用户名: 密码: 验证码:
多元复合地基与筏形基础及上部结构共同作用分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,在地基处理领域的理论研究和实践中,因具有良好的理论基础和技术经济优势,多元复合地基逐渐成为复合地基处理中的一类重要型式,具有宽广的工程应用前景。多元复合地基处理技术是在复合地基处理技术基础上的重要突破,随着工程技术的不断发展,对多元复合地基与筏形基础及上部结构的共同作用进行分析与研究,具有现实的必要性。通过与国内外多元复合地基与筏形基础及上部结构共同作用分析相关课题研究发展趋势的结合,本文在前人的研究基础之上,进行多元复合地基与筏形基础及上部结构共同作用的数值分析,研究了多元复合地基、筏基及上部结构的变化对三者之间共同作用受力的相互影响,并着重于各种情况下多元复合地基不同布桩方式的对比分析,所做的主要工作和相关研究结论如下:
     ①研究多元复合地基、筏基、上部结构的有限元分析理论,包括相应的本构模型、计算单元、厚板分析理论等,针对散体、柔性、刚性桩三种竖向增强体一元复合地基对上部结构-筏基-一元复合地基共同作用的影响进行了分析,为后面的工作打下了研究基础。
     ②针对散体-柔性桩、散体-刚性桩、柔性-刚性桩三种组合的二元复合地基对上部结构-筏基-二元复合地基共同作用的影响进行了研究,布桩方式采用“均匀布桩”、“内强外弱”、“外强内弱”、“中部强内外弱”、“中部弱内外强”五种。得出了按筏基沉降、筏基及上部结构内力分布各单项控制指标下最有利至最不利的布桩方式排序。综合比较,“中部弱内外强”的组合方式既可以使筏基沉降减至较低,又能适当减小上部结构及筏基的弯矩值,是一种相对优化的布桩方式。
     ③针对散体-柔性-刚性桩组合的三元复合地基对上部结构-筏基-三元复合地基共同作用的影响进行了研究,布桩方式采用“均匀布桩”、“外强中柔内弱”、“外强中弱内柔”、“外柔中强内弱”、“外柔中弱内强”、“外弱中强内柔”、“外弱中柔内强”七种。得出了按筏基沉降、筏基及上部结构内力分布各单项控制指标下最有利至最不利的布桩方式排序。综合比较,“外强中弱内柔”的组合方式既可以使筏基沉降减至较低,又能适当减小上部结构及筏基的弯矩值,是一种相对优化的布桩方式。
     ④选取散体-柔性-刚性桩“外强中弱内柔”组合的三元复合地基作为多元复合地基代表,针对筏基及上部结构对上部结构-筏基-多元复合地基共同作用的影响进行分析,研究了筏基厚度、筏基砼强度及上部结构层数、层高对上部结构-筏基-三元复合地基共同作用的影响规律,并得出了相关可供工程实践参考的结论。
     ⑤选取散体-柔性-刚性桩上述七种布桩组合的三元复合地基,针对上部不均匀荷载对上部结构-筏基-三元复合地基共同作用的影响进行了计算研究,分析表明,对中部大周边小的不均匀荷载,不同布桩方式各有利弊,综合比较地基沉降及上部结构、筏基弯矩内力,“外弱中柔内强”、“外柔中弱内强”、“均匀布桩”是相对优化的布桩方式。对中部小周边大的不均匀荷载,则“均匀布桩”、“外弱中强内柔”、“外柔中强内弱”是相对较优的布桩方式。
     ⑥在VC++平台中采用C++语言编制了“多元复合地基与上部结构及筏基共同作用分析”计算程序MSRIAP-2009,该程序可对多高层框架结构与筏基及多元复合地基的共同作用受力问题进行计算分析,在相关工程实践和科研领域中有一定的利用价值。
Multi-element composite foundation is an important breakthrough based on composite foundation theory in the period of from theory to practice with the ground treatment technology and it has sufficient theory evidence and good application prospect. With the continuous development of engineering technology, analysis to interaction of multi-element composite foundation and raft footing and superstructure has realistic necessity. Based on the research of predecessors, numerical analysis research to the interaction of multi-element composite foundation and raft footing and superstructure is preceded. Influence analysis of different pile dispose schemes to the interaction is the emphasis. Corresponding main work and achievements are as follows:
     ①Multi-element composite foundation, raft footing and superstructure finite analysis theories are investigated, which include the corresponding constitutive model, computation element, thick plate analysis theory and so forth. Point to the influence of three kinds of unitary-element composite foundations that include rigid, soft, granular cases to the interaction of superstructure and footing with unitary-element composite foundation, investigation was carried out. The basis for the succedent research is prepared well.
     ②Point to the influence of three kinds of two-element composite foundations that include granular-soft pile combination, granular-rigid pile combination, soft-rigid pile combination to the interaction of superstructure and footing with two-elements composite foundation, investigation was carried out. The pile disposal schemes use five modes including 'uniformly-spaced', 'inner part strong and outer part weak', 'outer part strong and inner part weak', 'center part strong with inner and outer part weak' and 'center part weak with inner and outer part strong'. The order of every pile disposal scheme for every single controlling target of raft settlements, raft and superstructure internal moment force from the best case to worst case is obtained. Comparisons show that every pile disposal scheme has its own shortcomings and advantages. Generally, pile disposal mode of 'center part weak with inner and outer part strong' can not only reduce the raft settlements, but also decrease the internal force of superstructure and raft properly and it is a relatively optimal pile disposal mode.
     ③Point to the influence of three-element composite foundation combined wih granular-soft-rigid pile to the interaction of superstructure and footing with three-element composite foundation, investigation was carried out. The pile disposal schemes use seven modes including 'uniformly-spaced', 'outer part strong and center part soft with inner part weak', 'outer part strong and center part weak with inner part soft', 'outer part soft and center part strong with inner part weak', 'outer part soft and center part weak with inner part strong', 'outer part weak and center part strong with inner part soft' and 'outer part soft and center part soft with inner part strong'. The order of every pile disposal scheme for every single controlling target of raft settlements, raft and superstructure internal moment force from the best case to worst case is obtained. Comparisons show that every pile disposal scheme has its own shortcomings and advantages. Generally, pile disposal mode of 'outer part strong and center part weak with inner part soft' can not only reduce the raft settlements, but also decrease the internal force of superstructure and raft properly and it is a relatively optimal pile disposal mode.
     ④Select 'outer part strong and center part weak with inner part soft' combination of granular-soft-rigid pile three-element composite foundation as the representative of multi-element composite foundation. Point to the influence of raft footing and superstructure to the interaction of superstructure and footing with multi-element composite foundation, investigation was carried out. Influence law of raft thickness, raft concrete strength, number of superstructure floors and superstructure floor height to the interaction of superstructure and raft foundation with multi-element composite foundation is investigated. Some useful conclusions are obtained.
     ⑤Point to the influence of asymmetrical loads to the interaction of superstructure and footing with three-element composite foundation, three-element composite foundation wih the abolve seven granular-soft-rigid pile combination modes was choosed. In the center part heavy outside part weak loads distribution case, comparisons show that every pile disposal scheme has its own shortcomings and advantages. Generally, three pile disposal modes of 'outer part weak and center part soft with inner part strong', 'outer part soft and center part weak with inner part strong', 'uniformly-spaced' can not only reduce the raft settlements, but also decrease the internal force of superstructure and raft properly and are the relatively optimal pile disposal modes. In the center part weak outside part heavy loads distribution case, generally, three pile disposal modes of 'uniformly-spaced', 'outer part weak and center part strong with inner part soft', 'outer part soft and center part strong with inner part weak' are the relatively optimal pile disposal modes.
     ⑥C++ language is used for devise of multi-element composition foundation, superstructure and raft footing interaction analysis program MSRIAP-2009. And the corresponding numerical computation analysis for the interaction of multilayer frame structure and raft footing with multi-element composition foundation can be carried out. The analysis results are available to corresponding science research and engineering practice.
引文
[1]中华人民共和国建设部,建筑地基处理技术规范(JGJ79—2002)[S],中国建筑工业出版社,2002.
    [2]张爱军,谢定义.复合地基三维数值分析[M].北京:科学出版社,2004.
    [3]尚新生.多元复合地基工作机理及设计优化研究[博士论文].西安理工大学,2004
    [4]龚晓南.复合地基理论及工程应用.中国建筑工业出版社. 2002.11
    [5]郑俊杰.地基处理技术[M].武汉:华中科技大学出版社, 2004
    [6]段继伟.柔性桩复合地基的数值分析[博士论文].浙江大学,1993
    [7]朱百里,沈珠江等.计算土力学[M].上海:上海科学技术出版社,1990.
    [8] Meyerhof,G. G. Some Recent Foundation Research and its Application to Design[J], The Structure Engineer, 1953,31.
    [9] Chamecki. Structural Rigidty in Calculating Settlements[J]. Jour.soil Mech.and Found. Div,ASCE,1956,82.
    [10] Cheung Y. K., Zienkiewize O. C. Plates and tanks on elastic foundation– an application of finite element method[J]. Int. J. Solids and Struc, 1965, (1):451-461.
    [11] Przemienicki,J.S. Theory of Matrix Structural Analysis[M],1968.
    [12] Haddadin,M.M. Mats and Combined Footings Analysis by the Finite Element Methods[J]. Proc, ACI, 1971, 68(12).
    [13] Christian,J.T. Soil Structure-interaction for Tall Buildings[C]. Planning and Design of Tall Buildings. Lehigh University, 1972,19.
    [14] Hain S. J., Lee I. K., Rational analysis of raft foundation[J]. J. Geotech. Eng. Div., Proc. ASCE, 1974, 68(12).
    [15] King,G.J.W., Chandrasekaran. Interaction Analysis of a Rafted Multi-story Space Frame Resting on an Inhomogeneous Clay Stratum[C]. Proc.Int.Conf.on Finite Elenent Methods in Engineering, Univ.of.N.S.w.Autralian, 1974.
    [16] Wardle,L.J., Fraser,R.A. Methods for Raft Foundation Design including Soil-Structure Interaction[C]. Cooerative Project, The University of New South Wales,Australia, 1975.
    [17] Hooper,J.A., Wood,L.A. Foundation Analysis of a Cross-Wall Structure[C]. Proc.Int.Conf.on Performance Big, Struc. Glasgow,1976.
    [18] Poulos,H.G., Davis,E.H. Pile Foundation Analysis and Design[M]. John Wiley, New York, 1980.
    [19] Poulos,H.G., Soil-Structure Interaction—General Report(Preliminary)[C]. Proc.10thICSMFE,1981.
    [20]张问清,赵锡宏.逐步扩大子结构法计算高层结构刚度的基本原理[J].建筑结构学报,1980,(4):66-70.
    [21]宰金珉,张问清,赵锡宏.平面形状为L形的空间剪力墙结构与不均匀的地基共同作用[J].岩土工程学报,1983,(2).
    [22]朱百里,曹铭葆,魏道垛.框架结构与地基基础共同作用的数值分析——线性与非线性地基[J].同济大学学报,1982,(4):15-31.
    [23]裴捷,张问清,赵锡宏.考虑填充墙的框架结构与地基基础共同作用的分析方法[J].建筑结构学报,1984,(4).
    [24]杨敏.上部结构与桩筏基础共同作用的理论与试验研究[D].上海:同济大学,1989.
    [25]袁聚云,沈伟跃,赵锡宏.空间剪力墙结构—厚筏—桩—地基共同作用分析[M].上海高层建筑桩筏与桩箱基础设计理论.上海:同济大学出版社,1989.
    [26]邓安福,干腾君,李正良.上部结构-筏式基础-地基共同作用分析的一种新方法[C].全国首届结构与介质相互作用学术会议论文集,1993.
    [27]干腾君.考虑上部结构共同作用的筏板基础分析及其优化[D].重庆:重庆大学,2001.
    [28]张保良,姜洪伟,赵锡宏.层状土中群桩沉降分析.上海力学,1996,(1).
    [29]董建国,赵锡宏.高层建筑地基基础——共同作用理论与实践[M].上海:同济大学出版社,1997.
    [30]中国建筑科学研究院主编.《建筑桩基技术规范》(JGJ94-2008)[S] .北京:中国建筑工业出版社,2008.
    [31]叶于政,孙家乐.高层建筑箱形基础与地基和上部结构共同作用机理的初步探讨和采用弹性杆的简化计算方法[J].北京工业大学学报,1980,(3).
    [32]孙家乐,张雷.从高层建筑与地基基础相互作用研讨连续基础简化计算[C].第四届土力学基础工程学术会议论文集.北京:中国建筑工业出版社,1986.
    [33]曾祥勇.筏板基础无网格计算方法及其在考虑上部结构作用分析的作用[D].重庆:重庆大学,2007.
    [34]巩天真,常积玉,韩鹏举.一种复合地基静载荷试验装置的试验研究[J].工程勘察,2008,(4):13-16.
    [35]巩天真.组合型复合地基的发展[J].电力学报,2008,23(1):42-46.
    [36]周琼,詹国辉.局部桩基础和复合地基上的土石坝三维分析[J].水运工程,2004,(2):28-32.
    [37]李仲勤,马学宁,韩峰.柔性基础下碎石桩复合地基力学特性分析[J].兰州交通大学学报,2006,25(6):53-56.
    [38]刘杰,周德泉,赵明华.柔性群桩与地基相互作用的非线性分析[J].土木工程学报,2004,37(12):55-61.
    [39]尚新生,王明程,林银飞,谢定义,邵生俊.一种多元复合地基复合模量的计算方法[J].华北水利水电学院学报,2009,30(1):90-92.
    [40]郑俊杰,区剑华,吴世明,袁内镇.多元复合地基的理论与实践[J].岩土工程学报,2002,24(2):208-212.
    [41]郑俊杰;区剑华;袁内镇;方秦汉.多元复合地基压缩模量参变量变分原理解析解[J].岩土工程学报,2003,25(3):317-321.
    [42]刘杰,何杰.多元复合地基中柔性桩-土-垫层的相互作用[J].建筑科学与工程学报,2008,25(4):36-41.
    [43]刘杰,何杰.刚性承台下柔性单桩复合地基工作特性分析[J].中国港湾建设,2008,(4):4-7.
    [44]刘杰,何杰.多元复合地基的研究现状及发展动态[J].株洲工学院学报,2005,19(1):92-95.
    [45]韩煊,李宁.多元复合地基的概念及其基本设计思路[J].工业建筑,2005,35(z1):475-478.
    [46]王仙芝,郑俊杰,王龙飞,赵健斌.混凝土桩与石灰桩多元复合地基室内模型试验研究[J].武汉理工大学学报(交通科学与工程版),2008,32(5):838-841.
    [47]潘星,何仕英.刚性桩复合地基设计计算探讨[J].工程建设与档案,2005,19(1):27-29.
    [48]郑俊杰,王仙芝,韩超,高学伸.钢管桩与砂桩多元复合地基室内模型试验[J].华中科技大学学报(自然科学版),2008,36(9):121-124.
    [49]朱奎,吴冬虎,邵少锋,周鹏飞.刚-柔性桩复合地基静荷载试验探讨[J].铁道建筑,2006,(5):67-70.
    [50]朱奎,徐日庆,吴冬虎,周鹏飞.刚-柔性桩复合地基荷载分担比研究[J].浙江大学学报,2008,42(2):359-363.
    [51]张鹞,邓安福.刚-柔性桩复合地基荷载分担比研究[J].岩土工程技术,2007,21(5):261-264.
    [52]旬为卓.多元复合地基在某大型污水处理厂地基处理中的应用[J].建筑施工,2009,31(1):20-22.
    [53]代国忠,李文虎,林道富.长短桩组合多元复合桩基技术的应用研究[J].岩土力学,2007,29(s1):20-22.
    [54]尚新生,邵生俊.多元复合地基桩土应力比分析[J].西北农林科技大学学报(自然科学版),2004,32(10):131-134.
    [55]周德泉,刘宏利,张可能.三元和四元复合地基工程特性的对比试验研究[J].建筑结构学报,2004,25(5):124-129.
    [56]周德泉,张可能,刘宏利.组合桩型复合地基计算与应用分析[J].岩土力学,2004,25(9):1432-1436.
    [57]周德泉,张可能,刘宏利.组合桩型复合地基桩、土受力特性的试验对比与分析[J].岩土力学与工程学报,2005,24(5):872-879.
    [58]周德泉,张可能,刘宏利.组合桩型复合地基中合理设置垫层和桩体的几个要点[J].建筑技术,2005,36(3):172-174.
    [59] Davis E. H., Poulos H. G. The Analysis of Piled Raft Systems[J]. Australia Geotechnique Journal, 1972, 2:21-27.
    [60] Clancy, P. & Randolph, M. F. Simple design tools for piled raft foundations[J]. Geotechnique, 1996, 46(2):313-328.
    [61] Poulos, H. G. Pile behavior——theory and application[J]. Geotechnique, 1989, 39(3):365-413.
    [62] Borland, J. B. Shaft friction of piles in clay——a simple fundamental approach. Ground Engineering[J]. 1973, 6(3):30-42.
    [63] Ottaviani, M. Three-dimensional finite element analysis of vertical loaded pile groups[J]. Geotechnique, 1975, 29(2):159-174.
    [64] Randolph, M. F. & Worth, C. P. An analysis of the vertical deformation of pile groups[J]. Geotechnique, 1979, 29(4):423-439.
    [65] Seed, H. B., Reese, L. C. The action of clay along friction piles[J]. ASCE, 1957, 122:731-754.
    [66] Butterfied, R. & Banerjee, P. K. The elastic analysis of compressible piles and piles groups[J]. Geotechnique, 1971, 21(1):3-60.
    [67] Cooke, R. W., Price, G. and Tarr, K. Jacked piles in London clay——interaction and group behavior underworking conditions[J]. Geotechnique, 1980, 30(2):97-136.
    [68]龚哓南.土塑性力学[M],浙江大学出版社,1999.
    [69]郑颖人,沈珠江,龚晓南,岩土塑性力学原理[M],中国建筑工业出版社,2002 .
    [70] Selvadurai, A. P. S., Elastic Analysis of Soil-Foundation Interaction[M]. Elsevier, New York, 1979.
    [71] Bellman, R. E., Methods of Nonlinear Analysis[M], Academic Press, New York, 1973.
    [72] H.A.Taiebat,J.P.Carter,Numerical studies of the bearing capacity of shallow foundations on cohesive soil subjected to combined loading[J],Geotechnique 50,2000(4): 409-418.
    [73]朱伯芳.有限单元法原理与应用[M],北京:水利电力出版社,1979.
    [74]潘昌实.隧道力学数值方法[M].中国铁道出版社,1995.
    [75]孙均,汪炳监.地下结构有限元解析[M],同济大学出版社,1988.
    [76]雷晓燕.岩土工程数值计算[M].中国铁道出版社.1999.
    [77]徐至钧,陈祥福.超高层建筑结构设计与施工[M].北京:机械工业出版社,2007.
    [78]宰金珉,宰金璋.高层建筑基础分析与设计——土与结构物共同作用的理论与应用[M].北京:中国建筑工业出版社,2001.
    [79]干腾君.空间框架—筏基—土共同工作的有限元—边界元耦合方法[D].重庆:重庆建筑工程学院,1993.
    [80]方世敏.上部结构与地基基础共同工作的子结构分析法[J].建筑结构学报,1980,(4).
    [81]陈希昌.高层建筑物上部结构与基础及地基共同作用问题研究[D].重庆:重庆建筑大学,1997.
    [82]罗立平,赵锡宏,空间框架结构——厚筏——地基共同作用分析[C].上海高层建筑桩筏与桩箱基础设计理论,同济大学出版社,1989.
    [83]宰金珉,宰金璋.高层建筑基础分析与设计——土与结构物共同作用的理论与应用[M].北京:中国建筑工业出版社,2001.
    [84]董建国,赵锡宏,高层建筑地基基础——共同作用理论与实践[M].上海:同济大学出版社,1996.
    [85]何广乾,陈祥福,高层建筑设计与施工.科学出版社,1992.
    [86]宰金珉,张问清,赵锡宏.平面形状为L形的空间剪力墙结构与不均匀地基的共同作用[J].岩士工程学报,5(2):1983.
    [87]张问清,赵锡宏.逐步扩大子结构法计算高层结构刚度的基本原理[J].建筑结构学报, 1980,12:60-70.
    [88]梁清香.有限元与marc实现[M],机械工业出版社,第一版,2003.
    [89]谢贻权,何福保,弹性和塑性力学中的有限单元法[M],机械工业出版社,1986.
    [90]邵敏,有限单元法基本原理和数值方法(第二版)[M],清华大学出版社,1997.
    [91] Reissner E. The effect of transverse shear deformation on the bending of elastic plates[J]. Trans ASME, J Appl Mech 1945;12:A68–77.
    [92] Reissner E. On bending of elastic plates[J]. Quart Appl Math 1947;5:55–68.
    [93] Panc V. In: Theory of elastic plates[M]. Leyden: Noordhoff International Publishing, 1975.
    [94] alerno VL, Goldberg MA. Effect of shear deformations on the bending of rectangular plates[J]. J Appl Mech 1960;27:54–8.
    [95] Mansfield EH. The bending and stretching of plates(2nd ed.)[M]. Cambridge: Cambridge University Press, 1989:33–49.
    [96] Lee KH, Lim GT, Wang CM. Thick Le′vy plates re-visited[J]. Int J Solids Struct, submitted for publication.
    [97] Wang CM, Reddy JN, Lee KH. Shear deformable beams and plates: relationships with classical solutions[M]. Oxford: Elsevier, 2000.
    [98] Reddy JN. Theory and analysis of elastic plates[M]. Philadelphia (PA): Taylor and Francis,1999.
    [99] Wang CM, Lim GT, Lee KH. Relationships between Kirchhoff and Mindlin bending solutions for Le′vy plates[J]. J Appl Mech 1999;66:541–5.
    [100] Y. K. Cheung, and Zienkiewicz, O. C. Plates and Tanks on Elastic Foundation——An Application on Finite Element Method[J]. International Journal of Solids Structrue, 1965(1):451-461.
    [101] S. J. Hain and I. K. Lee,. Rational Analysis of Raft Foundation[J]. Geotech. Eng. Div, ASCE, 1974, Vol. 100:843-860.
    [102] Mindlin RD. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates[J]. Trans ASME, J Appl Mech 1951;18:1031–6.
    [103]郑东明,竖向荷载作用下深层搅拌桩群桩带台复合地基受力和变形的有限元分析[D],重庆建筑大学硕士论文,1999.
    [104]陈卓.上部结构、筏板、地基共同作用的面向对象有限元分析[D].重庆大学硕士学位论文,2004.
    [105]魏艳军.复合荷载作用下浅基础地基受力变形特征面向对象有限元分析[D].重庆:重庆大学,2005 .
    [106]王闪闪.考虑上部结构共同作用的桩筏基础有限元分析[D].重庆大学硕士学位论文,2005.
    [107]孔垂烛.基于面向对象有限元方法的嵌岩桩竖向承载机理分析[D].重庆大学硕士学位论文,2006.
    [108]王佳庆.高层框架结构与刚性桩复合地基—筏板基础体系共同作用的数值分析[D].重庆大学硕士学位论文,2007.
    [109]张鹞.刚性桩复合地基—筏板基础—上部结构共同作用性状研究[D].重庆大学硕士学位论文,2008.
    [110]颜昌武.岩质边坡地基与上部结构及基础的共同作用分析[D].重庆大学博士学位论文,2009.
    [111]吴晓涵.面向对象结构分析程序设计[M].北京:科学出版社,2002,(4).
    [112] Bruce W.R.Forde,Ricardo O.Foschi and Siegfried F.Stiemer, Object- Oriented Finite Element Analysis[J], Computers&Structures, Vol.34, NO.3, 355-374,1990.
    [113]李会平等.弹塑性分析的面向对象有限元方法.西安交通大学学报,1997,32(4).
    [114] D.R.Rehak and J.W.Baugh,Jr.,Programming Techniques for Finite Element Program Development[C],Proc.,IABSE Colloquium on Expert Systems in Civil Engineering, Bergamo,Italy,1989.
    [115] D.Eyheramend and Th.Zimmermann, Object-Oriented Finite Element, A Symb-olicEnvirment for Automatic Programming[J], Computer Methods in Applied Mechanics and Engineering, 1996(132): 277-304.
    [116] Th.Zimmermann and D.Eyheramendy,Object-Oriented Finite Elements .Principles of Symbolic Derivations and Automatic Programming[J],Computer Methods in Applied Mechanics and Engineering Vol.132.259-276,1996.
    [117]袁政强,钟树生.用面向对象的方法实现有限元子结构法[J].重庆大学学报,2001,24(3):35-37.
    [118]齐舒创作室. C++6.0开发技巧及实例剖析[M].北京:清华大学出版社,1999.
    [119]钱能. C++程序设计教程[M].北京:清华大学出版社,1999.
    [120] Meyerhof, G. The settlement Analysis of Building Frames[J]. The structural Engineer, Vol. 25, 1947.
    [121]高大钊等,土力学与基础工程[M],中国建筑工业出版社,1999.
    [122]中华人民共和国建设部,建筑地基基础设计规范(GB50007—2002)[S],中国建筑工业出版社,2002.
    [123]郑冰,邓安福,曾祥勇.刚性-柔性复合地基布桩对上部结构及筏基影响分析[J].地下空间与工程学报,2010,6(5):1082-1087.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700