials science perspective of metal fatigue resistance. Materials Science and Technology, 9: 453-462.
    [136] Miller, K.J. (1999). A historical perspective of the important parameters ofmetal fatigue and problems for the next century. Proceedings of the 7th International Fatigue Congress (Fatigue 99), Beijing, China, Vol.1, 15-39.
    [137] Miner, M.A. (1945). Cumulative damage in fatigue. Journal of Applied Mechanics, 12(3): A159-164.
    [138] Moe, G., Wu, Z.J. (1989). The lift force on a cylinder vibrating in a current. Proceedings of the 8th International Conference on Offshore Mechanics and Arctic Engineering, Hague, Netherlands, Vol. 2, 259-268.
    [139] Moe, G., Arntsen, ?,, Hoen, C. (2001). VIV analysis of risers by complex modes. Proceedings of the 11th International Offshore and Polar Engineering Conference, Stavanger, Norway, Vol.3, 426-430.
    [140] Mureithi, N.W., Kanki, H., Nakamura, T. (2000). Bifurcation and perturbation analysis of some vortex shedding models. Proceedings of the 7th International Conference on Flow-Induced Vibrations, 61-68.
    [141] Newman, J.C. (1998). The merging of fatigue and fracture mechanics concepts: A historical perspective. Progress in Aerospace Sciences, 34(5-6): 347-390.
    [142] Newman, J.N. (1977). Marine Hydrodynamics. Press of Massachusetts Institute of Technology.
    [143] Niu, X., Li, G.X., Lee, H. (1987). Hardening law and fatigue damage of a cyclic hardening metal. Engineering Fracture Mechanics, 26(2): 163-170.
    [144] Noroozi, A.H., Glinka, G., Lambert, S. (2005). A two parameter driving force for fatigue crack growth analysis. International Journal of Fatigue, 27(10-12): 1277-1296.
    [145] Oh, C.S. (2001). Application of wavelet transform in fatigue history editing. International Journal of Fatigue, 23(3): 241-250.
    [146] Ottesen Hansen, N.E., Pedersen, B. (1998). Vortex induced vibrations of pipe in high waves-field measurements. International Conference on Hydroelasticity in Marine Technology, Fukuoka, Japan.
    [147] Pan, W.F., Hung, C.Y., Chen, L.L. (1999). Fatigue life estimation under multiaxial loadings. International Journal of Fatigue, 21(1): 3-10.
    [148] Pan, Z.Y., Cui, W.C., Miao, Q.M. (2006). A prediction model for vortex-induced vibration of slender marine risers. Journal of Ship Mechanics, 10(3): 42-52.
    [149] Paris, P.C., Erdogan, F. (1963). Critical analysis of crack propagation laws. Journal of Basic Engineering, 85: 528-534.
    [150] Park, H.I., Hong, Y.P., Nakamura, M., et al. (2002). An experimental study on transverse vibrations of a highly flexible free-hanging pipe in water. Proceedings of the 12th International Offshore and Polar EngineeringConference, Kitakyushu, Japan, Vol.2, 199-206.
    [151] Patrikalakis, N.M., Chryssostomidis, C. (1986). Vortex-induced response of a flexible cylinder in a sheared current. Journal of Energy Resources Technology, 108(1): 59-64.
    [152] Redaelli, F., Skallerud, B., Leira, B.J. (2002). On remaining fatigue life fracture mechanics analysis of free-spanning pipelines using shell and line-spring elements. Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo, Norway, Vol.4, 207-215.
    [153] Roveri, F.E., Vandiver, J.K. (2001). Slenderex: Using Shear7 for assessment of fatigue damage caused by current induced vibrations. Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil, Vol.1, 427-434.
    [154] Sadananda, K., Vasudevan, A.K., Holtz, R.L. (2001). Extension of the Unified Approach to fatigue crack growth to environmental interactions. International Journal of Fatigue, 23(SUPPL.1): S277-S286.
    [155] Sadananda, K., Vasudevan, A.K. (2004). Analysis of fatigue crack growth behavior in polymers using the unified approach. Materials Science and Engineering A, 387-389(SPEC. ISS 1-2): 536-541.
    [156] Sarpkaya, T. (1978). Fluid forces on oscillating cylinders. Journal of the Waterway, Port, Coastal and Ocean Division, 104(4): 275-290.
    [157] Sarpkaya, T. (1979). Vortex-induced oscillations (A selective review). Journal of Applied Mechanics, 46: 241-258.
    [158] Sarpkaya, T. (2001). On the force decompositions of Lighthill and Morison. Journal of Fluids and Structures, 15(2): 227–233.
    [159] Sarpkaya, T. (2004). A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures, 19(4): 389-447.
    [160] Serta, O.B., Sphaier, S.H., Fernandes, A.C. (2000). Fatigue design of risers: an improved methodology incorporating a transverse hydrodynamic force model. Proceedings of the 10th International Offshore and Polar Engineering Conference, Seattle, USA, Vol.2, 49-53.
    [161] Silva, F.S. (2004). Crack closure inadequacy at negative stress ratios. International Journal of Fatigue, 26(3): 241–252.
    [162] Skop, R.A., Griffin, O.M. (1973). A model for the vortex-excited resonant response of bluff cylinders Journal of Sound and Vibration, 27(2): 225-233.
    [163] Skop, R.A., Balasubramanian, S. (1995a). A nonlinear oscillator model for vortex shedding from a forced cylinder. Part 1: Uniform flow and model parameters. International Journal of Offshore and Polar Engineering, 5(4): 251-255.
    [164] Skop, R.A., Balasubramanian, S. (1995b). A nonlinear oscillator model for vortex shedding from a forced cylinder. Part 2: Shear flow and axial diffusion. International Journal of Offshore and Polar Engineering, 5(4): 256-260.
    [165] Skop, R.A., Balasubramanian, S. (1997). A new twist on an old model for vortex-excited vibrations. Journal of Fluids and Structures, 11(4): 395-412.
    [166] Sparks, C.P. (2002). Transverse modal vibrations of vertical tensioned risers. A simplified analytical approach. Oil and Gas Science and Technology, 57(1): 71-86.
    [167] Spitzer, R., Corten, H.T. (1961). Effects of loading sequence on cumulative fatigue damage of 7071-T6 aluminum alloy. American Society for Testing and Materials, 61: 719-731.
    [168] Stahl, B., Banon, H. (2002). Fatigue safety factors for deepwater risers. Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo, Norway, Vol.2, 349-355.
    [169] Staubli T. (1983). Calculation of the vibration of an elastically mounted cylinder using experimental data from forced oscillation. Journal of Fluids Engineering, 105(2): 225-229.
    [170] Tao, L.B., Lim, K.Y., Thiagarajan, K. (2001). Heave motion characteristics of spar platform with alternative hull shapes. Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil, Vol.1, 345-351.
    [171] Thethi, R., Howells, H., Natarajan, S., et al. (2005). A fatigue monitoring strategy & implementation on a deepwater top tensioned riser. Proceedings of the Annual Offshore Technology Conference, Houston, USA.
    [172] Tognarelli, M.A., Slocum, S.T., Frank, W.R., et al. (2004). VIV response of a long flexible cylinder in uniform and linearly sheared currents. Proceedings of the Offshore Technology Conference, Houston, USA, Paper No.OTC16388.
    [173] Trim, A.D., Braaten, H., Lie, H., et al. (2005). Experimental investigation of vortex-induced vibration of long marine risers. Journal of Fluids and Structures, 21 (3 SPEC. ISS.): 335-361.
    [174] Vandiver, J.K., Allen, D., Li, L. (1996). The occurrence of lock-in under highly sheared conditions. Journal of Fluids and Structures, 10(5): 555-561.
    [175] Vandiver, J.K., Jaiswal, V., Swithenbank, S.B., et al. (2006). Fatigue damage from high mode number vortex-induced vibration. Proceedings of 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, Paper No.OMAE2006-92409.
    [176] Vasudeven, A.K., Sadananda, K., Louat, N. (1994). A review of crack closure, fatigue crack threshold and related phenomena. Materials Science and Engineering A: Structural Materials: Properties, Microstructure andProcessing, A188(1-2): 1-22.
    [177] Vasudevan, A.K., Sadananda, K. (1999). Application of unified fatigue damage approach to compression-tension region. International Journal of Fatigue, 21(SUPPL.): S263-S273.
    [178] Venugopal, M. (1996). Damping and response prediction of a flexible cylinder in a current. Ph.D. Thesis, Department of Ocean Engineering, MIT, USA.
    [179] Vikestad, K., Larsen, C.M., Vandiver, J.K. (1997). Experimental study of excited circular in current. Proceedings of the 16th International Conference on Offshore Mechanics and Arctic Engineering, Yokohama, Japan, Vol.1, 231-240.
    [180] Vikestad, K. (1998). Multi-frequency response of a cylinder subject to vortex shedding and support motions. Ph.D. Thesis, Department of Marine Engineering, Norwegian University of Science and Technology, Norway.
    [181] Vikestad, K., Halse, K.H. (2000). Effect of variable current on vortex-induced vibrations. Proceedings of the 10th International Offshore and Polar Engineering Conference, Seattle, USA, Vol.3, 493-498.
    [182] Vikestad, K., Vandiver, J.K., Larsen, C.M. (2000). Added mass and oscillation frequency for a circular cylinder subjected to vortex-induced vibrations and external disturbance. Journal of Fluids and Structures, 14(7): 1071-1088.
    [183] Voorwald, H.J.C., Torres, M.A.S., Pinto Junior, C.C.E. (1991). Modeling of fatigue crack growth following overloads. International Journal of Fatigue, 13(5): 423-427.
    [184] Walker, K. (1970). The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum. ASTM Special Technical Publication, 462, 1-14.
    [185] Wang, J., Berg, S., Luo, Y.H., et al. (2001). Structural design of the Truss Spar - An overview. Proceedings of the 11th International Offshore and Polar Engineering Conference, Stavanger, Norway, Vol.1, 354-361.
    [186] Wang, J., Zhang, B., Berg, S. (2002). Truss Spar time domain inplace structural strength analysis. Proceedings of the Offshore Technology Conference, Houston, USA, Paper No.OTC14299.
    [187] Wang, J.J., Luo, Y.H., Lu, R. (2002). Truss Spar structural design for West Africa environment. Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo, Norway, Vol.1, 489-496.
    [188] Wang, J.J., Lu, R., Lu, N. (2003). Truss Spar strength and fatigue analysis for wet tow. Proceedings of the 13th International Offshore and Polar Engineering Conference, Honolulu, United States, 264-271.
    [189] Wang, Y.F., Wu, X.Y., Pan, Z.Y., et al. (2007). Effect of elastic modulus on the VIV- induced fatigue damage in deep sea risers. Journal of Ship Mechanics,11(6): 867-878.
    [190] Wheeler, O.E. (1972). Spectrum loading and crack growth. Journal of Basic Engineering, Transaction of ASME, 94(1): 181-186.
    [191] Williamson, C.H.K., Govardhan, R. (2004). Vortex-induced vibrations. Annual Review of Fluid Mechanics, 36: 413-455.
    [192] Willis, N.R.T., Thethi, K.S. (1999). Stride JIP: Steel risers in deepwater environments - progress summary. Proceedings of the 31st Offshore Technology Conference, Houston, USA, Vol.2, 279-294.
    [193] Wirsching, P.H., Shehata, A.M. (1977). Fatigue under wide band random stresses using the rain-flow method. Journal of Engineering Materials and Technology, 99(3): 205-211.
    [194] Wirsching, P.H. (1984). Fatigue reliability for offshore structures. Journal of Structural Engineering, 110(10): 2340-2356.
    [195] Wu, M.C., Lou, J.Y.K. (1991). Effect of rigidity and internal flow on marine riser dynamics. Applied Ocean Research, 13(5): 235-244.
    [196] Yang, J.N. (1972). Simulation of random envelope processes. Journal of Sound and Vibration, 21(1): 73-85.
    [197] Yttervik, R., Larsen, C.M., Furnes, G.K. (2003). Fatigue from vortex-induced vibrations of free span pipelines using statistics of current speed and direction. Proceedings of the 22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico, Vol.2, 687-698.
    [198] Zhang, F., Yang, J.M., Li, R.P., et al. (2006a). Experimental investigation on hydrodynamic behavior of the Geometric Spar platform. China Ocean Engineering, 20(2): 212-224.
    [199] Zhang, F., Yang, J.M., Li, R.P., et al. (2006b). Effects of heave plate on the hydrodynamic behaviors of Cell Spar platform. Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, Paper No.OMAE2006-92199.
    [200] Zhang, J., He, X.D, Du, S.Y. (2005). Analyses of the fatigue crack propagation process and stress ratio effects using the two parameter method. International Journal of Fatigue, 27(10-12): 1314-1318.
    [201]程正兴(1998).小波分析算法与应用.西安交通大学出版社.
    [202]“典型深水平台概念设计研究”课题组(2005).典型深水顶部张紧立管的设计方法.中国造船, 46(Special): 447-452.
    [203]董艳秋(1994).波流联合作用下海洋平台张力腿的涡激非线性振动.海洋学报, 16(3): 121-129.
    [204]董艳秋(2005).深海采油平台波浪载荷及响应.天津大学出版社.
    [205]傅强(2005).考虑温度应力的海洋输液立管动力特性及涡激振动研究.中国海上油气, 17(6): 412-415.
    [206]高鹏(2007). Spar平台结构设计研究.上海交通大学硕士学位论文.
    [207]葛斐,惠磊,洪友士(2007).水中悬浮隧道锚索在剪切流中的涡激响应.中国科学院研究生院学报, 24(3): 351-356.
    [208]郭海燕,傅强,娄敏(2005).海洋输液立管涡激振动响应及其疲劳寿命研究.工程力学, 22(4): 220-224.
    [209]韩芸,黄小平,崔维成(2006). T型接头焊趾表面裂纹应力强度因子的简化计算方法.中国造船, 47(1): 1-11.
    [210]胡毓仁,陈伯真(1996).船舶及海洋工程结构疲劳可靠性分析.人民交通出版社.
    [211]胡志强,顾永宁,何江(2001).浮式生产储油轮火炬塔结构的疲劳分析.中国海上油气(工程),13(3): 14-18.
    [212]黄小平(2003).大深度潜艇结构的疲劳寿命预测方法研究.上海交通大学博士后研究工作报告.
    [213]江国和,方开翔,顾振福,等(2005).拖缆模型涡激振动的影响因素分析.振动与冲击, 24(1): 53-57.
    [214]李润培,谢永和,舒志(2003).海洋平台技术的研究现状和发展趋势.中国海洋平台, 18(3): 1-5.
    [215]李晓飞,胡毓仁(2002).基于小波分析的疲劳应力历程模拟.上海交通大学学报, 36(11): 1568-1571.
    [216]罗延生,余建星,方华灿(2001).海底管线管跨段涡激振动下模糊可靠性评估.中国海洋平台, 16(4): 26-31.
    [217]马驰,董艳秋,杨丽婷(2000).海洋平台张力腿在两种边界条件下的涡激非线性振动的比较研究.船舶力学, 4(1): 56-65.
    [218]麦继婷,罗忠贤,关宝树(2004).流作用下悬浮隧道张力腿的涡激动力响应.西南交通大学学报, 39(5): 600-604.
    [219]石红珊(2007).深水单立柱采油平台方案设计及稳性研究.上海交通大学硕士学位论文.
    [220]孙树民(2000).海洋平台结构的发展.广东造船, 4: 32-37.
    [221]唐友刚,谷家扬,左建立,等(2005).隔水套管波流联合作用下非线性动力响应.应用数学和力学, 26(8): 951-956.
    [222]王东耀,凌国灿(1998).在平台振荡条件下TLP张力腿的涡激非线性响应.海洋学报, 20(3): 119-128.
    [223]杨兵,高福平,吴应湘(2006).单向水流作用下近壁管道横向涡激振动实验研究.中国海上油气, 18(1): 52-57.
    [224]杨晓华,姚卫星,段成美(2003).确定性疲劳累积损伤理论进展.中国工程科学, 5(4): 81-87.
    [225]姚熊亮,陈起富,徐文景(1994).均匀流场串列圆柱涡激振动特性的实验研究.振动工程学报, 7(1): 17-22.
    [226]叶笃毅,王德俊,童小燕,等(1999).一种基于材料韧性耗散分析的疲劳损伤定量新方法.实验力学, 14(1): 80-88.
    [227]余建星,罗延生,方华灿(2001).海底管线管跨段涡激振动响应的实验研究.地震工程与工程振动, 21(4): 93-97.
    [228]余建星,俞永清,李红涛,等(2005).海底管跨涡激振动疲劳可靠性研究.船舶力学, 9(2): 109-114.
    [229]余建星,李红涛(2006).波流联合作用下海底管跨疲劳失效的分析.天津大学学报, 39(9): 1015-1020.
    [230]张智,董艳秋,芮光六(2004).一种新型的深海采油平台Spar.中国海洋平台, 19(6): 29-35.
    [231]中国船级社(1992).海底管道系统规范.人民交通出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700