用户名: 密码: 验证码:
季铵盐型聚丙烯接枝物的制备及其在PP/PVC共混体系中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯(PP)具有力学性能优良,耐化学腐蚀等优点,但分子链规整性高,极性低,导致染色性、粘接性、抗静电性、亲水性以及与其它极性高聚物和无机填料的相容性差。聚氯乙烯(PVC)具有强度高、阻燃和价格低廉等优点,为极性聚合物。若PP与PVC共混合金化,可使性能互补,而两者极性的显著差异导致其相容性很差。因此,制备性能优良的PP/PVC共混物,提高两者的相容性一直是该领域的研究热点。
     本文探索了季铵盐型PP接枝物PP-g-(St-co-DMC)的制备、结晶动力学以及对PP/PVC共混体系的增容作用,并探讨了PP-g-(St-co-DMC)与超支化聚合物(HBP)共同对PP/PVC共混体系的增容效应,取得了重要成果,对于相关材料的制备和应用具有重要理论指导意义。
     以季铵盐型烯类单体DMC为原料,采用悬浮固相接枝方法,制备了一种季铵盐型PP接枝物PP-g-(St-co-DMC)。FT-IR、DSC和TGA测试表明DMC单体成功接枝到PP链上;考察了引发剂用量、单体浓度、第二单体用量、反应温度、溶胀时间和反应时间等因素对接枝率的影响。此外,对该反应的接枝机理进行了初步探讨。
     用Avrami方程(改进的Avrami方程和莫志深法)对PP-g-(St-co-DMC)接枝物的等温结晶动力学(非等温结晶动力学)进行了探讨。研究表明,等温和非等温条件下,DMC链的引入,均改变其结晶模式,加速PP的结晶。低接枝率的样品中,DMC链起到异相成核作用,加速结晶;接枝率的提高,降低结晶速率,以上结果可能源于季铵盐阳离子基团两方面的作用:一方面离子的静电吸引作用加速了成核,促进结晶;另一方面,离子间相互作用的增强阻碍了结晶链的迁移,使结晶时PP链扩散到晶核表面的活化能增加,降低结晶速度。此外,探讨了PP-g-(St-co-DMC)/PP(10/90)共混体系的结晶动力学。
     研究了季铵盐型PP接枝物PP-g-(St-co-DMC)对PP/PVC共混体系的增容作用。扫描电子显微镜(SEM)和拉伸及抗冲强度测试表明,PP-g-(St-co-DMC)使PP/PVC(80/20)共混体系相容性提高。当PP-g-(St-co-DMC)加入量为4%时,拉伸强度和抗冲强度分别提高19.15%和74.48%;但继续增大添加量,力学性能反而急剧下降。PP-g-(St-co-DMC)使PP/PVC(80/20)共混体系的熔体表观粘度增大,加入量为4%(wt)时,达到最大值。另外,接枝率对体系增容情况的研究表明,PP-g-(St-co-DMC)接枝率为16.78%时对PP/PVC共混体系的增容效果最好。
     为探索HBP对PP/PVC/PP-g-(St-co-DMC)共混体系的增容效应,研究了HBP对PP结晶行为的影响。等温及非等温条件下的结晶动力学表明,超支化聚合物的引入,改变了其结晶模式,极大提高了PP的结晶速度,使Avrami指数明显增大,可能的原因为,具有分形结构的超支化聚合物影响了晶体的生长及结晶链段的扩散模式。在所研究的含量范围(1-5%)内,低含量时,HBP明显加速PP结晶;HBP含量的提高,结晶速率有所降低。此外,HBP的分子量对PP结晶动力学的影响研究表明,在共混样品中,分子量的增加使结晶速度降低。
     在研究了HBP对PP结晶行为影响的基础上,进一步探讨了AB3HBP对PP/PVC/ PP-g-(St-co-DMC)(80/20/4)共混体系的增容效应。扫描电子显微镜(SEM)和拉伸及抗冲强度测试表明,季铵盐型PP接枝物PP-g-(St-co-DMC)与AB3HBP对PP/PVC(80/20)共混体系具有共同增容效应。AB3HBP和PP-g-(St-co-DMC)同时加入PP/PVC(80/20)共混体系中,使PP/PVC共混物熔体表观粘度发生了改变,拉伸及抗冲强度增大。在PP/PVC/PP-g-(St-co-DMC)(80/20/4)共混体系中加入1%AB3型HBP时,共混物的拉伸和抗冲强度达到最大值,较未加AB3HBP增容剂时分别提高8.16%、53.41%。同时,熔体表观粘度达到较小值。此外,探讨了不同分子量超支化聚合物对PP/PVC/PP-g-(St-co-DMC)共混体系的增容效果。
Polypropylene (PP) had advantages such as excellent mechanical properties and chemical erosion resistance. However, its high molecular integrity and low polarity led to poor properties of dyeing, adherence, antistatic and hydrophilicity, and low compatibility with other polar polymers or inorganic additives. Polyvinylchloride (PVC), an inexpensive polar polymer, was of high strength and fireproof. The striking difference between polarity of PP and PVC resulted in the low compatibility, and the inferiorities originated from it could be counteracted by blending. Recently, the preparation of PP/PVC blends with excellent properties and the enhancement of their compatibilization by additives had been the focus of research interests all around the world.
     In this paper, preparation, crystallization kinetics and compatibility PP/PVC blends of a quaternary ammonium bearing graft copolymer, PP-g-(St-co-DMC), had been investigated. In addition, compatibilization of PP-g-(St-co-DMC)/HBP on PP/PVC had been studied in detail. This work was of fundamental and technological importance in the theoretical investigation and the application of those polymers.
     A quaternary ammonium bearing graft copolymer, PP-g-(St-co-DMC) had been prepared by a suspension solid-state grafting process using a cationic monomer with quaternary ammonium groups, methacryloxyethyltrimethyl ammonium chloride (DMC), as a material. The grafted PP was systematically characterized using FT-IR, TGA and DSC. It was then suggested that DMC was successfully grafted onto the PP backbone. The effects of monomer concentration, swelling time, initiator concentration, the second monomer dosage, reaction time, and reaction temperature on the grafting yield were examined. In addition, the grafting mechanism of this reaction was proposed.
     The isothermal (non-isothermal) crystallization kinetics of PP-g- (St-co-DMC) sample was investigated using Avrami equation (modified Avrami equation and Mo’s method). It was indicated that the induction of DMC chain could result in the modification of the crystallization mode and hence the acceleration of the crystallization under both the isothermal and the non-isothermal conditions. In the samples with low grafting yield, DMC chain led to the heterogeneous nucleation and acceleration of crystallization, and whereas, the rate of crystallization decreased. The aforementioned results might originate from the effects of quaternary ammonium groups bearing DMC. On the one hand, electrostatic attraction promoted nucleation and enhanced the crystallization. On the other hand, the increased intermolecular interaction between ions could hinder the migration of the crystallization chain, and therefore increase the diffusion activation energy of PP chain, which decreased the rate of crystallization. Furthermore, the crystallization kinetics of PP-g-(St-co-DMC) /PP(10/90) blends was discussed.
     The effect of compatibility of quaternary ammonium bearing PP-g- (St-co-DMC) on PP/PVC (80/20) blends was investigated systematically. The measurements of SEM, tensile strength and impact strength indicated that the PP-g- (St-co-DMC) could enhance compatibility of PP/PVC blend remarkably. The tensile strength and the impact strength of PP/PVC blends with a concentration of PP-g-(St-co-DMC) at 4%(wt) increased up to19.15% and 74.48%, respectively. The subsequent increase in the concentration of PP-g-(St-co-DMC) decreased the mechanical properties remarkably. The apparent melt viscosity of PP/PVC blends increased by the addition of PP-g-(St-co-DMC) and reached its maximum at a concentration of 4%. Study on the effect of the degree of grafting (DG) of PP-g- (St-co-DMC) on the compatibility of PP/PVC blends suggested that it should reach a peak at DG of 16.78%.
     For clarifying the compatibility capacity of hyperbranched polymer (HBP) on PP/PVC/PP-g-(St-co-DMC)/ blend, the effect of AB2 typed HBP on the crystallization kinetics of polypropylene (PP) was investigated. The crystallization kinetics under isothermal and non-isothermal conditions indicated that the introduction of HBP could modify its crystallization mode, and therefore accelerate the crystallization process of PP, and increase the Avrami exponent. This might be because the HBP with fractal structure had an effect on the crystal growth and diffusion mode of the crystal chain. It was indicated that, in the examined range of concentration (1-5%) of HBP, this additive with low concentration could accelerate the crystallization remarkably, and whereas, the rate of crystallization decreased. In addition, the study of molecular weight of HBP on PP crystallization kinetics indicated that, in blend samples, the increase in molecular weight reduced the rate of crystallization.
     The compatibility of the HBP on PP/PVC/PP-g- (St-co-DMC) (80/20/4) was further studied on the basis of effect of HBP on the crystallization behavior of PP. The measurement of SEM, tensile strength and impact strength indicated that PP-g-(St-co-DMC)/HBP could enhance the compatibility of PP/PVC blends. The addition of the mixture of PP-g-(St-co-DMC) and HBP into PP/PVC blends facilitated the modification of melt apparent viscosity of the latter. With comparison to those of the blend free of HBP, the tensile strength and the impact strength of the PP/PVC/PP-g- (St-co-DMC) (80/20/4) blends could reach up to 8.16% and 53.41% at the most, respectively, and meanwhile the apparent melt viscosity of blends reached the less value when the content of HBP was 1%. Furthermore, the influence of the molecular weight of HBP on the compatibility of PP/PVC/PP-g-(St-co-DMC) blend was discussed.
引文
1苏伟梁,廖兵,黄玉惠.高聚物共混增容技术的研究进展.高分子材料科学与工程, 2001, 17(5): 1-5
    2魏京华.聚丙烯共混增韧研究进展.合成树脂及塑料, 2002, 2: 47-52
    3刘念才,黄华.高分子共混物增容用反应性高分子.高分子材料科学与工程, 1996,12(6): 1-8
    4 M. M. Coleman, P. C. Painter. Hydrogen bonded polymer blends. Prog. Polym. Sci, 1995, 20: 1-59
    5 G. J. Pehlert, X. M. Yang, P. C. Painter, et al.. Self-association versus interassociation in hydrogen bonded polymer blends: 2. Comparison of theoretical and experimental miscibility windows for poly(2,6-dialkyl-4-vinyl phenol) blends. Polymer, 1996, 37(21): 4763-4771
    6 M. M. Coleman, G. J. Pehlert, X. M Yang, et al.. Self-association versus interassociation in hydrogen bonded polymer blends: 1. Determination of equilibrium constants from miscible poly (2,6-dialkyl-4-vinyl phenol) blends. Polymer, 1996, 37(21):4753-4761
    7张维虎.对CPE改性硬质PVC的探讨.聚氯乙烯, 1998, 5:31-33
    8沃丁柱.复合材料大全.北京:化学工业出版社,1988,290-291
    9于景刚. NBR/PVC共混胶的应用.弹性体, 2001, 11(4):52-57
    10陈国华,颜文礼,糜庆丰.甲基丙烯酸甲酯接枝共聚制备极性聚乙烯.高分子材料科学与工程, 2000, 16(1):49-52
    11钟明强,刘俊华,胡华峰等.聚丙烯共混改性研究进展.中国塑料, 1999,13(9):9-19
    12晋日亚,王培霞.聚丙烯改性研究进展.中国塑料, 2001,15(2):20-23
    13宣兆龙,易建政,杜仕国.聚丙烯的共混改性研究.现代化工, 2000, 20(2):23-26
    14张增民.聚丙烯高性能化改性技术的新进展.塑料, 2001,30(3):23-28
    15 Pinar Akkas Kavakli , Cengiz Kavakli, et. al. Radiation-induced grafting of dimethyla- minoet-hylmethacrylate onto PE/PP nonwoven fabric. Nuclear Instruments and Methods in Physics Research B, 2007,265:204-207
    16 T. C. Chung. Synthesis of functional polyolefin copolymers with graft and block structures. Prog. Polym. Sci, 2002, 27:39-85
    17刘建清,徐晓冬,高秀敏等. PP熔融接枝改性研究进展.高分子通报, 2008, 5:39-45
    18吕晖辉,黄华,刘念才.聚丙烯自由基接枝改性进展.中国塑料, 1999, 13(8):10-15
    19 M.H. Kunita, A.W. Rinaldi, E.M. Girotto, et al. Grafting of glycidyl methacrylate onto polypropylene using supercritical carbon dioxide. European Polymer Journal, 2005, 41:2176-2182
    20 Jie Chen, Young Chang Nho, Oh Hyun Kwon, et al. Grafting copolymerization of acrylamides onto preirradiated PP films. Radiation Physics and Chemistry, 1999, 55:87-92
    21 Sun Y J, Hu G H,Lambla M. Free radical grafting of glycidyl methacrylate onto Polypropylene in a co-rotating twin-screw extruder. J Appl Polym Sci. 1995,57:1043-1057
    22 Sun Y J, Hu G H,Lambla M. Angew. Functionalization of isotactic polypropylene with maleic anhydride by reactive extrusion: mechanism of melt grafting, Makromo. Chem, 1995,229:l-13
    23 Cartier H,Hu G H. Styrene-assisted melt ftee radical grafting of glycidyl methacrylateonto polypropylene. J Polym Sci. A:Polym Chem. 1997,36:1053-1063
    24 Chen L F,Wong B,Baker W E. Melt grafting of glycidyl methacrylate onto polypropylene and reactive compatibilization of rubber-toughened polypropylene. Polym Eng&Sci,1996, 36:1594-1602
    25 Xie X M,Chen N H,Guo B H. Study on multi-monomers melt- grafting onto PP in an extruder. Polymer International, 2000,49(12):1677-1683
    26 Li Y,Xie X M,Guo B H. Study on styrene- assisted melt free-radical grafting of maleicanhydride onto polypropylene. Polymer, 2001,42(8):3419-3425
    27李颖,谢续明,陈年欢.聚丙烯多单体熔融接枝及其共混物研究.高分子通报, 2000, 2:73-79
    28 De Roover B, Sclavons M, Carlier V, Devaux J, Legras R, Momtaz A. Molecular characterization of maleic anhydride-functionalized polypropylene. J Polym Sci PolymChem, 1995, 33:829–842.
    29 De Roover B, Devaux J, Legras R. Maleic anhydride homopolymerization during melt functionalization of iso-tactic polypropylene. J Polym Sci Polym Chem, 1996, 34:1195–1202.
    30 Shi D A, Yang J H, Yao Z H, Wang Y, Huang H L, Jing W,et al. Functionalization of isotactic polypropylene withmaleic anhydride by reactive extrusion:mechanism of melt grafting. Polymer, 2001, 42:5549-5557.
    31 Ho R M, Su A C, Wu C H, Chen S I. Functionalization ofpolypropylene via melt mixing. Polymer, 1993, 34:3264-3269.
    32李笃信,贾德民,洪旭东.新型聚丙烯固相接枝物增容聚丙烯/尼龙6共混物的研究.中国塑料,1999,13(6):40-43
    33周春怀,杨军忠.马来酸配苯乙烯双单体接枝聚丙烯的研究.中国塑料, 1999,13(l):31-38
    34张立峰,郭宝华,张增民.双单体固相共聚改性聚丙烯技术及其机理研究.高等学校化学学报,2001,22(s):1406-1409
    35李华阳,魏德卿,刘宗惠等.低分子量聚乙烯双单体非均相共接枝.合成化学,2002,10(l):25-29
    36徐春,吴靖.悬浮法制得PP-g-HEMA结晶性能的研究.高分子材料科学与工程, 1999, 15(1):212-216
    37陈国华,颜文礼.非均相接枝共聚制备极性聚丙烯.应用化学, 1997, 14(10):47-50
    38邬润德,童筱莉等.悬浮法合成聚丙烯接枝丙烯酸.功能高分子学报, 2001, 14(3):85-89
    39陈平,唐传林.高聚物的结构与性能.北京:化学工业出版社, 2005:148-166
    40 DiLorenzoM L, Silvestre C. Non-isothermal crystallization of polymers. Prog. Polym. Sci., 1999, 24(6):917-950
    41 Shich Y T, Liu G L, Hwang K C. Crystallization, melting and morphology of PEO in PEO/MWNT-g-PMMA blends. Polymer, 2005, 46(24):10945-10951
    42 Manchado M A, Biagiotti J, Torre L, et al. Effects of rainforcing fibers on the crytallization of polypropylene. Polym Eng Sci, 2000, 40(10):2194-2204
    43 Ceo M K, Lee J R, Park S. Crystallization kinetics and interfacial behavior of polypropylene composites reinforced with multi-walled carbon nanotubes. Materials Science and Engineering A,2005,404(l):79-84
    44 Grady B P, Pompeo F,Shambaugh R L. Nucleation of polypropylene crystallization by single-walled carbon nanotubes. J Phys Chem B, 2002,106(23):5852-5858
    45 Suh D J, Lim Y T, Park O O. The property and formation mechanism of unsaturated polyester-layered silicate nanocomposite depending on the fabrication methods. Polymer, 2000, 41:8557-8567
    46吴人洁主编.复合材料.天津:天津大学出版社, 2000, 295
    47马继盛,漆宗能,李革等.聚丙烯/蒙脱土纳米复合材料的等温结晶研究.高分子学报,2001,(5):589-593
    48 Ma J S, Zhang S M, Qi Z N,et al. Crystallization behaviors of polypropylene/montmorillonite nanocomposites. J. Appl Polym. Sci., 2002, 83(9):1978-1985
    49刘晓辉,范家起,漆宗能.聚丙烯/蒙脱土纳米复合材料的非等温结晶动力学研究.高分子材料科学与工程,2001,17(6):103-108
    50 Xu W B, Ge M L, He P S. Nonisothermal crystallization kinetics of polypropylene/ montmorillonite nanocomposites. J Polym. Sci., Part B, 2002, 40(5):408-414
    51徐卫兵,戈明亮,何平笙.聚丙烯/蒙脱土纳米复合材料非等温结晶动力学的研究.高分子学报, 2001, (5):584-589
    52徐笑非.聚丙烯/纳米蒙脱土复合材料的结晶动力学研究.分析测试技术与仪器,2002, 8(2):26-30
    53 Zhang Z. Y. Theoretical analysis of kinetics of non-isothermal crystallization of polymers. Chinese Journal of Polymer Science, 1994, (3):256-265
    54王东庆,马敬红,梁伯润.聚丙烯/马来酸酐接枝聚丙烯/蒙脱土纳米复合材料等温结晶行为.东华大学学报(自然科学版),2005, 31(2):118-122
    55 HuangYiping, Chen Guangmei, Yao Zhen, et al. Non-isothermal CrystalliZation behavior of polypropylene with nucleating agents and nano-calcium carbonate. European Polymer Journal, 2005,41(11):2753-2760
    56 Chan C M,Wu J S,Li J X, et al. Polypropylene/calcium carbonate nanocomposites. Polymer, 2002, 43:2981-2992
    57任显诚,白兰英,王贵恒等.纳米级CaCO3粒子增韧增强聚丙烯的研究.中国塑料,2000, 14(1):22-26
    58万炜涛,于德梅,周宛棣等.纳米CaCO3填充聚丙烯的非等温结晶动力学.高分子材料科学与工程,2003, 19(6):156-161
    59马传国,容敏智,章秋明.纳米碳酸钙及其表面处理对等规聚丙烯结晶行为的影响.高分子学报,2003, (3):381-386
    60 Saujanya C, Radhakrishnan S. Structure development and crystallization behaviour of PP/nanoparticulate composite. Polymer,2001, 42:6723-6731
    61 Jain S, Goossens H, Duin M V, et al. Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene,Polymer,2005,46(20):8805-8515
    62 George Z P,Dimitris M A, Dimitris N B, et al. Crystallization kinetics and nucleation activity of filler in polypropylene/surface-treated SiO2 nanocomposites. Thermochimic Acta, 2005, 427(l):117-128
    63 Svoboda P, Zeng C C, Wang H, et al. Morphology and mechanical properties ofpolypropylene/organoclay nanocomposites. J Appl Polym. Sci, 2002, 85(7):1562-1570
    64 Maiti P, Nam P H, okamoto M. Influence of crystallization on intercalation, morphology and mechanical properties of polypropylene/clay nanocomposites. Macromolecules, 2002, 35(6):2042-2049
    65 Arup R B, Sreekumar T V, Tao L, et al. Crystallization and orientation study in PP/SWNT composite. Polymer, 2003, 44:2373-2383
    66李宏伟,高绪删,董俨.聚丙烯/多壁碳纳米管复合材料的结晶行为.中国塑料,2005, 19(4):23-27
    67 M. Xanthos. Interfacial agents for multi phase polymer systems recent advances. Polym Eng&Sci,1988, 28(21):1392-1400
    68 E. Benedetti, A. Dalessio, M. Aglietto, et al, Vibrational analysis of functionalized polyolefins/poly (vinylchloride) blends. Polym. Eng&Sci, 1986, 26(l):9-14
    69 Gryshchuk O, Jost N, Karger-Kocsis J. Toughening of vinylester-urethane hybrid resins through functionalized polymers. J Apply Polym Sci, 2002, 84, 672-680.
    70舒文艺,金日光. PP/PVC共混体系的亚微观形态结构.高分子材料科学与工程, 1992,3:57-60; 5:56-60
    71 Monthioux, M., Oberlin, A·& Bouillon, E., Relationship between microtexture and electrical properties during heat treatment of SIC fiber precursor. Comp. Sci.Techno, 1995, (37):21-35
    72宋恩兰,胡俊玲.聚丙烯共混物的形态结构与性能研究进展.高分子材料科学与工程, 1994,l:1-6
    73张宇东,金日光.共混合金力学性能的研究I.双组分合金力学性能的研究.高分子材料科学与工程, 1997, 13(6):93-97
    74张宇东,金日光.共混合金力学性能的研究II.CPE,ACR对PVC共混体系力学性能的影响.高分子材料科学与工程,1998,14(5):64-71
    75张宇东,金日光.共混合金力学性能的研究III. CPP对PVC共混体系力学性能的影响.高分子材料科学与工程, 1998, 14(6):92-95
    76 Diao Jianzhi, Zhang Jianmin, Qi Zhao, et al. Mechanical properties andMorphology of blends of hyperbranched polymer with PP/PVC. Iranian Polymer Journal, 2006, 15(1):93-101.
    77窦强,吴石山,郑昌仁等. HPVC用P共混改性研究IV共混物的流变特性.高分子材料科学与工程,1995, 14(4):56-61
    78郑昌仁,窦强,吴石山等. HPVC/PP共混改性研究III低分子量反应性化合物作相容剂.高分子材料科学与工程,1998,14(3):122-125
    79徐冰,王静媛,王勇等.聚丙烯固相接枝N-羟甲基丙烯酰胺(HMA)2. PP-g-N-HMA/PVC合金的研究.中国塑料,1998, 12(l):33-36
    80唐涛,陈辉,张学全等.聚烯烃/极性聚合物界面的分子状态.高分子学报,1996, 3:336-342
    81 T. C. Chung, D. Rhubright. Polypropylene-graft-Polycaprolactone:Synthesis and Applications in Polymer Blends. Macromolecules, 1996, 27:1313-1319
    82曹红霞,杨树,赵辉.新型相容剂的合成及应用研究.塑料,2006,35(4):76-80
    83侯连龙,巴信武,张书文等.多单体接枝PP增容PP/PVC共混体系的力学和流变性能的研究.高分子材料科学与工程, 2002, 18(6):141-144.
    84 Diao Jianzh,i BaXinwu, Wang Sujuan, eta.l Study on themorphology ofPP-g-(St-co-MMA) compatibilized PP/PVC blends. Chemical Journal on Internet, 2005, 7(3):23-27.
    85刁建志,巴信武,丁海涛,等. PP-g-(St-co-MMA) /PP/PVC共混体系相容性研究.功能高分子学报, 2005, 18(3):243-247.
    86 Chang; Han T. Compounds useful for control agents for living-type free radical Polymerization. US. Pat. 6, 482,909.
    87 Barkac; Karen A. Coca; Simion, Thermosetting compositions containing hydroxy functional Polymers prepared by atom transfor radical Polymerization. US. Pat. 6,482,475.
    88 Michalski; Dabkowski; Wojciech. 6. Phosphorylation process and catalyst. US. Pat. 6,479,65
    89 Akita; Hiroshi. Ichikawal; Masao. US. Pat. 6, 478, 987.
    90 Yadong Zhang, Tatsuo Wada, Hiroyuki Sasabe. Proton conducting method for producing the same solid polymer electrolyte and electrode. Polymer, 2002, 86(2):268-279.
    91 B.Voit,D.Beyerlein, K.Eiehhorn,K.Grundke. Functional Hyperbranched Polyesters for application in Coatings and Thin Films. Chemie. Ingenieur Technik, 2001,73(6):657-665.
    92 Sheng-Wu Zhu,Wen-Fang Shi. Synthesis and Photopolymerization of hyperbranched polyurethane acrylates applied to UV curable flame retardant coatings. Polymer International, 2002, 51(3):223-227
    93 Huan yu Wei, Huiguang Kou, Wenfang Shi. Photopolymerizable hyperbranched (meth) acrylated Poly (amine ester), Polymer,2003, 87(2):168-173.
    94 Christian Schlenk,Arjan W. Kleij, Holger Frey, Macromolecular-multisite catalysts obtained bygrafting diaminoaryl palladium(ii) Complexes onto a hyperbranched-polytriajlylsilane support. Angewandte Chemie, 2000, 112(19):3587-3589.
    95 Yadong Zhang,Liming Wang,Tatsuo Wada, Hiroyuki Sasabe. Synthesis and characterization of novel hyperbranched Polymer with dipole carbazole moieties for multifunctional materials, Joumal of Polymer Science PartA:Polymer Chemistry,1996,34(7):1359-1363.
    96 Ohnishi T, Doi S.Tsuchida Y, et al. Light-emitting Polymers and their LED devices. IEEE Transactions on Electron Devices,1997, 44:1253-1257.
    97 Fomine,Serguei; Rivera, Ernesto. Polymers from coumarines:4. Design and synthesis of novel hyperbranched and comb-like coumarin-containing polymers. Polymer, 1998,39:3551-3558.
    98 Peter Froehling,Josephine Brackman. Properties and applications of poly (propylene imine) dendrimers and Poly (ester amide) hyperbranched polymers. Macromolecular Symposia, 2000,151(l):581-589.
    99 Lim, Y.-b.; Kim, S-M.; Lee, Y.; Lee, W.-k.; Yang,T.-g. Cationic hyperbranched poly(amino ester):a novel class of DNA condensing molecule with cationic surface, biodegradable three-dimensional structure,and tertiary amine groups in the interior. J. Am.Chem.Soc. 2001, 123(10):2460-2461
    100 Michel SehaPPacher, Zainuddin Muehtar, Julien bernard. Elaboration of corona functionalized reguIar unimolecular hyperbranched polystyrene nanoparticles. Macromolecular symposia, 2002, 183(l):23-28.
    101 Alexander Ozerin. Nano-scaled ordering in highly branched regular polymer structures. Macromolecular Symposia, 2001, 14(1):93-102.
    102 J. E. Klee,C.Sehneider, D.Hter,A. Burgath, Hyperbranched polyesters and their application in dentale composites:monomers for low shrinking composites. Polymers for Advanced Technologies, 2001, 12(6):346-354.
    103 Ling Hong,Yanjun Cui,Xinling Wang,Xiaozhen Tang. Conductivities and spectroscopic studies on hyperbranched Polyurethane electrolytes. Jounal of Polymer Science PartB:Polymer Physics, 2003,41(l):120-126.
    104 Busson, P., Ortegren, J., Ihre, H., Gedde, U. W. Preparation of mesogen-functionalized dendrimers for second-Order nonlinear optics. Macromolecules,2002,35(5):1663-1671
    105 Kim Y H, Webster O W. Hyperbranched polyphenylenes. Macromolecules, 1992, 25(21),5561-5572.
    106 Massa D J, Shriner K A, Turner S R, et al. Novel blends of hyperbranched polyesters and linear polymers. Macromolecules, 1995,28, 3214-3220.
    107 Schmaljohann, D.:Potsehke, P.:Hassler, R.:Voit,B.1.Blends of amphiphilie, Hyperbranched polyesters and different polyolefins. Macromolecules,1999,32(19):6333-6339.
    108 Hong Y, Cooper White J., Mackay M E et al. Transactions of rheology-a novel processing aid for polymer extrusion:Rheology and processing of polyethylene and hyperbranched polymer blends, J. Rheol.,1999, 43(3):781-793
    109 Hong Y, Coombs S J, Cooper White J., Film blowing of linear low-density polyethylene blended with a novel hyperbranched polymer processing aid, Polymer, 2000, 41(21):7705-7713
    110 Mulkern T. J. et al. Processing and characterization of reactive polystyrene/hyper- branched polyester blends. Polymer. 2000, 41(9):3193-3203
    111 Mackay M E et al. A new processing aid for polymer extrusion:rheology and processing of polyethylene and hyperbranched polymer blends. J. Rheol, 1999, 43(3):781-793
    112 Young H Kim, Owen W Webster. Hyperbranched polyphenylenes. Macromolecules, 1992, 25(21):5561-5572
    113 Andrady L, Saad A Khan. Solution rheology of hyperbranched polyesters and their blends with linear polymers. Macromolecules, 2000, 33(5):1720-1726
    114赵宝辉,巴信武,侯文龙,王素娟,韩颖慧.超支化聚(酰胺-酯)/聚氯乙烯共混体系流变性能及其力学性能研究.高分子材料科学与工程, 2003, 19(2):157-160
    115 Massa D J, Voit B et al. Novel blends of Hyperbranched Polyesters and Linear Polymers. Macromolecules, 1995, 28(9):3214-3220
    116 Bharathi,P., Moore, J.S. Solid-supported hyperbranched polymerization:evidence for self-limited growth. J. Am. Chem. Soe. 1997:119(14):3391-3392.
    117 Meezzenga R, Boogh L, M?nson JAE. A review of dendritic hyperbranched polymer as modifiers in epoxy composites. Composites Science and Technology, 2001, 61, 787-795.
    118 Meezzenga R, Plummer CJG, Boogh L, et al. Morphology build-up in dendritic hyperbranched polymer modified epoxy resins:modeling and characterization. Polymer, 2001, 42, 305-317.
    119 Meezzenga R, Boogh L, Pettersson B, et al. Chemically induced phase separated morphologies in epoxy resin-hyperbranched polymer blends. Macromol Symp.2000, 149, 17-22.
    120 Gryshchuk O, Jost N, Karger-Kocsis J. Toughening of vinylester-urethane hybrid resins by functional liquid nitrile rubbers and hyperbranched polymers. Polymer, 2002, 43, 4763-4768.
    121 Ratna D, Simon G P. Thermomechanical properties and morphology of blends of a hydroxy-functionalized hyperbranched polymer and epoxy resin. Polymer, 2001, 42, 8833-8839.
    122 Schmaljohann D, P?tschke P, H?ssler R, et al. Blends of amphiphilic, hyperbranched polyesters and different polyolefins. Macromolecules, 1999, 32, 6333-6339.
    123 Monticelli O, Olive D, Russo S, et al. On blends of polyamide 6 and a hyperbranched aramid. Macromol Mater Eng 2003, 288, 318-325.
    124 Boogh L, Pettersson B, M?nson JAE. Dendritic hyperbranched polymers as tougheners for epoxy resins. Polymer, 1999, 40, 2249-2261.
    125 Burkinshaw SM,Froehling P E, Mignanelli M. The effect of hyper-branched polymers on the dyeing of polypropylene fibres. Dyes and Pigments, 2002, 53,229-235.
    126 Huber T, P?tschke P, Pompe G, et al. Blends of hyper-branched poly (ether amide)s and polyamide-6. Macromol Mater Eng, 2000, 280/281, 33-40.
    127 Jannerfeldt C, Boogh L, M?nson JAE, Influence of hyperbranched polymers on the interfacial tension of polypropylene/polyamide-6 blends. J Polym Sci Part B:Polymer Physics, 1999, 37, 2069-2077.
    128 Mulkern T J, Beck Tan N C. Processing and characterization of reactive polystyrene/ hyper-branched polyester blends. Polymer, 2000, 41, 3193-3203.
    129 Sorensen K, Pettersson B, Boogh L, et al. WO9745474 A 1997.
    130赵敏,高俊刚,邓奎林等.改性聚丙烯新材料.北京:化学工业出版社,2002. 1-13
    131 Liu N C, Xie H Q, Baker W E. Comparison of the effectiveness of different basic functional group for the reactive compatibilization of polymer blends. Polymer, 1993, 34(22):4680-4687
    132 Hou S J, Ha R H. The Electrochemical analysis of cationic water soluble polymer. Eur Polym, 1998,34(2):283-286
    133 Ge, xuewu, Ye, Qiang; Xu, Xiangling, et al. Kinetics of emulsion copolymerization of (2-methacryloyl-oxyethyl) trimethyl ammonium chloride and acrylamide with gamma Rays. Radiation Physics and Chemistry, 1997, 50(3):253-258
    134包永照.季铵盐的研究进展.精细化工,2002,19:14-16
    135 H.J. Qi, X.X. Yang, et al., Kinetic of crystallization of PP-MAH graft polymer. J. Qing daoUniv. 1998, 13:1-5.
    136 J. Yu, J. He, Crystallization kinetics of maleic anhydride grafted polypropylene ionomers. Polymer, 2000, 41:891-898
    137 X.M. Zhang, D.M. Wang, et al., Preparation and characterization of PP-g-AA. Polym. Mater. Sci. Eng, 1996, 12:26-31
    138 Z.H. Yin, Y.L. Zhang, et al., Isothermal crystallization of PP-g-GMA copolymer. J. Appl. Polym. Sci, 1997, 63(12):1565-1569
    139 Varga J. In:Karger-Kocsis J, editor. Polypropylene, vol. 1. London:Chapman and Hall, 1995, chap. 3.
    140 Galeski A. In:Karger-Kocsis J, editor. Polypropylene, vol. 1. London:Chapman and Hall, 1995, chap. 4.
    141 Avrami M. Kinetics of phase change.I.General theory. J.Chem. Phys., 1939(12):1103-1112.
    142 Avrami M. Granulation, phase change, and microstructure kinetics of phase change.Ⅲ. J. Chem. Phys., 1941, 9(2):177-184.
    143 Daniel Grenier, Robert E. Prud Homme. Avrami analysis:Three experimental limiting factors. J Polym Sci:Polym Phys Ed, 1980, 18, 1655-1657
    144 An Y X, Dong L S, Mo Z S, et al. Non-isothermal crystallization kinetics of poly (β-hydroxylbutyrate). J. Polym. Sc.i, Polym. Phys., 1998, 36(8):1305-1312.
    145 R. de Juana, A. Jauregui, E. Calahorra, M. Cortázar. Non-isothermal crystallization of poly (hydroxy ether of bisphenol-A)/poly (ε-caprolactone), PH/PCL blends. Polymer, 1996, 37:3339-3350
    146 S. W. Lee, M. Ree, C. E. Park, Y. K. Jung, C. -S. Park, Y. S. Jin, D. C. Bae. Synthesis and non-isothermal crystallization behaviors of poly (ethylene isophthalate-co-terephthalate)s. Polymer, 1999, 40:7137-7148.
    147 Ozawa T. Kinetics of non-isothermal crystallization. Polymer, 1971, 12:150-161.
    148 Andrzej Jeziorny. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer, 1978, 19:1142-1151.
    149 Ziabicki A. Theoretical analysis of oriented and non-isothermal crystallization:Ⅱ.Extension of the kolmogoroff-avrami-evans theory onto processes with variable rate and mechanisms. Coll Polym Sci,1974,252:433-438.
    150 Ziabicki A. Kinetics of polymer crystallization and molecular orienta-tion in the course of melt spinning. Appl Polym Symp, 1967, 6:1-12.
    151 Mandelkern,L. Crystallization of Polymers,1964. McGraw-Hill Press:New York
    152 Tianxi Liu, Zhi shen Mo, Shang er Wang, Hong fang Zhang. Non-isothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone) , Polymer,1997, 37:568-577.
    153 C. Cazé, E. Devaux, A. Crespy, J. P. Cavrot. A new method to determine the Avrami exponent by DSC studies of non-isothermal crystallization from the molten state. Polymer, 1997, 38:497-508.
    154 Avrami M. Kinetics of phase change.Ⅱ.Transformation-time relations for random distribution of nuclei. J.Chem. Phys., 1940, 8(2):212-224.
    155 H.E. Kissinger, Variation of peak temperature with heating rate in differential thermal analysis, J. Res. Natl Stand, 1956,57:217-225.
    156 Y. Chen, M. Xu. Studies on the thermal stability of the nucleating effect of nucleating agents in polypropylene. Acta Polym. Sin,1998,6:671-679.
    157 J. Piglowski, I. Gancarz, M. Wlazlak, et al., Crystallization in modified blends of polyamide and polypropylene. Polymer, 2000,41:6813-6822.
    158 Daniel Grenier, Robert E. PrudHomme. Avrami analysis:Three experimental limiting factors. J Polym Sci:Polym Phys Ed 1980, 18, 1655-1657
    159 Kim B J, White J L, Compatibilized blends of PVC/PA12 and PVC/PP containing poly(lauryllactam-block-caprolactone). J Appl Polym Sci, 2004,91:1983-1992
    160吴靖,冯金海,刘辉等.PBT/PC共混体系流变性能与形态结构研究.功能高分子学报,1994,17(3):260-264
    161胡继文,孙有德.EVA/PP共混体系流变性研究.功能高分子学报,1994,7(4):411-415
    162冯威,崔秀国,张庆敏.PPO/PA6/弹性体多相共混物的流变性为.中国塑料,1999,13(8):35-39
    163 Lin D, Shi W F, Nie K M, et al. Photopolymerization of hyperbranched aliphatic acrylated poly (amide ester).I. Synthesis and properties . J Appl Polym Sci, 2001, 82:1630-1641
    164张书文,焦会云,刘广田,王素娟,侯文龙,巴信武. AB2型超支化聚(胺-酯)活性端羟基与乙酸酐的功能化反应.功能高分子学报,2002,3: 267-271
    165王素娟,巴信武,赵宝辉等.AB3型超支化聚(酰胺-酯)的合成及缩聚动力学研究.高分子学报,2004,(5):634-639
    166 Jannerfeldt G, Boogh L, Manson J A E, Influence of hyperbranched polymers on the interfacialtension of polypropylene/polyamide-6 blends. J Polym Sci Part B:Polymer Physics, 1999, 37:2069-2077
    167 Jannerfeldt G, Boogh L, Mnson J A E. J Polym Sci, Part B:PolymPhys, 1999,37:2069-2081
    168罗丙红,廖凯荣,全大萍等.丙交酯-乙交酯共聚物中的酯交换及共聚物结构和性质研究.高分子学报,2003,6:803-808

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700