用户名: 密码: 验证码:
基于GA-NN和不可逆热力学的钢中氧化物夹杂预报模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢中存在的大多数夹杂物,尤其是脱氧生成的氧化物夹杂的性质直接影响到钢的性能。在现有技术条件下完全去除钢中的夹杂物是不可能的,只要钢中有氧的存在,就不可能避免生成新的夹杂物。因此,通过物理化学的方法控制夹杂物的成分从而达到减小夹杂物对钢性能的有害性变得尤为重要。本论文在考察了大量国内外文献的基础上,主要围绕中夹杂物成分控制的热力学和动力学开展研究。
     本论文首先对前人建立的活度机理模型进行了考察,发现这些模型都是建立在很多假设的基础上,对活度组元体系进行了简化,因此应用领域往往受到限制。同时,机理模型在计算方法上,通常采用线性拟合、最小二乘法等传统数学方法进行回归,但是这些方法进行的参数估计不是无偏估计量,拟合精度往往不高。因此,本论文采用了对国际上比较权威的活度实验数据进行离散化的方式,用遗传算法改进BP神经网络的权值和阈值,基于实验数据建立了一种通用的实际溶液组元活度模型。
     通过将遗传神经网络模型引入夹杂物体系,本论文对MnO-SiO_2、CaO-SiO_2-Al_2O_3和MnO-SiO_2-Al_2O_3系夹杂物进行了研究,提出了将其控制在低熔点区域的方法,并对CaO-Al_2O_3-SiO_2顶渣覆盖下的不同脱氧方式进行分析。
     结合实际生产,本论文对合金化、精炼及钙处理过程中的夹杂物成分控制进行了研究,分析了不同情况下夹杂物的产生及成分变化机理,提出解决措施。
     针对前人对非平衡态下的夹杂物成分变化动力学研究较少及遗传神经网络模型只能研究平衡态夹杂物成分及形态的情况,本论文将不可逆热力学引入夹杂物动力学计算,从化学反应和扩散两个方面对夹杂物从生成初始及冶炼过程中不同时期的夹杂物状态进行分析,从机理上阐述夹杂物生成过程,并建模推导出夹杂物成分变化的通用动力学方程式。通过在实验室条件下模拟LF过程,得出动力学方程的唯象系数,并验证了不可逆热力学在夹杂物组元计算的可行性。
The nature of majority of inclusions in steel, in particular the deoxy-generated oxide inclusions directly affect the performance of steel. Under the conditions of existing technology, it is impossible to full remove inclusions in steel. As long as the existence of oxygen in steel, the generation of new inclusions can not be avoid. Therefore, in order to achieve the target of reduction of the harmful effects on performance of steel, the control of inclusions' composition by physical-chemistry methods becomes especially important. In this paper, the thermodynamics and kinetics for controlling inclusions composition are mainly concentrated, based on the invetigation of many domestic and international literatures.
     The eatablishment of previous mechanism models is investigated firstly in this paper. It finds that these models are based on a lot of assumptions. Due to the simplified architecture of the activity of components, the application fields are always be restricted. At the same time, mechanism models always use linear fitting, least-squares procedure and so on to regress in the methods of calculation. But parameter estimation of these traditional mathmatics methods is not unbiased estimators, the fitting accuracy is often not high. Therefore, this paper takes the method of modeling discrete activity data which is the authority of international and obtained from experiment. By using genetic algorithms(GA) to improve the weights and thresholds of BP neural nets(NN), a general activity model of actual solution is established based on experimental data.
     By introducing GA-NN model to inclusions systems, the inclusions of MnO-SiO_2、CaO-SiO_2-Al_2O_3 and MnO-SiO_2-Al_2O_3 have been studied in this paper. The control methods in low-melting-point region of these inclusions have been put forword, and the different ways of deoxidization with CaO-SiO_2-Al_2O_3 slag covering are analyzed.
     Combination of actual production, the control of inclusion components during the process of alloying, refining and calcium treatment is studied. An analysis of the generation and variational mechanism of inclusions at different circumstances is obtained, and a solution is proposed.
     For there's little study on the kinetics of the inclusions' components variation under non-equilibrium state, and GA-NN model can only be applied to the study of the equilibrium composition and morphology of inclusions, irrevisible thermodynamics is introduced to kinetics calculation of inclusions in this paper. From the aspects of chemical reaction and diffusion, the status of inclusions at different period from generation to refining process is stdudied. The formation of inclusions is described from mechanism and a general kinetics equation for describing the components variation of inclusions is obtained by modeling. By the simulation of LF process under laboratory conditions, the phenomenological coefficients of kinetics equations are obtained, and the feasibility of applying irrevisible thermodymics to inclusions calculation is verified.
引文
1.张德堂.钢中非金属夹杂物鉴别[M].北京:国防工业出版社,1991:51.
    2.李代锺.钢中的非金属夹杂物[M].北京:科学出版社,1983:170-192.
    3.董履仁.钢中大型夹杂物[M].北京:冶金工业出版社,1991:65-87.
    4.沈才芳,孙杜成,陈建斌等.电弧炉炼钢工艺与设备(第二版)[M].北京:冶金工业出版社,2001:345.
    5.邱绍歧.电炉炼钢原理及工艺[M].北京:冶金工业出版社,2001:75-85.
    6.胡现槐.提高连铸板坯质量的部分技术措施[J].连铸.1994,3:29-33.
    7.蔡开科.连铸技术发展[J].山东冶金,2004,26(1):1-3.
    8.殷瑞钰.连续铸钢在中国的发展和展望[A].发展中国家连铸会议论文译文集[C].北京:中国金属学会,1993:1-4.
    9.L.E.K.Holappa.洁净钢的理论和生产手段,90年代钢铁工业的发展趋势[A].第六届国际钢铁大会译文集[C].北京:中国金属学会《钢铁》编辑部,1991:165.
    10.J.Kawahara,K.Tanabe.Advance of valve spring steel[J].Wire Journal International,1992(11):55-61.
    11.G.Bernard,P.V.Riboud,G.Urbain.Investigation of the plasticity of oxide inclusions[J].Revue de Metallurgie,cashiers d'Informations techniques,1981(78):421-433.
    12.N.A.McPherson,A.Mclean.On-Metallic Inclusion in Continously Cast Steel[J].Continuous Casting,1995,7:1-61.
    13.上海机械制造工艺工程所.金相分析技术[M].上海:上海科学技术出版社,1987:15-17.
    14.徐南平.钢铁冶金实验技术及研究方法[M].北京:冶金工业出版社,1995:92.
    15.陈名浩,沈汝美.洁净钢氧化夹杂分析方法评述[J].钢铁,2000,35(4):69-73.
    16.方克明,熊仲明.钢中夹杂物研究方法的探索[J].钢铁研究学报,2000,12(9):46-49.
    17.薛正良,李正邦,张家雯.钢的纯净度的评价方法[J].钢铁研究学报,2003,15(1):62-66.
    18.B.Irving.Methods for Assessment of Non-metallic Inclusions in Steel[J].Ironmaking and Steelmaking,1994,21(3):174.
    19.G.Auclair,R.Meill.Methods for Assessment of Cleanliness in Superclean Steels[J].Rev.Metallurgy,1996,91(1):119.
    20.胡英.流体分子热力学[M].北京:高等教育出版社,1982:215-225.
    21.J.M.Prausntiz,R.N.Lichtenthaler,E.G.Azevedo.Molecular Thermodynamics of Fluid-Phase Equilibria[M].Upper Saddle River,N J:Prentice-Hall Inc.Englewood Cliffs,1986:193-370.
    22.乔芝郁,许志宏,刘洪霖.冶金和材料计算物理化学[M].北京:冶金工业出版社,1999:1-47.
    23.F.Kohler.Estimation of the thermodynamic data for a ternary system from the corresponding binary system[J].Monatsh.Chem.,1960,91:738-740.
    24.G.W.Toop.Predicting ternary aetivities using binary data[J].Trans.Metall Soc AIME,1965,223: 850-855
    25.周国治.新一代的溶液几何模型极其今后展望[J].金属学报,1997,33(2):126-130.
    26.K.C.Chou,S.K.Wei.A new generation solution model for predicting thermodynamic Properties of a multi-component system from binaries[J].Metall Mater Trans B,1997,28B(3):439-445.
    27.E.A.Guggenheim.Mixture[M].London:Oxford University Press,1952:Chapts.Ⅹ and Ⅺ.
    28.A.D.Pelton,M.Blander,S A.D.egterov et al.The Milton Blander symp on thermodynamic Predictions and applications-the modified quasichemieal model I-binary solutions[J].Metall Mater Trans B,2000,31B(4):577-659.
    29.M.M.Alger,C.A.Eckert.Thermodynamics of highly solvated liquid metal solution[J].Ind.Eng.Chem.Fundam,1983,22(2):249-254.
    30.W.J.Howell,C.T.Lira,C.A.Eckert.A linear chemical-physical theory model for liquid metak solution themodynamics[J].Aiche Journal,1988,34(9):1477-1485.
    31.G.M.Willson.A new expression for the exeess free energy of mixing[J].J.Am.Chem.Soc,1964,86(1):127-130.
    32.H.Renon,J.M.Prausnitz.Local compositions in thermodynamic excess functions for liquid mixtures[J].AICHE Journal,1968,14(1):135-144
    33.D.S.Abrams,J.M.Prausnitz.Local compositions in thermodynamic excess functions for liquid mixtures:a new expression for the exceess Gibbs energy of partly or completely miscible systems[J].AICHE Journal.1975,21(1):116-128.
    34.S.M.Walas.Phase Equilibria in chemical Engineering(化工相平衡)[M].S.J.Han(韩世钧),G.H.Chen(陈庚华),y.H.Liu(刘伊华) et al trans.Beijing:China petro-chemical Press,1991:230.
    35.S.K.Tarby,F.P.Stein.Thermodynamics of binary metallic solutions:application of the Wilson equation[J].Metall Trans,1970,1(8):2354-2356.
    36.I.Ansara.Prediction of thermodynamic properties of mixing and phase diagrams in multi-component system[A].Kubasehewski O[C].Metallurgical Chemistry.London:Her Majesty's Stationary Office,1972:403-430.
    37.C.A.Eckert,J.S.Smith,R.B.Irwin,et al.A chemical theory for the thermodynamics of highly-solvated liquid metal mixtures[J].AICHE Journal,1982,28(2):325-333.
    38.S.D.Choi,E.E.Hucke.Applicability of various formalisms for representation of excess free energy in binary metallic solutions[J].CALPFAD,1990,14(4):367-376.
    39.D.P.Tao.A prediction on thermodynamic properties of ternary molten mattes from Wilson equation[J],Thermodynamic Acta,2000,356:139-142.
    40.陶东平.液态合金和熔融炉渣的性质-理论.模型.计算[M].昆明:云南科技出版社,1997:1-23.
    41.陶东平.用Willson方程预测三元液态合金的热力学性质[J].金属学报,1991,27(6):B380-386.
    42.X.B.Zhang,G.C.Jiang,K.Tang,et al.A sub-regular solution model used to predict the component activities of quaternary systems[J].Calphad,1997,21(3):301-309.
    43.唐恺,蒋国昌,周国治,丁伟中.冶金熔渣热力学性质的SReS模型[J].金属学报,2000,36(5):502-506.
    44.唐恺.冶金熔体热力学模型的研究(博士后出站报告)[R],北京:北京科技大学,2000.
    45.s.R.Degroot,P.Mazur.非平衡态热力学[M].陆全康译,上海:上海科学技术出版社,1981:1-2,24,27,32,348-364.
    46.郑重知.不可逆过程热力学及现代反应动力学导论[M].北京:高等教育出版社,1982:77-80.
    47.李如生.非平衡态热力学和耗散结构[M],北京:清华大学出版社,1986:851.
    48.#12
    49.楼顺天,施阳.基于MATLAB的系统分析与设计—神经网络[M],西安:西安电子科技大学出版社,2000:135-140.
    50.J.J.Hopfield,Neural networks and physical systems with emergent collective computational abilities[J].Proceedings of the National Academy of Sciences of the U.S.A,1982,81:3088-3092.
    51.D.E.Rumelhart,G.E.Hinton.Learning internal representations by back propagation error[J].Nature,1986,323(9):533-536.
    52.J.H.Holland,A new kind of turnpike theorem[J].Bulletin of the American Mathematical Society,1969,75:1311-1317.
    53.H.J.Bremermann,The size of genetic programs versus their effectiveness and adaptability[J].California univ berkeley dept of mathematics,1967,8:33.
    54.T.H.Morgan.Sex limited inheritance in drosophila[J].Science,1910,32:120-122.
    55.B.K.D.P.Rao,D.R.Gaskell.Thermodynamic properties of melts in the system MnO-SiO_2[J].Metallurgical Transactions B,1981,12B(2):311-317.
    56.H.Schenck,M.Frohberg,T.G.Gammal.Bestimmung der Aktivit(a|¨)t des Manganoxyduls in flus - sigen Manganoxydul- Kiesels(a|¨)ure - Schlacken bei 1550℃[J].Arch.Eisenh(u|¨)ttenwes.1961,32:509-511.
    57.K.E Abraham,M.W.Davies,F.D.Richardson.Sulphide capacities of silicate melts[J].J.Iron Steel Inst.,1960,196:82-89.
    58.M.Rey.The Thermodynamic Activity of Silica and of Oxides in Silicate Melts[A].Physical Chemistry of process metallurgy[C].London:Hazell,Watson & Viney,Ltd.,1948:257-264.
    59.F.D.Richardson.Activities in ternary silicate melts[A].Physical Chemistry of Steelmaking[C].New York:J.F.Elliott.,1958:68-76.
    60.P.T.Carter,T.G.Macfarlane.Thermodynamics of slag systems.Part Ⅰ.The thermodynamic properties of CaO-Al_2O_3 slags[J].J Iron steel Inst,1957,185:54.
    61.R.H.Rein,J.Chipman.Activities in the liquid solution SiO_2-CaO-MgO-Al_2O_3 at 1600℃[J],Trans.Met.Soc.AIME,1965,233:415-425.
    62. T. Fujisawa, M. Yamauchi, H. Sakao. Equilibrium between CaO-Al_2O_3-CaS sat. slags and molten iron alloys [J]. CAMP-ISIJ, 1988, 1:1115.
    63. E. Anderson, J. Spread borough. Yielding, twinning, and fracture of armco iron and alloys of iron with silicon, chromium, and manganese [J]. J. Iron Steel Inst., 1968, 206 (12): 1223.
    64. S. Ueda, K. Morita and N. Sano. Activity of AlO1.5 for the CaO-AlO_(1.5)-CeO_(1.5) System at 1773 K[J]. ISIJ International, 1998, 38: 1292-1296.
    65. K. Kume, K. Morita, T. Miki. Activity Measurement of CaO-SiO_2-AlO_(1.5)-MgO Slags Equilibrated with Molten Silicon Alloys[J]. ISIJ International, 2000, 40(6): 561-566.
    66. R. A. Sharma, F. D. Richardson. Activities in lime-alumina melts[J]. J. Iron and Steel Inst., 1961, 198: 386-390.
    67. D. A. R. Kay, J. Taylor. Activities of silica in the lime silica system[J]. Trans. Faraday Soc, 1960, 56: 1372-1386.
    68. L. Yang, L. C. MacCabe, R. Miller. Physical Chemistry of Steelmaking[M]. New York: M.I.T. and John Wiley and Sons, Inc., 1958: 63.
    69. P. T. Carter, T. G. Macfarlane. Thermodynamics of slag systems[J]. Part I . J Iron Steel Inst, 1957, 185: 54-56.
    70. F. D. Richardson. Physical Chemistry of Metals[M]. New York: McGraw-Hill Co, Inc, 1953: 77-95.
    71. J. D. Baird, J. Taylor. Reaction between silica and carbon and the activity of silica in slag solution[J]. Trans. Faraday Soc. 1958, 54: 526-539.
    72. K. Sawamura. Activity of Lime in Blast-Furnace Type. Slags[J]. Tetsu-to-Hagane Overseas, 1962, 2: 219-225.
    73. E. Anderson, J. Spreadborough. Yielding, twinning, and fracture of armco iron and alloys of iron with silicon, chromium, and manganese[J]. J. Iron Steel Inst, 1968, 206: 1223-1235.
    74. J. F. Elliott. Activities in the iron oxide - silica - lime system[J]. Trans. Met. Soc. AIME, 1955, 203: 485-488.
    75. J. F. Elliott, M. Gleiser, V. Ramakrishna. Thermochemistry for steelmaking, Vol. II [M]. London: Addison-Wesley Pub. Co., 1963: 123-137.
    76. R. Schuhmann, P. J. Ensio. Kinetics of reaction of gaseous nitrogen with iron (part II)[J], Trans. Metallurg. Soc. AIME, 1951, 191(3): 401-411.
    77. F. Oeters. Physikalische Chemie der Eisen-und Stahlerzeugung[J]. Dusseldorf, 1964, 159-162.
    78. E. T. Turkdogan, S. Ignatowicz, J. Pearson. The solubility of sulphur in iron and iron- manganese alloys[J]. J Iron Steel Inst., 1955, 180: 349.
    79. C. Bodsworth, I. M. Davidson. The activity of ferrous oxide in the stoichiometric FeO-SiO_2 system[A]. Physical chemistry of process metallurgy, Part- I [C], NewYork: Interscience publischers, 1958: 238.
    80. S. Ban-Ya, A. Chiba, A. Hikosaka. Thermodynamics of Fe_tO-M_xO_y(M_xO_y equals CaO, SiO_2, TiO_2, and Al_2O_3)-binary melts in equilibrium with solid iron[J].Testu-to-Hagane,1980,66(10):1484-1493.
    81.K.T.Jacob.Revision of thermodynamic data on MnO-Al_2O_3 melts[J].Canad.Metall.Quart.,1981,20(1):89-92.
    82.R.A.Sharma,F.D.Richardson.Activities of manganese oxide,sulfide capacities,and silicate melts[J].Trans.Met.Soc.AIME.1965,233:.1587-1592.
    83.D.A.R Kay and J.Taylor.Activities of silica in the lime + alumina + silica system[J].Trans.Faraday Soc.,1960,56:1372-1386.
    84.H.Ohta,H.Suito.Activities in MnO-SiO_2-Al_2O_3 slags and deoxidation equilibria of Mn and Si[J].Metallurgy and materials transactions B,1996,27B(2):263-270.
    85.S.K.Choudahary,S.Chandra,A.Ghosh.Prediction of deoxidation and inclusion precipitation in semikilled steel[J].Metallurgy and materials transactions B,2005,36B(1):59-65.
    86.S.Ban-Ya,M.Hino.,N.Yuge.Activity of the constituents in FetO-SiO_2-MnO salgs in equilibrium with solid iron[J].Tetsu-To-Hagane,1985,71(7):853-860.
    87.G.K.Sigworth,J.F.Elliott.The thermodynamics of liquid dilute iron alloys[J[.Metal Science,1974,18:298-316.
    88.日本学术振兴会制钢第19委员会.制钢反应推奖平衡值(改订增补)[M],昭和59年10月:255.
    89.S-W.Cho and H.Suito.Assessment of Calcium-oxygen equilibrium in liquid iron[J].ISIJ int.,1994,34(3):265-269.
    90.C.Mapelli,W.Nicodemi.Control of Inclusion in a Resulphurised Steel[J].Steel Research,2000(5):161-168.
    91.J.F.Elliott,M.Gleiser,V.Ramakrishna.Thermo-chemistry for steelmaking,Vol.Ⅱ[M],London:Addison-Wesley Pub.Co.,1963.
    92.E.L.Singelton,L.Carpenter,R.V.Lundquist.Studies of the MnO-SiO_2 binary system[R],Washington,DC:U.S.Dept.of the Interior,Bureau of Mines,1962:1-31.
    93.G.Eriksson,P.Wu,A.D.Pelton.Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the MnO-SiO_2 and CaO-SiO_2 systems[J].Canadian Metallurgical Quarterly,1994,33(1):13-21.
    94.P.V.Riboud,A.Muan.Phase Equilibria in a Part of the System FeO-MnO-SiO_2[J].Trans.Metall.Soc.AIME.1962,224:27-33.
    95.G.A.Rankin,F.E.Wright.The Ternary System CaO-Al_2O_3-SiO_2[J].Am.J.Sci.,1915,39(4):1-79.
    96.J.W.Greig.Immiscibility in silicate melts[J].Am.J.Sci.,1927,13(5):1-44,133-154.
    97.N.E.Filonenko,I.V.Lavrov.Calcium hexaluminate in the system CaO-Al_2O_3-SiO_2[J].Dokl.Akad.Nauk SSSR,1949,66(4):673-676.
    98.F.C.Langenberg,J.Chipaman.The System CaO-Al_2O_3-SiO_2[J].J.Am.Ceram.Soc.,1956,39(10):432-433.
    99. S. Aramaki, S. Roy. The Mullite-corundum boundary in the system MgO-Al_2O_3-SiO_2 and CaO-Al_2O_3-SiO_2[J]. J. Am. Ceram. Soc, 1959, 42(12): 644-645.
    100. A. L. Gentile, W. R. Foster. Calcium hexaluminate and its stability relations in the system CaO-Al_2O_3-SiO_2[J]. J. Am. Ceram. Soc, 1963, 46(2): 74-76.
    101. W. Gutt, A. D. Russell. Studies of the system CaO-SiO_2-Al_2O_3-MgO in relation to the stability of blastfurnace slag [J]. J. Mater. Sci., 1977, 12(9): 1869-1878.
    102. E. Criado, S. De Aza. Phase Relationships in the Subsystem Gehlenite-Anortite-Calcium Hexaluminate[C]. Proc. 1st C. E. R. P., Ed.: Faenza Editrice, 1976: 97-101.
    103. J. Longhi, J. F. Hays. Phase equilibria and solid solution along the join CaAl_2Si_2O_8-SiO_2[J]. Am. J. Sci., 1979, 279(7): 876-890.
    104. G. Eriksson, A. D. Pelton. Critical evaluation and optimization of the thermodynamic properties[J]. Metall. Trans. B, 1993, 24B(5): 807-815.
    105. E. F. Osborn, A. Muan. Phase Equilibria among Oxides in Steelmaking[M]. New York: Addison-Wesley Publishing Company, Inc., 1965.
    106. R. B. Snow. Equilibrium relationships on the liquidus surface in part of the MnO-Al_2O_3-SiO_2 system[J]. J. Am. Ceram. Soc. 1943, 26(1): 11-20.
    107. Jr. M. W. Chase, C.A. Davies, Jr. J. R. Downey, D. J. Frurip. JANAF Thermochemical Tables, Third edition, National Burean of Standard[M], Washington: Am. Chem. Soc, 1985.
    108. R. W. Nurse, J. H. Welch, A. J. Majumdar. The CaO-Al_2O_3 System in a Moisture-free Atmosphere [J]. Trans. J. Br. Ceram. Soc, 1965, 64(2): 409-418.
    109. R. W. Nurse, J. H. Welch, A. J. Majumdar. The 12CaO.7Al_2O_3 Phase in the CaO-Al_2O_3 System[J]. Trans. J. Br. Ceram. Soc, 1965, 64(2): 323/32
    110. J. A. Imlach, F. P. Glasser. Phase Equilibria in the System CaO-Al_2O_3-TiO_2[J]. Trans. J. Br. Ceram. Soc, 1968, 67(12): 581-609.
    111. A. K. Chatterjee, G. I. Zhmoidin. Phase equilibrium diagram of the system calcium oxide-aluminum oxide-calcium fluoride[J]. J. Mater. Sci., 1972, 7(1): 93-97.
    112. G. A. Rankin, F. E. Wright. The ternary system CaO-Al_2O_3-SiO_2[J]. Am. J. Sci., 1915, 39(4): 1-79.
    113. Rolin, M., P. H. Thanh. Phase Diagrams of Mixtures not Reacting with. Molybdenum [J]. Rev. Int. Hautes Temper. Et Refract, 1965, 2(2): 175-185.
    114. B. Hallstedt, J. Am. Assessment of the Calcia-Alumina System[J]. Ceram. Soc, 1990, 73(1): 15-23.
    115. J. Jeevaratnam, F. P. Glasser, L. S. D. Glasser. Anion Substitution and Structure of 12CaO-7Al_2O_3[J]. J. Am. Ceram. Soc, 1964, 47(2): 105-106.
    116. J. A. Imlach. The Ternary System CaO-Al_2O_3-SiO_2[J]. Cem. Concr. Res. 1971, 1(4): 57-61.
    117. B. Cockayne, B. Lent. Single Crystal. Growth of 12CaO.7Al_2O_3[J]. J. Cryst. Growth , 1979, 46: 467-473.
    118.V.N.Gladkiy,I.S.Kulikov,I.V.Ostrovskaya,A.A.Telegin.Izv.Akad.Nauk SSSR,Metal.1980:63-67.
    119.G.Eriksson,A.D.Pelton.Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the MgO-Al_2O_3,MnO-Al_2O_3,FeO-Al_2O_3,Na_2O-Al_2O_3 and K_2O-Al_2O_3 systems[J].Pelton:Metall.Trans.B,1993,24B:807-815.
    120.初红杰,季连春,刘占东.铬、锰、硅铁回收率及影响因素分析[J].一重技术,2001,4:53-55.
    121.GB 2272-1987 硅铁国家标准[S].
    122.YB 4140-2005 微碳锰铁行业标准[S].
    123.R.A.Farrar,M.N.Watson.Effect of Oxygen and Manganese on Submerged Arc Weld Metal Microstructure[J].Metal Construction,1979,11:285.
    124.杨东华.不可逆过程热力学原理及工程应用[M],北京:科学出版社.1989:38-94.
    125.S.R.Degroot,P.Mazur.非平衡态热力学[M].陆全康译,上海:上海科学技术出版社,1981:1-2,24,27,32,348-364.
    126.彭少方,张昭.线性和非线性非平衡态热力学进展和应用[M],北京:化学工业出版社,2006:124-129.
    127.王锦霞.不可逆热力学在冶金中的应用研究[D],沈阳:东北大学,2006.
    128.S.maeda,T.Soejima.Shape Control of Inclusions in W ire Rod for High Tensile Tire Cord by Refining with Synthetic Slag[A].Steelmaking Conference Proceedings[C].USA:ISS,1989,379-385.
    129.F.Oeters.The Metallurgy of Steelmaking[M],D(u|¨)sseldorf:Verlag Stahleissen mbH,1994:101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700