用户名: 密码: 验证码:
活性炭纤维联合脱除多种污染物的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性炭纤维(ACF)干法吸附技术是一种较有前途的联合脱除多种燃煤电厂污染物的综合治理方式。本文采用先硫酸后氨水的方法对ACF进行改性,分析了改性对ACF脱除VOC(甲苯作为VOCs的代表物)的影响,同时考察了不同浓度氧气、反应温度、烟气湿度等对改性ACF脱除甲苯的影响,并对ACF同时脱除多种烟气组分(SO_2、NO和VOC)的协同作用及相互影响进行了研究。
     试验表明,改性后ACF平均孔径和比表面积相比未改性的无明显变化,但含氧官能团的羰基增多,这在一定程度上造成改性ACF对甲苯的脱除效率比未改性的高。氧浓度与甲苯脱除效率正相关,当氧气浓度超过5%时,进一步提高氧浓度几乎不能提高甲苯的脱除效率。改性ACF低温脱除甲苯的最佳温度为40℃,水蒸气的存在抑制了ACF对甲苯的脱除。
     NO和SO_2的存在对VOC的脱除均有抑制作用,而且随着NO或者SO_2的浓度的升高,VOC的脱除效率呈降低趋势,同样浓度的NO相比SO_2的影响更大。当烟气中存在O2,对于VOC的脱除效率,不同气氛组合的脱除效率比较如下:NO+SO_2+VOC< NO+VOC     VOC对NO和SO_2的脱除有抑制作用,并可以把已经在ACF上物理吸附的NO或SO_2解吸出来。NO、VOC、SO_2同时存在时,NO对SO_2的促进作用不明显。水蒸气的存在对甲苯和NO的脱除都会产生不利影响,但当VOC和NO同时存在时,水蒸气对VOC更为不利。水蒸气对ACF单独脱除SO_2有利,对VOC脱除不利,当ACF联合脱除VOC和SO_2时,水蒸气对SO_2仍有利。
The coal power plants releases SO_2, NOX, Hg, VOCs to the atmosphere, and without control the released pollutants will contaminate the environment and harm health of human. The activated carbon can dissolve this well. However, activated carbon fiber (ACF) is more effective than activated carbon. ACF were immersed into diluted sulfuric acid and then ammonia, which increase the oxygen function groups and nitrogen functional groups. But the distributing of pore distribution changes little.
     And we found that modified ACF has higher efficiency on the removal of volatile organic compounds (VOCs).Toluene were used as representatives of VOCs. The results showed that the ability of ACF removing VOCs increases little with the concentration of the O2. And the efficiency seldomly increase when the oxygen concentration exceeds 5%. However, catalytic oxidation is not the most important. The suitable temperature for toluene removal is 40℃. Vapor is against adsorption of VOCs.
     The SO_2 and NO both against the removal of VOCs. And the VOC removal effect is decrease with the SO_2 or NO, no matter if the vapor is exist. If the O2 exist, the effect of the removal of VOCs when the NO, SO_2 and VOCs all exist< the effect when NO and VOCs exist< the effect when both NO and VOCs exist < when only VOCs exist. If the O2 and vapor both exist, the effect of the removal of VOCs when the NO, and VOCs all exist< the effect when NO, SO_2 and VOCs exist< the effect when both NO and VOCs exist < when only VOCs exist.
     No matter if vapor exist, the VOCs against the removal of the NO and SO_2. It can desorb the NO and SO_2. Although NO can enhance the removal of SO_2 by ACF, when VOCs exist, the enhancement is unconspicuous. Vapor is harm to both VOCs and NO, but when VOCs and NO both exist, vapor does more harm to the removal of VOC. When both VOCs and SO_2 exist, vapor still enhance the removal of SO_2. But when VOCs, NO, SO_2 all exist, low concentration of vapor (0.2%) affect little to the removal of SO_2. Keyword: Activated carbon fiber; modification; VOCs; simultaneously remove
引文
[1]刘增结. 2007年世界能源市场综述.中国生态环境网. http://www.eedu.org.cn/news/info/hb/200806/27568.html
    [2] H. K. Chagger, J. M Jones, M. Pourkashaniana, et al. Emission of volatile organic compounds from coal combustion. Fuel, 1999, 78 1527~1538
    [3] Gracia JP, Beyne-Masclet S, Mouvier G, et al. Atmosp Environ 1992, 26A:1589.G. Fernández-Martínez, P. López-Mahia, S. Muniategui-Lorenzo, et al. Distribution of volatile organic compounds during the combustion process in coal-fired power stations. Atmospheric Environment 2001, 35:5823~5831
    [4] Panagiotis Papaefthimiou, Theophilos Ioannides, Xenophon E. Verykios. Combustion of non-halogenated volatile organic compounds over groupⅧmetal catalysts. Applied. Catalysis. B. Environ.,1997, 13: 175~184
    [5]李雪飞,张文辉,杜铭华.干法烟气脱硝综述,洁净煤技术,2006, 12(03):43~46
    [6]冯道显.燃煤电站锅炉脱硝技术应用,电力环境保护,2005, 21(02):23~26
    [7]王华,祝社民,李伟峰.烟气脱硫技术研究新进展.电站系统工程, 2006, 22(6): 5~7
    [8]叶奕森等.硫氮污染物的控制对策及治理技术[M].北京:中国环境科学出版社,1994
    [9]赵海红,谢国勇.燃煤烟气SOx/NOx污染控制技术.化学工业与工程技术, 2004, 25(1): 26~29
    [10]郑福玲,马双忱.一种新式联合脱硫脱氮技术的研究[J].电力情报,1998,(4):48~50
    [11]吴祖良,高翔,魏恩宗等.等离子体气态污染物控制技术的研究进展.电站系统工程,20(2):1~4,2004.
    [12] Frank N.Status and prospective for the electron beam process for flue gascleanup[J].Plant Test Results and Future Development, 1988, 31(1~3):57~82
    [13]马双忱,赵毅,李守信等.联合脱除SO2和NOx的烟气治理技术.华北电力大学学报,2000,27(3): 87~92
    [14]刘守军,刘振宇,朱珍平等. CuO/AC低温脱除烟气中SOx和NOx的研究[J].燃料化学学报,1999.27(增刊):192~198
    [15] John H Pavlish, Everett A Sondreal, Michael D Mann1, et al. Status review of mercury control options for coal-fired power plants [J]. Fuel Processing Technology, 2003 (82): 89~165
    [16]孟素丽,段钰锋,杨立国等.燃煤烟气中汞脱除技术的研究进展.锅炉技术, 2008, 39(4): 77~80
    [17]徐稳定,石林,耿曼.燃煤电厂烟气中汞控制技术研究概况.电站系统工程, 2006, 22(6): 1~4
    [18]李云鹏,王彬,方月兰等.活性焦联合脱硫脱硝技术及应用前景.化学工业与工程技术, 2008, 29(6): 38~40
    [19]许绿丝.改性处理活性炭纤维吸附氧化脱除SO2/NOx/Hg的研究:[博士学位论文],武汉:华中科技大学能源与动力工程学院,2007.5
    [20]赵毅,韩钟国,韩颖慧.干法烟气同时脱硫脱硝技术的应用及新进展.工业安全与环保, 2009, 35(2): 4~6
    [21] EPA, U.S., Multi-pollutant Emissions Control Technology Options for Coal-fired Power Plants. EPA-600/ R-05/034, 2005, p: 30-102.
    [22]蒋卉.挥发性有机物的控制技术及其发展.资源开发与市场,2006,22(4):315~317
    [23]闫勇.有机废气中VOC的回收方法.化工环保, 1997, 17(6): 332~335
    [24]陆安慧,郑经堂.活性炭纤维.合成纤维工业, 1999, 22(2) : 34~37
    [25] Mochida Isao, Yoon Seong-Ho, Qiao Wenming. Catalysts in syntheses of carbon and carbon precursors [J]. Journal of the Brazilian Chemical Society, 2006, 17(6) :1059
    [26]李石,郑经堂,赵玉翠.活性炭纤维基础理论进展评述,材料导报, 2007,21(5A):16~18
    [27]赵振国.《吸附作用应用原理》.北京:化学工业出版社,2005
    [28]陆益民,梁世强.活性炭纤维化学改性的研究现状与展望,合成纤维工业27(5): 33~36
    [29]范浩杰,朱敬,刘金生等.活性炭纤维脱硫、脱硝的研究进展.动力工程, 2005, 25(5):724~727
    [30] Mochida Isao, Korai Yozo, Shirahama Masuaki, et a1. Removal of SOx and NOx over activated carbon fibers [J].Carbon 2000 (38):227~239.
    [31] Ling L , Li K, Miyamoto S , Korai Y, Kawano S , et al. Removal of SO2 over ethylene tar and cellulose based active carbon filter[J]. Carbon, 1999 ,37(3) :499~504
    [32] Davini P. Adsorption and desorption of SO2 on activated carbon: Effect of surface basic groups [J] . Carbon, 1990(28) :565~569
    [33] Lizzo AA, DeBarr JA. Effect of surface area and chemisorbed oxygen on the SO2 adsorption capacity of activated char. Fuel, 1996, 75(13): 1515~1522
    [34] Kisamori S, Kuroda K, Kawano S, et al. Oxidative removal of and SO2 recovery of H2SO4 over poly-based activated carbon fiber[J].Energy Fuels 1994. 8(6): 1337~1340.
    [35] Guo Zhancheng, Xie Yusheng, Hong Ikpyo, et al. Catalytic oxidation of NO to NO2 on activated carbon[J]. Energy Conversion and Management, 2001, 42(15-17): 2005~2018
    [36] Adapa S, Gaur V, Verma N. Catalytic oxidation of NO by activated carbon fiber (ACF)[J]. Chemical Engineering Journal, 2006, 116(1):25~37
    [37] Mochida I, Kawabuchi Y, Kawano S, Matsumura Y. Yoshikawa M. High catalytic activity of pitch based activated carbon fibers of moderate surface area for oxidation of NO to NO2 at room temperature [J]. Fuel 1997,76(6):543~548.
    [38] Yang C M, Kaneko K. Nitrogen-doped activated fiber as an applicant for adsorbent [J]. Journal of colloid and interface science, 2002, 255(2): 236~240
    [39] Kaneko K. Micro pore filling mechanism in inorganic sorbents studies in surface science and catalysis [J]. 1996, 99: 573 ~598
    [40] Debasish Das, Vivekanand Gaur, Nishith Verma. Removal of volatile organic compound by activated carbon fiber, Carbon, 2004, 42(14): 2949~2962
    [41] Carlos Moreno-Castilla, et al. Adsorption of organic molecules from aqueous solutions on carbon materials Carbon [J], 2004, 42(1):83~94.
    [42] Coughlin R. W. , Ezra F. S. Environmental Science and Technology, 1968, 2(4): 291~297
    [43] Li Lei, Patrieia A. Quinlivan, Detlef R. U. Knappe. Effeets of aetivated carbon surface chemistry and pore strueture on the adsorption of organic contaminants from aqueous solution [J]. Carbon, 2002, 40(12):2085~2100
    [44] Marcus Franz, Hassan A. Arafat, Neville G. Pinto. Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon [J]. Carbon, 2000, 38(13):1807~1819
    [45] Mattson J. S.,Mark Jr. H. B. , Malbin M. D. Journal of Colloid and Interface Science, 1969, 31(1): 116~130
    [46] Moreno Castilla C. , Rivera Utrilla J., Lopez Ramon M. V. Adsorption of some substituted phenols on activated carbons from a bituminous coal [J] . Carbon, 1995, 33(6): 845~851
    [47] Haydar S.,Ferro Garcia M. A., Rivera Utrilla J. Adsorption of p-nitrophenol on an activated carbon with different oxidations [J] . Carbon, 2003, 41(3):387~395
    [48] Aurora M. Rubel, John M. Stencel. The effect of the low-concentration of SOx on the adsorption of NO from gas over activated carbon. [J] Fuel, 1997, 76(6): 521~526
    [49] Davini Paolo. Flue gas treatment by activated carbon obtained from oil-fired fly ash [J].Carbon,2002(40):l973~l979.
    [50] Chi-Yuan Lu, Ming-Yen Wey. Simultaneous removal of VOC and NO by activated carbon impregnated with transition metal catalysts in combustion flue gas, Fuel Processing Technology, 2007, 88 (6): 557~567
    [51]梁英娟,罗湘南.粘胶基活性炭纤维及其改性.炭素, 2007, 4: 45~48
    [52] Mochida I, Korai Y, Shirahama M, et al. Structure of activated carbon fiber and it’sapplication for environmental protection. Tanso, 1998, 184(1):206~212
    [53]近藤精一,石川达雄,安部郁夫著.吸附科学(原著第二版).李国希译.北京:化学工业出版社,2006.1
    [54]符若文,杜秀英,黄爱萍.负载Pd/Cu活性碳纤维的孔结构研究.中山大学学报(自然科学版), 2002, 41(1):46~50
    [55] V. Strelko,Jr., D. J. Malik, M. Streat. Characterisation of the surface of oxidised carbon adsorbents, Carbon [J], 2002, 40 (1):95~104.
    [56] Boehm H.P. Some aspects of the surface chemistry of carbon blacks and other carbons [J]. Carbon, 1994, 32(5):759~769
    [57]晏蓉,康忠汉.煤燃烧排放有机污染物的试验研究.华中理工大学学报. 1996(1)
    [58] María Teresa Izquierdo,Begoňa Rubio, Carmen Mayoral,et al. Low cost coal-based carbons for combined SO2 and NO removal from exhaust gas. Fuel, 2003, 82: 147~151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700