用户名: 密码: 验证码:
微硅水泥体系的开发及其现场应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏丹油田地层压力梯度低、易漏失,地下原油为稠油,绝对粘度在100(0.1Pa.s)以上。因此,在固井作业中,水泥浆体系一般采用漂珠低密度水泥和一般硅砂的抗高温水泥。使用这些水泥,存在以下主要问题:
     (1)漂珠低密度水泥浆的井,胶结质量和返高未达到设计和封隔地层的要求;
     (2)一般加硅砂的抗高温水泥浆体系稳定性差,强度低,不能满足多次蒸汽驱的要求。热采后,封隔和固井质量有明显下降;
     (3)在统计的69口井中,使用漂珠低密度水泥浆的井34口,其中31口返高与设计要求差别较大,另3口井胶结质量较差;在8口热采井中,使用一般硅砂水泥浆的井,经热采后,固井质量均有所下降;
     针对上述问题,研究无漂珠的低密度水泥浆体系和新型的抗高温水泥浆体系是非常必要的。研究采用机理研究和室内试验,产品开发与现场应用相结合的方法,取得的主要成果有以下几方面:
     (1)建立了幂律液颗粒沉降速度,沉降时间和雷诺数的关系式。关系式可以定量分析,在颗粒密度与浆体密度一定时,选择合理的颗粒粒度和控制浆体的流变性能,能很好的满足浆体稳定性的要求。当颗粒直径小于45μm时,K>(0.1Pa.sn),n     (2)三个不等直径颗粒组成的三角体,且考虑边壁的影响,是颗粒堆积的基本单元。颗粒的多级充填是符合水泥材料及外添材料不同粒度的实际情况。研究表明,一级充填的粒径范围为(0.03~0.33)d50,二级充填的粒径范围为(0.01-0.15)d50,相应的体积孔隙率分别下降了63%和90%以上;
     (3)选择优良微硅的基本依据和要求是:Si02含量≥97%,其它杂质AL203等小于0.5%微硅粒度为0.1~0.5mm范围内的在70%以上或微硅粒径在0.1-10μm范围内分布均匀,比面积≥22m2/g
     (4)研究的微硅低密度水泥浆,密度为1.35-1.40,抗压强度(60℃×24h)>14Mpa,API失水<30ml,造浆能力提高了40%,稳定性好,防漏及防气窜能力强。微硅抗高温水泥浆可在250℃养护,2-3次吞吐,抗压强度无明显变化,比一般硅砂水泥,强度提高了50-80%;
     (5)将研究的水泥浆体系和提高水泥浆顶替效率的综合措施,应用于现场实际,取得了较好的效果。从跟踪试验的井来看,微硅低密度水泥浆的井30口,优质井和合格井29口,水泥返高均达到设计要求。在热采井中,应用微硅高温水泥浆井20口,固井质量全部合格,其中优质井15口。这些井经过多次热采,固井质量无明显变化。
Sudan oilfield has low formation pressure gradient with easy leakage, and the underground crude oil is heavy oil, with absolute viscosity of above100(0.1Pa.s). Therefore, in the cementing operation, the slurry system generally uses microsphere low-density cement and the high temperature resistant cement of silica sand. The application of this cement has the following main issues:
     (1) Cementing quality and cement height of microsphere low-density slurry wells fail to meet the requirements of the design and packer formation;
     (2) The high temperature resistant cement of silica sand has insufficient stability and intensity, and fails to meet the requirements of repeated steam flooding. Packer and cementing quality decreased significantly after the thermal recovery;
     (3) Among the69wells in the statistics,34wells use microsphere low-density slurry, and31of which vary greatly in cement height with the design requirements, and the other3wells have poor cementing quality; in the8thermal recovery wells, those with general silica sand slurry have decrease in cementing quality after thermal recovery;
     Aiming at these issues, it is necessary to study the non-microsphere low-density slurry system and the new high temperature resistant slurry system. This study adopts a combination of theoretical and experimental methods, as well as the product development and field application, and the main results achieved are as follows:
     (1) It established the relationship of power-law fluid particle settling velocity, sedimentation time and Reynolds number. The relationship can be quantitatively analyzed. When the particle density and the slurry density are certain, a reasonable choice of particle size and control of slurry rheological properties can well meet the requirements of the slurry stability. When the particle diameter is less than45um, K>(0.1Pa.sn), n<0.7, and particle settling of lcm is greater than8h of sedimentation time, the slurry is in a stable state;
     (2) Triangle composed by three particles of unequal diameters, and considering the impact of the wall, is the basic unit of particle accumulation. Multilevel filling of particles is in line with the actual situation of different particle sizes of cement materials and added materials. Studies have shown that the particle size range of Level I filling is (0.03-0.33) d50, the particle size range of Level Ⅱ filling is (0.01~0.15) d50, and the corresponding volume porosity decreased more than63%and90%;
     (3) The fundamental basis for and requirements of selecting high quality micro silicon are:content of SiO2≥97%, and other impurities such as Al2O3shall be less than0.5%Granularity of70%of the micro silicon shall be within0.1-0.5mm or particle size of micro silicon within0.1~10μm in even distribution Specific surface>22m2/g.
     (4) Density of micro silicon low-density slurry in study is1.35~1.40, with compressive strength of (60℃×24h)>14Mpa, API water loss<30ml, pulping capacity increased by40%, as well as good stability, leak-proof and anti-gas channeling ability. Micro silicon high temperature resistant slurry can be maintained at the temperature of250℃,2to3times throughput, with no significant change in compressive strength, and has50~80%increase in strength compared with general silica sand cement;
     (5) The application of integrated measures of improving the displacement efficiency of the slurry system on the site has achieved good results. According to the wells in the tracking test, among the30micro silicon low-density slurry wells,29are high-quality wells and qualified wells, and their cement height meets the design requirements. Among the thermal recovery wells,20are micro silicon high temperature slurry wells, all with qualified cementing quality, including15high-quality wells. After several rounds of thermal recovery, cementing quality of these wells has no significant change.
引文
[1]M.Grinrod.B.Vassoy et al.Development and Use of a Gas-Tight Cement[J]. IADC/SPE 17258,1988.
    [2]Coker et al.Preventing Shallow Gas Migration in Offshore Wells:The Prefornance of Lead Cements[J]. SPE24978,1992
    [3]Khalid Al-Buraid et al.Prevention of Shallow Gas Migration Through Cement[J].SPE47775, 1998
    [4]Hartoni et al.A Single Slurry System for Cementing Surface Casing in a Low Fracture Gradient Shallow Gas Area Off Shore Kalimantan[J] IADC/SPE62747,2000
    [5]Eilers L.H., Nelson E.B., Effect of Silica Particle Size on Degradation of Silica-Stabilized Portland Cement[J], SPE 7875,1979
    [6]顾军.矿场固井技术[M].北京:石油工业出版社,1997.
    [7]黄柏宗:紧密堆积理论优化的材料和工艺体系[J],钻井液与完井液,2001(6)
    [8]何更生.油层物理[M].北京:石油工业出版社,1997.1
    [9]黄柏宗:紧密堆积理论的微观机理及模型设计,钻井液与完井液,2007.1
    [10][英]A·拉什顿A·S·沃德 R·G·霍尔迪奇著。固液两相过滤及分离技术(原著第二版)[M].北京:化学工业出版社,2005.7,56-64
    [11]王奎升.工程流体与粉体力学基础[M].北京:中国计量出版社,2002.9,146-154,120-122
    [12]杨守志,孙德堃,何方箴编著。固液分离[M].北京:冶金工业出版社,2003.5,45-50,56-61
    [13]刘崇建,黄柏宗编著。油气井注水泥理论与应用[M].北京:石油工业出版社,2001。9,69-71,193-201
    [14]西南石油学院钻井,化学组编。泥浆工艺原理[M].南充:。西南石油学院,1976.6,11-18,47-48,77-80
    [15]陈廷蕤.泥浆胶体化学[M].北京:中国工业出版社,1962.6,18-47,57-60,74-76
    [16]韩仲琦.水泥与粉体[M].北京:化学工业出版社,2006.5
    [17]陈平等.钻井与完井工程[M].北京:石油工业出版社,2005.11
    [18]林东、西晓林等人:硅灰预处理对高性能水泥基材料力学性能的影响及其机理[J],华南理工大学学报,2008.11
    [19]刘崇建,黄柏宗,徐同台,刘孝良等编著.油气井注水泥理论与应用[M].北京:石油工业出版社,2001.9
    [20]API RP 10B 《Recommended Practice for Testing of Well Cements》 [J]TWENTY-SECOND EDITION DECEMBER,1997
    [21]刘崇建,刘孝良,徐璧华制定:“注水泥流变性设计”部颁行业标准[M].北京:1992.7由中华人民共和国能源部发布
    [22]刘坤芳等.注蒸气井套管应力分析及管柱强度设计[J],石油钻探技术,1994.4
    [23]Mid-Continent District Study Committee on Cementing Practice and Testing of Oil-Well Cements[J].API Drilling and Production Practices,1954,72-81
    [24]carter G. and Smith D.K., Properties of cementing Compositions at Elevated Temperatures and Pressure[J].Transactions of AIME,1958, Vol.213,20-27
    [25]Italcement:s.p.a. GEOTERM Customer Brochure,1977
    [26]Berra M., Fabbri F., Faceoti M., et al., Behavior of a Cementing Hydraulic Binder Under Severe Geothermal Conditions[J].Geothermics,1988,17,15176水泥水化
    [27]Strength in Porland Cement,Cement and Concrete[J].1976,6(1):113-127
    [28]Clment C C.A scientific approach to the use of thixotropic cement[J].JPT, March 1979:344-346
    [29]Kirksey J, Warembourg P. Field tests show improved cement bonding. Drilling Contractor[J]. August 1979:57-66
    [30]ERIK B. NELSON, Well Cementing, Elservier Amsterdam-Oxford-New York-Tokyo[J] 1990:7-1-7-3
    [31]Sones R R, Carpenter R B. Nex latex, expanding thixotropic cements systems improve job performance and reduce costs[J].SPE 21010,1991
    [32]Banfill P E G, Sanders D C. On the viscometric examination of cement pastes. Cement and Concrete Research[J].1981;11(3):363-370
    [33]Hemphill R P, Crook R S. Thixotropic cement improves squeeze jobs[J]. World Oil, May 1981:137-148
    [34]Stehle D, Sabins F et al. Conoco stops annular gas flow with special cements. Petroleum Engineering[J].April 1985:21-24
    [35]20Menzel C.A., Studies of High Pressure Steam Curing of Tamped Hollow Concrete Blok. J. Amer. Concrete Inst. [J].1935,7,64
    [36]Kaousek G.L., The Reactions of Cement Hydration at Elevated Temperatures, Proc. Third Intl. Cong [J]. Chem. Cement, London 1952,334-354
    [37]Ostroot G.W., Waliser W.A., Improved Compositions for Cementing Wells with Extreme Temperatures[J].J.R.T, March 1961,277-84
    [38]Taylor H.F.W., The Chemistry of Cement, Academic Press Ltd[J]., London,1964,106-122
    [39]Kalousek G.L. and Chow S.Y., Research on Cements for Geothermal and Deep Oil Wells[J], SPE 5940,1976
    [40]Nelson E.B., Kalousek G.L., Effect of Na2O on Calcium Silicate Hydrates at Elevated Temperatures, Cement & Concrete Res. [J],1977,7.687-694
    [41]Nelson E.B., et al., Formation and Behavior of Calcium Silicate Hydrates in a Geothemal Environment, Cement & Concrete Res. [J],1981,11,371-381
    [42]Eilers L.H. et al., High Temperature Cement Composition-Pectolite, Scawtite, Truscottite or Xonotlite, which do you want [J]? J.P.T. July 1983,1373-1377
    [43]Smith D.K., Silica Flour-Mechanism For Improving Cementing Composition For High Temperature Well Condition, A Report From the User Subcommittee[J], API Standardization Committee 10
    [44]Grabowski E., Gillott J.E., Effect of Replacement of Silica Flour with Silica Fume on Engineering Properties of Oill-Well Cement at Normal and Elevated Temperatures and pressures, Cement & Concrete Res. [J],1989,19,333-344
    [45]Didler Degouy, Characterization of the Evolution of Cementing Materials After Aging Under Severe Bottomhole Codlition [J], SPE Drilling & Completion, March 1993,37-41
    [46]Maravilla S., A Hydrothermal Setting Cement for Cementing Ultradeep Hotwell [J], JPT Oct., 1974,1087-1094
    [47]Kalousek G.L., Nelson E.B.,Hydrothermal Reactions of Dicalcium Silicate and Silica, Cement & Concrete Res. [J],1978,8,283-290
    [48]Hook F.E., et al., Silica-Lime Systems for High-Temperature Cementing Application[J], SPE 3447,1971
    [49]Robson T.D., High-Alumina Cement and Concrete[J], New York,1962,184-185
    [50]Quon D.H.H. and Malhotra V.M., Performance of High Alumina Cement Concrete at Elevated Temperature, J. Cdn. Ceramic. Soc.,1979,48,7-16
    [51]Heindl R.A. and Post Z.A., Refractory Castable-Ⅱ:Some Properties and Effects of Heat-Treatments, J.Amer. Ceramic. Soc[J].,1954,37(5),206-216
    [52]Metcalf A.S., Dresher T.D., How Pressure Affects the Set Properties of Various Cement Systems[J], SPE 7186,1978
    [53]Nelson E.B., Eilers L.H., Cementing Stemfood and Firefood Wells-Slurry Design, J. Cdn Petr. Tech. [J],1985,Sept-Oct,58-63
    [54]Shen J.C., Effect of CO2Attack on Cement in High Temperature Applications[J], SPE 18618,1989
    [55]API Task Group on Cements for Geothermal Well:API Work Group Reports Field Tests of Geothermal Cement, Oil & Gas J[J].,1985,Feb,93-97
    [56]zeldin A.N. and Kukacka L.E., Polymer Cement Geothermal Well Completion Materials, Brookhaven National Laboratory[J], Report No. BNL 51287(1980)
    [57]Nelson E.B. and Eilers L.H., Process for Cementing Geothermal Wells[J], US Patent No. 4,556,109(1985)
    [58]李立荣,吴忠孚.实用低密度固井水泥浆的研究.钻井液与完井液[J].Vol.10 No.5 P62 1993
    [59]屈建省,杜慧春等.泡沫水泥的研究与应用[J],钻井液与完井液,1994,11(5)A
    [60]Aldrlch, C.H. and Mitchell, B.J.Strength, Permeabilities, and Porosity of Oilwell Foam Cement, paper 75-PET-10 presented at the 1975 ASME Petroleum Div. Annual Mechanical Engineering Conference[J], Tulsa, Sept.21-25.
    [61]Davies,D. R., Hartog, J.J., and Cobbet, J. S. Foam Cement-A Cement With Many Applications[J], paper SPE 9598 presented at the 1981 SPE Middle East Oil Show,Bahraln, March 9-12.
    [62]Cunningham W.C., Smith D.K., Effect of Salt Filtrate on Subsurface Formations[J], JPT, 1968,3:259
    [63]Slage K.A., Smith D.K., Salt Cement for Shale and Bentonitic Sands[J], JPT,1963,2:187
    [64]Heathman J.F and East L.E, Case Historries Regarding the Application of Microfie Cements[J], SPE 23926,1992
    [65]Heathman J.F,Carpenter R.B et al., Acid-Resistance Microfine Squeeze Cement 5:From Conception to Viable Technology[J], SPE 2657,1993
    [66]Harris K.L, New Lightweight Technology for the Primary Cementing of Oilfield Casings in Cold Environments[J], SPE 22065,1991
    [67]Dahl J.A, Harris K.L, et al., Ues of Smmall Particle Size Cement in water and Hydrocarbon Base Slurries[J], The Journal of Canadian Petroleum Technology,1993,32(9):25-27
    [68]Dalrymple E.D, Dahl J.A et al., Selective Water Control Process [J], SPE 24330,1992
    [69]L.Gregory carter et al. Resilient Cement Decrease Perforating Damage For presentation at the spring Meeting of the Mid-Continent Disrict Division of production Holiday Inn Weet[J], Amarillo, Texas April 10,3~51968 Paper No.851-420-E
    [70]Talabani S. Gas migration eliminated through correct cement design including elastomers [R] [J].SPE/IADC 39279,2001
    [71]Fraser,H.J.and Gratun,L.C.systematic packing of spheres with particular relations to porosity and permeability[J].J Geol.Nov-pee.1935,pp.785-909
    [72]覃维祖,曹峰.超高性能活性粉末混凝土[J].宝钢工程技术.1999(1),15-17
    [73]刘崇建,张玉隆等译.国外油井注水泥技术[M].成都:四川科学技术出版社,1992:22
    [74]李克向.实用完井工程[M].北京: 石油工业出版社,2002
    [75]刘大为、田锡君.现代固井技术[M].北京: 石油工业出版社,1994
    [76]陈庭根、管志川等编.钻井工程理论与技术[M].北京: 石油工业出版社,2000
    [77]邹采方、李国顺.钻井承包商协会论文集.石油工业出版社,2003
    [78]郝俊芳译.美国油井注水泥技术[M].北京:石油工业出版社,1985
    [79]章兆淇译.声波测井[M].北京:石油工业出版社,1985
    [80]郝俊芳,李自俊译.固井[M].北京:石油工业出版社,1986
    [81]许如源,郭永良译.混凝土强度试验[M].北京:中国建筑工业出版社,1980
    [82]邓建民、刘崇建.套管扶正器安装间距计算推荐方法[J].中国石油天然气总公司发布,1996
    [83]弓玉杰,吴广兴等人.固井二界面问题的初步分析与实验研究[J].石油钻采工艺,1998,
    [84]郑永刚,刘孝良,陈英:大斜度井及水平井注水泥顶替机理的实验研究[J].石油钻探技术,1993(1)
    [85]Clark,C.R.andL.G.Carter.Mud.Displacement.WithCementSlurries[J].JPT(July.1973)775-783
    [86]郑永刚,郝俊方:活动套管提高注水泥顶替效率的理论分析[J].天然气工业,1994(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700