用户名: 密码: 验证码:
纳米氧化镁基吸附剂烟气同时脱硫脱硝研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国二氧化硫和氮氧化物的排放所引起的污染越来越严重,国家治理大气污染的力度逐步加大。研究开发经济、高效、简单的烟气同时脱硫脱硝技术十分必要和紧迫。化学法制备的纳米氧化镁具有纯度高、粒径小、比表面积大、硬度高、反应活性高、吸附性强以及低温烧结性良好等优良性质,可用作环境污染治理的吸附剂。本研究进行了纳米氧化镁粉体及氧化镁基吸附剂制备的系统研究,并将其应用于烟气同时脱硫脱硝试验,在此基础上,通过各种再生方法的比较得出了纳米氧化镁吸附剂再生的最佳方法,获得了良好的处理效果,同时研究分析了纳米氧化镁吸附剂同时脱硫脱硝的吸附机理。
     对纳米氧化镁的性质、用途及制备方法进行了综述,并对其粉体和吸附剂的制备方法进行了深入的研究。对直接沉淀法和微波水浴加热法结合与均匀沉淀法和微波水浴加热法结合这两种方法进行了实验比较。结果发现以MgSO4·7H2O和Na2CO3为原料,添加表面活性剂聚乙二醇1000,采用直接沉淀法和微波水浴加热法相结合的方法制备出了结晶良好、比表面积大的纳米氧化镁粉体。研究了前驱物的反应温度及时间、焙烧温度及时间和高分子聚乙二醇用量等对粉体比表面积的影响。用热重分析仪(TGA).X-射线衍射仪(XRD)、扫描电子显微镜(SEM)、傅立叶红外光谱仪(FT-IR)等,对纳米氧化镁粉体的结构和形貌及其前驱物的热分解温度进行了分析。结果得到,在500℃下焙烧1.5h制得纳米氧化镁粉体前驱物,比表面积达到最大183.35m2/g,平均粒径为7.2nm,采用共混法(纳米氧化镁粉体:MgSO4·7H2O:甜津粉=75:32:1,质量比)制备纳米氧化镁基吸附剂。
     在自行设计安装的烟气脱硫脱硝装置中,对纳米氧化镁基吸附剂同时脱硫脱硝性能进行了考察,探索了各个因素对脱除效率的影响,并对吸附剂同时脱硫脱硝前后的状态进行表征。结果表明在烟气温度为120℃—180℃、床层高度为5cm、吸附塔内空速小于3400 h-1,烟气在有氧条件下,SO2浓度为2000mg/m3、NO浓度为500mg/m3的条件下,吸附60min内检测脱硫效率可保持在98.03%左右,脱硝效率可保持在85.74%左右,吸附剂具有良好的稳定性。
     在再生实验中,进行了热再生、水蒸气再生以及碱液洗涤的研究,通过对再生后吸附剂同时脱硫脱硝效果的比较,表明碱液再生方法的再生效果最好,并通过进一步实验发现:用0.25 mol/L、100mlNaOH在20℃的温度下浸泡5.37g纳米氧化镁基吸附剂30min的再生效果达到最佳。经过碱液洗涤再生后的吸附剂同时脱硫脱硝效率有所提高,再生后吸附剂同时脱硫脱硝的稳定性良好,纳米氧化镁基吸附剂可以反复再生。采用自行设计安装的同时脱硫脱硝吸附-再生一体化气动流化循环处理再生装置进行试验,连续60min试验测试,S02的脱除效率一直保持100%,NOx的脱除效率保持在74.3%以上。
     最后对纳米氧化镁基吸附剂同时脱硫脱硝的机理进行了研究。用BET、SEM、XRD、FT-IR等对纳米氧化镁基吸附剂同时脱硫脱硝前后及再生前后进行了表征和分析,纳米氧化镁基吸附剂同时脱硫脱硝为物理吸附和化学吸附共同作用,其中以化学吸附为主。8O2和NOx与吸附剂接触发生了一系列复杂的化学反应。经过了碱液洗涤后的吸附剂表面增加了碱性基团,有助于对S02和NO、的去除,并推测此时吸附剂对NO有催化氧化作用,催化作用进一步提高了脱硫脱硝效率。
     实验表明氧化镁基吸附剂可以反复再生,完善后的同时脱硫脱硝吸附-再生一体化系统可应用于实际生产中。
The pollution caused by sulfur dioxide and nitrogen oxides in our country turns out to be very pressing. The nation is devoting a lot of energy on taking care of the air pollution. Hence it is quite necessary and urgent to develop a new economical, efficient and simple way to carry it out. Nano-magnesia has some good nature, such as small size, large specific surface area, high purity, high hardness, high reactivity, strong adsorption, good low-temperature sintering, which can be used as environmental pollution control adsorbent. This paper systematically studied on preparation of nano-magnesia powder and magnesia adsorbent, and the adsorbent was used on experiment of simultaneous desulfurization and denitrification,which obtain a good effect. In the stuy, the best method of Nano-MgO adsorbent regeneration is found through comparing with many ways and the adsorption mechanism of simultaneous desulfurization and denitrification is analyzed.
     The paper introduced the nature, use and preparation methods of nano-magnesia, and carried out in-depth research on preparation methods of nano-magnesia powder and adsorbent. The research comparated these two methods which direct precipitation combined with microwave heating in water bath combining method and homogeneous precipitation combined with microwave heating in water bath combining method. Using MgSO4·7H2O and Na2CO3 as raw material, polymer (PEG1000) as surfactants, nano-magnesia powder with good crystallinty and large specific surface area has been synthesized by direct precipitation and microwave heating in water bath combining method. The effects of reaction temperature and time, calcination temperature and time, and the dosage of polymer (PEG1000) on the powder specific surface area were studied in detail The morphology and structure of nano-magnesia powder were characterized by means of thermogravimetry analysis, X-ray powder diffraction (XRD), scan electron microscope (SEM), Fourier Transform Infrared Spectrophotometer (FT-IR). And thermal decomposition temperature of the basic of nano-magnesia was analyzed by thermogravimetry. The results showed that nano-magnesia powder whose specific surface area was 183.35 m2/g and average particle size was about 7.2nm was prepared by decomposing nano-magnesia basic at the temperature 500℃for 1.5 hours. Adopting blend methods to prepare nano-magnesia adsorbent (nano-magnesia powder:MgSO4·7H2O: sweet-powder= 75:32:1).
     The nano-magnesia adsorbent simultaneous desulfurization and denitrification performance were studied through self-designed and installed devices, and the influencing factors of desulfurization and denitrification efficiencies were analysed in detail. And characterizing the adsorbent before and after simultaneous desulfurization and denitrification. The result showed that adsorption of desulfurization efficiency can be maintained at about 98.03 percent and denitrification efficiency can be maintained at about 85.74 percent in flue gas temperature 120℃—180℃, bed height 5cm, flue gas airspeed of adsorption tower less than 3400 h-1, flue gas in the aerobic conditions, sulfur dioxide concentration 2000 mg/m3, nitric oxide concentration 500mg/m3 under the conditions within 60 min.
     Lye regeneration was the best method compared with hot regeneration and steam regeneration. The final conclusion was to immerse the adsorbent with 100ml NaOH of 0.25mol/L for 30 minutes. The efficiency of simultaneous desulfurization and denitrification was higher after regenerating with lye. The Nano-MgO adsorbent could be regenerated repeatedly. The adsorbent has good stability with simultaneous desulfurization and denitrification after regeneration. The stuy showed that Nano-MgO adsorbent could be regenerated repeatedly. The desulfurization and denitrification efficiency were 100 percent and above 74.3 percent respectively within 60 min through self-designed and installed integrative absorption and regeneration devices.
     Finally to research simultaneous desulfurization and denitrification's mechanism of the nanometer magnesia absorbent. Through the determination results of simultaneous desulfurization and denitrification by Nano-MgO adsorbent, BET, SEM, XRD and FT-RI, the conclusion was found that physical adsorption and chemical adsorption were included in process of simultaneous desulfurization and denitrification, the chemical adsorption was dominant. An array of chemical reactions were happened complicatedly between SO2, NOx and adsorbent. There were alkaline functional groups which were beneficial to the removal of SO2 and NOx producted in the surfaces of adsorbent through immersing in the lye. Catalysis might exist in the process, which further improved the removal efficencies of SO2 and NOx.
     The stuy showed that Nano-MgO adsorbent could be regenerated repeatedly, and the integrative absorption and regeneration devices needed farther improvement so that it can be applied to practical production.
引文
1. Andrzej G. Chmielewski, Janusz Licki, Andrzej Pawelec, et al. Operational experience of the industrial plant for electron beam flue gas treatment[J]. Radiation Physics and Chemistry,2004,71(1-2):439-442
    2.王庆一.1998年能源数据,能源政策研究,2000(1):6-81
    3.钟秦.燃煤烟气脱硫脱硝技术及工程实例[M],北京:化学工业出版社,2007,1-7,83-87,374,380,387
    4. http://www.environment365.com/web1/en10/daqixz.html
    5. STREETS D G, WALDHOFF S T. Present and future emission of air pollutants in china:SO2,NOx CO2 [J]. At mcspheric Environment,2000,34(3):363-374
    6.国家酸雨和二氧化硫污染防治“十一五”规划.国家环境保护总局、国家发展和改革委员会,环发[2008]1号
    7. http://www.texindex.com.cn/Articles/2008-4-10/138491_2.html
    8.国家酸雨和二氧化硫污染防治“十一五”规划.国家环境保护总局、国家发展和改革委员会,环发[2008]1号
    9.2008年中国环境状况公报:大气环境
    10.国务院办公厅.http://www.gov.cn/ztzl/2006qxgzhg/content_500388.htm.中央政府门户网站,2007,01,18.
    11. Seung-Ho Jung, Gwi-Taek Jeong, Gwang-Yeon Lee, et al. Simultaneous removal of SO2, NO and particulate by pilot-scale scrubber system[J]. Korean J. Chem. Eng., 2007,24(6):1064-1069
    12. B. Zane Egan, L. Kevin Felker. Removal of SO2 from Simulated Flue Gas by Magnesia Spray Absorption:Parameters Affecting Removal Efficiency and Products[J]. Ind. Eng. Chem. Process Des,1986,25(2):558-561
    13.郝吉明,田贺忠.中国氮氧化物排放现状、趋势及控制对策[J],2004年中国国际脱硫脱硝技术与设备展览会暨技术研讨会,2004
    14. http://www.shjec.cn/new/article.asp?articleid=1609
    15.国家环保局,1997年环境状况公报[J],环境保护,1998,(7):3
    16.王文兴.中国环境酸化问题[J],环境科学学报,1997,17(3):259
    17.王德容等.电厂燃煤锅炉同时脱硫脱氮技术与分析[J],环境保护科学,2000,(28):6-8
    18.陈志远.中国酸雨研究[M],北京:中国环境科学出版社,1997,5-25
    19.肖文德,袁渭康.洁净煤技术的新发展—一种火电厂SO2的资源化技术[J],中国工程科学,2000,2(5):77-83.
    20.姚雨,郭占成,赵团.烟气脱硫脱硝技术的现状与发展[J],钢铁,2003,38(1):59-63
    21.江爱伟.范家峰.锅炉燃煤脱硫技术概述[J].山东煤炭科技,2003(3):15-17
    22.程一步.国外大型锅炉二氧化硫污染控制技术[J],石油化工动态,1999,7(5):13-25
    23.张新生,李长春,李光霞等编.燃煤烟气脱硫[M],北京:中国地质大学出版社,1991,23-24
    24.王文善.国内外脱硫技术的发展状况及需要研究的问题[J].小氮肥设计技术,2006,27(2):1-2
    25.郝吉明.王书肖,陆永琪.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社,2001:245-299
    26.张立德,牟季美.纳米材料与纳米结构[M].北京:科学技术出版社,2001,2
    27.赵毅.李守信主编.有害气体控制工程[M].北京:化学工业出版社,2001,8
    28.杨飓.二氧化硫减排技术与烟气脱硫工程[M],北京:冶金工业出版社,2004,19-23
    29.郭鲁钢,王海增等.海水脱硫技术现状[J],海洋技术,2006(9):10-11
    30.赵毅.几种常见的脱硫技术[J],山西化工,2006(2):53-55
    31.曹征彦.中国洁净煤技术[M].北京:中国物资出版社,1998
    32. Mochida I, Korai Y, Shirahama Metal. Removal of SOx and NOx over activated carbon fibers. Carbon[J].2000,38:227-239
    33.姜自荣.马双忱等.烟气循环流化床技术应用[J].吉林电力,2005(6):42-43
    34.姜自荣,马双忱等.烟气循环流化床技术应用[J],吉林电力,2005(6):42-43
    35.高鹏,马新灵.金属氧化物在烟气脱硫技术中的应用[J],华中电力,2005(5):1-2
    36. http://www.cn65.com/Article/ArticleShow.asp?ArticleID=5729
    37. Zhao Yi, Zhao Li, Han Jing, et al. Study on method and mechanism for simultaneous desulfurization and denitrification of flue gas based on the TiO2 photocatalysis[J]. Sci China Ser E-Tech Sci,2008,51(3):268-276
    38.高宇,胡筱敏,刘朋杰,等.氧化镁基催化剂及脱硝性能研究[J].环境工程学报,2008,2(6):806-809
    39.童志权.工业废气净化与利用[M],北京:化学工业出版社,2001,29-41
    40. Forzatti P. Environmental Catalysis for Stationary Applications[J], Catal Today,2000, 6 (2):51-65
    41.苏亚欣,毛玉如.燃煤氮氧化物排放控制技术[M],北京:化学工业出版社,2005,256-284
    42.许越.催化剂设计与制备工艺[M],北京:化学工业版社,2003,128-130,248-254
    43.宣小平,姚强.选择性催化还原法脱硝研究进展.煤炭转化[J],2002,25(3):26-31
    44.吴忠标.大气污染控制技术[M],北京:化学工业出版社,2002,2-5
    45. Duffy B L et al. Isotopic Labeling Studies of the Effects of Temperature,Water and Vanadia Loading on the Selective Catalytic Reduction of NO with NH3 over Vanadia-titania Cataysts[J], Journal of Physical Chemistry,1994,98:7153
    46. Soud H N,Fukasawa K. Developments in NOx abatement and control[J],IEA Coal Research,1996,62-68
    47. Saracco QSpecchia V. Catalytically Modified Fly-ash Filters for NOx Reduction with NH3[J], Chemistry Engineering Science,1996,51(24):5289-5297
    48. Comparato J R. NOx Control Technologies:Focus SNCR,Western Coal Council,Burning PBR Coal Seminar,Birmingham,Alabama,24-26
    49.张虎,佟会玲,陈昌和.燃煤烟气同时脱硫脱硝机理概述[J].环境科学与技术,2006,29(7):103-106
    50. Livengood C D. FG technology for combined control of SO2 and NOx [J], Power Eng.,1994,98(1):38-42.
    51.赵毅,韩钟国,韩颖慧,要杰.干法烟气同时脱硫脱硝技术的应用及新进展[J],工业安全与环保,2009,35(2):4-6
    52.彭会清,胡海祥,赵根成等.烟气中硫氧化物和氮氧化物控制技术综述[J],广西电力,2003,(4):64-68
    53.邓德兵,马新灵,向军等.CuO/Al2O3烟气脱硫技术及脱硫剂的研究进展[J],电力环境保护,2002,18(3):46-51
    54. Deng S G, Lin Y S. Synthesis, stability and sulfation properties of sol-gel-derived regenerative sorbents for flue gas desulfurization[J], Ind Eng Chem Res,1996, 35(4):1429-1437
    55.高巨宝,樊越胜,邹峥.烟气联合脱硫脱硝技术的对比研究[J],锅炉技术,2006,37(5):75-78
    56. Kyung Seun Yoo, Sang Mun Jeong, Sang Done Kim, etal. Regeneration of sulfated alumina support in CuO/Al2O3 sorbent by hydrogen[J].Eng. Chem. Res.,1996, 35(5):1543
    57.周芸芸,钱枫,付颖.烟气脱硫脱硝技术进展[J],北京工商大学学报(自然科学版),2006,24(3):17-20
    58. Haslbeck J L, Wang C J, et al. Evaluation of the NOXSO Combined NOX/SO2 Flue Gas Treatment Process[P], US:DOE/FE/60148-T2,1984
    59.党民团.烟气脱硫脱硝研究进展[J],渭南师范学院学报,2006,21(5):48-49
    60.赵毅,马双忱,黄建军,许佩瑶,汪黎东.烟气循环流化床同时脱硫脱氮试验研究[J],中国电机工程学报,2005,25(2):120-124
    62.葛能强.烟气循环流化床一体化脱硫、脱硝技术[J],江苏电机工程,2006,25(3):64-66
    63.张慧明.应用电子束辐照加氨烟气法排烟同时脱硫脱氮[J],青岛建筑工程学院学报,1989,10(2):116-123
    64.董冰岩,张大超.脉冲放电烟气脱硫脱硝技术研究进展[J],环境污染治理技术与设备,2006,7(9):17-20
    65. FGD and DeNOx Newsletter.Yellow phosphorous system grabs SO2 and NOx.FGD and DeNOx Newsletter,1992, (167):1-7
    66.施利毅,等.纳米材料[M].上海:华东理工大学出版社,2007:1-2
    67.白春礼.纳米科技-现在与未来[M].成都:四川教育出版社,2002
    68.张立德等.第四次浪潮-纳米冲击波[M].北京:中国经济出版社,2003
    69.施利毅等.纳米科技基础[M].上海:华东理工大学出版社,2005
    70.武汉大学、南京大学等主编.无机化学[M],北京:高等教育出版社
    71.王海霞.纳米氧化镁的制备及表面改性的研究[D],上海:华东师范大学,2006
    72. Eli Ruckenstein, Zi-Sheng Chao. NANO LETIERS[J],2001,1(12):739-742
    73. Yoon J GJ.Korean. Phys.Soc. [J],1996,29:648-651
    74.王训.纳米氧化镁制备工艺研究[D],西安:西北大学,2001
    75.朱永法.纳米材料的表征与测试技术[M],北京:化学工业出版社,2006,167-168,156
    76. http://baike.baidu.com/view/1446339.htm
    77.曾运新,黄绪通.氧化镁煅烧温度与其膨胀性能关系得综评[J],广东水利电力 职业技术学院学报,2003(9):29-30
    78.郭如新.镁剂在烟气脱硫领域中的应用[J].海湖盐与化工,2003(3)
    79.李玉敏.工业催化[M].天津:天津大学出版社,1996:15-17
    80.叶大伦.实用无机物热力学数据手册[M].北京:冶金工业出版社,1981:47-50
    81.叶大伦.适用无机物热力学数据手册[M],北京:冶金工业出版社,1981:47-50
    82.贺可因.硅酸盐物理化学[M].武汉:武汉理工大学出版社,2002:199-200
    83.山乐胜.应用氧化镁烟气脱硫工艺的可行性分析[J].山东电力技术,2003(6):14-15
    84.张强.许世森,郭振等.湿法氧化镁烟气脱硫技术在我国的发展前景[J].2005(8):9-10
    85.高鹏.马新灵,毛金波等.金属氧化物在烟气脱硫技术中的应用及发展前景[J].2005(5):18-19
    86. J.Llorens a, M. Pujola b, J Sabate b. Separation of cadmium from aqueous streams by polymer enhancedultra-filtration:A two-phase model for complexation binding.J.Membr.Sci.[J].2004,239.173-181
    87.高宇.氧化镁基催化吸附剂脱氮研究[D].沈阳:东北大学,2007
    88.李蕴.镁砂吸附剂的制备及其脱硫性能研究[D],沈阳:东北大学,2007
    89.国家环境保护总局标准,固定污染源排气中二氧化硫的测定碘量法,HJ/T56-2000
    90.中华人民共和国国家标准GB/T 16119-1995
    91.奚旦立等.环境监测[M],北京:高等教育出版社,2004,412-414
    92.周忠林,俞坚松,寿可宁.氢氧化钠吸收-盐酸萘乙二胺分光光度法测定污染源废气中的氮氧化物[J],环境与开发,2000(3),19-21
    93.JW-04全自动氮吸附比表而仪操作说明
    94.美国Thermo Cahn公司TherMax500加压热重分析仪操作说明
    95.德国Bruker公司VECTOR22型傅立叶红外光谱仪操作说明
    96.符晓荣,武光明,宋志棠等.新型溶胶-凝胶法制备纳米氧化镁薄膜的研究[J].无机材料学报,1994,14(6):828-832
    97. Zhongqing Wei, Hua Qi, Peihua Ma et al. Inorganic Chemistry Communication[J].2002
    98.张立德,牟季美.纳米材料科学[M].沈阳:辽宁科技出版社,1994
    99.廖莉玲,刘吉平等.固相法合成纳米氧化镁[J].精细化工,2001,18(12):696-698
    100. Xu,B.Q.;Wei,J.M.;Wang,H.Y et al. [J].Catalysis Today,2001,68(l-3):217-225
    101. Khaleel, Abbas; Kapoor, Pramesh N.; Klabunde, Kenneth J. [J]. Nanostructured Materials,1999,11(4):459-465
    102.李春虎,赵九生,王大祥.纳米MgO和MgAl2O4尖晶石的制备与表征[J].无机材料学报,1996,11(3):557-560
    103.汪国忠,程素芳,何国良等.纳米级MgO粉体的合成[J].合成化学,1996,4(4):300-302
    104.张近.超细粉体氧化镁的合成[J].化学工程,1999,27(2):34-36
    105.杨荣臻.纳米及氧化镁团聚和解团聚的研究[J].陕西师范大学学报,2002,30(1):83-85
    106. J.A.Wang, O.Novara, X, Bokhimi et al. Characterizations of the thermal decomposition of brucite prepared by sol-gel technique for synthesis of nanocrystalline MgO[J]. Materials Letters,1998,35:317-323
    107.陈改荣,徐绍红,杨军.硬脂酸溶胶凝胶法制备氧化镁纳米颗粒的研究[J].功能材料,2002,35(5):521-523
    108.关英勋,房大维等.微波法制备无机纳米材料的研究进展[J].化工时刊,2004,6(6):8-11
    109.朱琦瑜,李疏芬.微波法制备纳米CuO粉体[J].飞航导弹,2002,9:59-61
    110.海岩冰,袁红雁等.微波法制备纳米Fe3O4[J].化学研究与应用,2006,6(6):744-746
    111.杨升红,张小明,张廷杰等.稀有金属材料与工程,2000,29(5):354-356
    112.翟庆洲等.纳米技术[M].北京:机械出版社,2005,7
    113. K.Chhor,J.F.Bocquet,C.Pommier.Syntheses of submicron magnesium oxide powers [J]..Mater. chen.phys,1995,40:63-68
    114. Watari,takanori; Nakayoshi, kazumi;kato Akio preparation of submicron magnesium oxide powders by vapor-phase reaction of magnesium and oxygen. Journal of the Chemical Society of Japan.1984(6):1075-1076
    115. M.Suzuki, M.Kagawa, Y.Syono et al. Synthesis of unrefined single-component oxide particles by the spray-ICP technique[J].Mater.Sci.,1992,27(3):679-684
    116. Alvarado E,Martinez L M T,Fuentes A F, et al. Preparation and characterization of MgO poweder obtained from different magnesium salts and mineral dolomite[J]. Polyesron,2000,19;2345-2351
    117. Alvarado E, Martinez L M T, Fuentes A F, et al. Preparation and characterization of MgO poweder obtained from different magnesium salts and mineral dolomite[J], Polyesron,2000,19:2345-2351
    118.张明慧.环己醇脱氢新型催化剂的研究[D],天津:南开大学,2000,4
    119. XuYJ, LiJQ, ZhangYF, ChenWK,Theoretieal Study of O2 Adsorption on Perfect and DefeetSites of MgO(001) Surfaee, Aeta Phys-Chim.Sin.,2003,9(5):414-418
    120. http://baike.baidu.com/view/442650.htm
    121.郝吉明,马广大.大气污染控制工程(第二版)[M],北京:高等教育出版社,2002,262-267,358-359.
    122. Gao Yu, Hu Xiaomin. Study of the Performance on Magnesia Base Catalyst Used for Flue Gas Denitration[C]. IEEE/iCBBE2009/EPPH2009,2009,6,14-16
    123. Gao Yu, Hu Xiaomin, Liu Pengjie,etc. Magnesia Base Catalyst Flue Gas Denitrate Performance Study[J]. Journal of Environmental Science and Engineering, 2008,2(10):64-70
    124.刘仲田.煤对氧分子的吸附机理研究[D],阜新:辽宁工程技术大学,2007
    125.陈诵英,陈平,李永旺,王建国.催化反应动力学[M],北京:化学工业出版社2007.1:14,76-77,139-141,235
    126.童志权.工业废气净化与利用[M],北京:化学工业出版社,2001:165
    127.许越.催化剂设计与制备工艺[M],北京:化学工业出版社,2003,4:248,128
    128.张希衡.水污染控制工程[M],北京:冶金工业出版社,2004,199
    129.苏青青.固体吸附剂吸附低浓度二氧化硫气体试验研究[D],武汉:武汉理工大学,2006
    130.戴光,缪蕊平.二组分气体在固体上吸附的研究[J],物理化学学报,1995,11(7): 596-600.
    131.贺可因.硅酸盐物理化学[M],武汉:武汉理工大学出版社,2002:199-200
    132. Scorza E, Birkenheuer U. Pisani, C. J. Chem, Phys.1997, (107):9645-9658
    133. Coluccia S, Tench A J. Proc.7th. Intern. Congr. Cata.l, Tokyo,1980,1154
    134.近藤精一,石川达雄,安部耶夫.吸附科学[M],北京:化学工业出版社,14-15.
    135. http://baike.baidu.com/view/192039.html?wtp=tt
    136. YFukuda, K Tanabe, Bull, Chem, Soc, Jpn,46,1616(1973)
    137. J V Evans, T L Whetely, J Chem, Soc, Faraday Trans,63,2769(1967)
    138. Rodriguez, J. A., Jirsak,T; Kim, J. Y, Larese J. Z., Maiti, A[J], Chem.Phys. Lett.2000,330:475-483.
    139.徐艺军,陈文凯,章永凡等.NO在MgO(001)缺陷表面吸附解离的量子化学研究[J],结构化学,2004,23(2):192-196.
    140.曹大勇,孟长功.O2在MgO(100)表面吸附的第一原理分子动力学研究[D].大连:大连理工大学2004:45-57.
    141. http://www.shenzhong.net/szzx/huaxue/old/new_folder/yyhd/yyhd.htm.
    142. http://baike.baidu.com/view/77656.htm
    143.胡英.物理化学(上册·第四版)[M],北京:高等教育出版社,2005,7:312
    144.苏亚欣,毛玉如.燃煤氮氧化物排放控制技术[M],北京:化学工业出版社,2005,256-284.
    145.赵毅.烟气同时脱硫脱硝的高活性吸收剂的表征及脱除机理研究[J],中国科学E辑技术科学,2006,36(3):326-340.
    146.管仕斌.二氧化氮分子的离域π键是π34而不是π33[J],衡阳师专学报,1992,10(1):17-21.
    147.辜敏,陈昌国,鲜学福.混合气体的吸附特征[J],天然气工业,2001,21(4):91-94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700