用户名: 密码: 验证码:
基于物理模型的人体运动建模与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虚拟人运动建模与仿真技术的研究是一项涉及到物理学、机器人学、生物力学和计算机图形学等多学科交叉的具有挑战性的课题。基于物理模型的虚拟人运动仿真是计算机图形学与动画技术的研究热点,但对于运动学与动力学计算的算法却一直没有得到深入研究。研究人员通常是直接使用传统机器人学的运动建模与仿真控制技术。然而,由于人体模型庞大的自由度与复杂的运动链结构,人体模型的运动控制技术与机器人系统相比难度要高得多。因此,基于物理的人体运动建模与仿真迫切需要更为高效的运动生成与控制技术。
     本文首先介绍了人体运动建模与仿真的背景与意义,简要介绍当前国内外研究现状。然后,本文对以下几方面进行了深入研究:逆运动学算法、变结构运动链建模、多刚体系统正动力学计算与人体伸及运动仿真。本文的主要工作与创新点如下:
     (1)当前逆运动学求解算法,计算开销大,生成姿态不自然。针对该问题,提出双向启发式逆运动学求解算法BHIK。BHIK算法将寻找关节位置的问题转换为寻找直线上某个点的计算问题,通过双向迭代过程来计算关节位置,通过每次调解单个关节角度来缩小系统误差。算法将关节约束分解为旋转与定位两个部分,在每一步迭代计算中应用关节约束,从而实现关节的移动范围控制。BHIK算法在迭代计算中避免了关节的旋转操作,利用二维约束椭圆简化约束问题求解,克服了当前逆运动学方法时间复杂度高以及易产生奇异性的问题。
     (2)针对在人体运动模型中运动链结构变化问题,提出杆件连通性描述方法,该描述法利用指针表明相邻杆、父子杆与虚拟杆关系,便于实现动力学递归计算。通过将原始闭链切分为若干关节得到虚拟开链结构,然后利用开链结构驱动关节角度雅可比矩阵,给出一般闭运动链与开运动链的动力学方程。该方法有效解决了传统动力学计算方法无法直接应用于闭式运动链的问题。基于本文提出的杆件连通性描述方法与闭运动链的动力学方程,提出一种基于分析法的碰撞接触模型,采用试差法来寻找满足单面约束的约束条件与约束力。
     (3)针对单位矢量法在人体模型正向动力学求解中复杂度过高的问题,提出连接切分算法CCA。CCA算法通过逐个增加和移除关节,实现连接与切分目标运动链。初始状态所有关节被移除,并且连杆完全不受约束。在连接阶段,逐个增加关节创建目标链。在切分阶段以连接阶段的逆向顺序移除关节,求解完整运动链的约束力和关节加速度。
     在以上研究的基础上,探讨人体伸及运动的分层控制策略,构建了人体伸及运动实验原型,验证了研究成果的正确性和有效性。
Research on virtual human motion modeling and simulation technology is a challenging and Interdisciplinary topic which involoves physics, robotics, kinematics, biomechanics and dynamics. Motion simulation of the virtual human based on the physics is a research hotspot of computer graphics and animation technology, but the kinematics and dynamics algorithm has not been in-depth study. Researchers usually use traditional technology of motiion modeling and simulation in robots.However, due to a large degree of freedom and complex kinematic chain structure, compared to conventional robotic manipulators, motion control technology of h human figures are characterized by their complexity and difficulty. Therefore, modeling and simulation of human motion is an urgent need for more efficient motion generation and control technology.
     This dissertation firstly introduces the background and significance of modeling and simulation of human motion, introduces the current research status at home and abroad. Then, in-depth research is carried out around inverse kinematics control, modeling of variable structure motion chain, forward dynamics of multibody systems and simulation of human reaching motion. The main contributions of this dissertation are as follows:
     (1) The currently available methods of inverse kinematics suffer from high computational cost and production of unrealistic poses. To overcome this problem, this dissertion introduced a novel method, called Bidirectional Heuristic inverse kinematic (BHIK) Algorithm. BHIK treats finding the joint locations as a problem of finding a point on a line, compute the new position of joint in a bidirectional iterative mode, and minimize the system error by adjusting each joint angle one at a time.The joint constraint can be decomposed into two parts:rotational and orientational constraints, applied the calculation of joint constraints in each step of the iteration, so as to realize control of motion range of joint. BHIK avoids using angle rotations in the iteration, and simplifies the constraint problem by2D constraint ellipse, which overcomes high time complexity and singularity problem of the current inverse kinematics algorithm.
     (2) Aimed at structure change of kinematic chain in human motion model, a novel link connectivity description method is proposed. This method uses the pointer indicates the relationship of adjacent link, father and son link and the virtual link, which is convenient to realize dynamic recursive calculation. The original closed chain is divided into several joints to form virtual open chain structure, based on the joint angle Jacobian matrix of actuated joints in the open chain, gives the dynamics equation of general closed kinematic chain and open kinematic chain.The method effectively solves the problem that the traditional dynamic calculation methods cannot be directly applied in closed kinematic chain. Based on the link connectivity description method and dynamic equation of closed chain, this dissertion introduced a collision and contact method based on analytical approaches, we apply a trial-and-error process to find the constraint condition and contact forces that satisfy the unilateral conditions.
     (3) In order to solve the problem of high complexity of UVM in human model, this dissertion proposed Connecting and Cut Algorithm (CCA). CCA connects and cuts the target chain by adding and removing joints one by one, respectively.The computation starts from the initial state where all joints are removed and the links are not constrained at all. In the connecting phase, the joints are added one by one to finally complete the target chain. In the cutting phase, the constraint forces and joint accelerations for the complete chain are computed as the joints are removed in the reverse order of the assembly phase.
     On the basis of above research, prototype system of reaching motion of human is built, which verify the correctness and validity of research results.
引文
[1]N. I. Badler, C. B. Phillips, B. L. Webber. Simulating Humans:Computer Graphics, Animation, and Control[M]. London:Oxford University Press,1999:23-61.
    [2]N.I. Badler, R. Bindiganavale, et al. Real Time Virtual Humans[C]. International Conference on Digital Media Futures,1997:4-13.
    [3]C. W. Reynolds. Flocks, Herds and Schools:A Distributed Behavioral Model[J]. Computer Graphics,1987,21(4):25-34.
    [4]吴小毛,马利庄,顾宝军.计算机动画中人体建模与皮肤变形技术的研究现状与展望[J].中国图象图形学报,2007,12(4):565-573.
    [5]Niemeyer.Frank, Wilke.Hans-Joachim, Schmidt.Hendrik. Geometry strongly influences the response of numerical models of the lumbar spine-A probabilistic finite element analysis [J]. Journal of Biomechanics,2012,45(8):1414-1423.
    [6]Kurutz.M, Oroszvary.L. Numerical simulation of degeneration of lumbar spine segments[C].5th European Conference of the International Federation for Medical and Biological Engineering,2011,37:737-740.
    [7]Moura.Daniel.C, Boisvert.Jonathan, Barbosa.Jorge, et al. Fast 3D reconstruction of the spine using user-defined splines and a statistical articulated model[C]. Advances in Visual Computing-5th International Symposium,2009:586-595.
    [8]Wu.James.Shih-Shyn, Lin.Hsiao-Che,Chen. Jian-Horng. Geometrical nonlinear analysis of the spinal motion segments by poroelastic finite element method[C].2009 WRI World Congress on Computer Science and Information Engineering,2009:357-361.
    [9]Kwon. Suncheol, Kim.Jung. Real-time upper limb motion prediction from noninvasive biosignals for physical human-machine interactions[C].2009 IEEE International Conference on Systems, Man and Cybernetics,2009:847-852.
    [10]Albrecht.S, Ramirez-Amaro.K, Ruiz-Ugalde.F, et al. Imitating human reaching motions using physically inspired optimization principles[C].11th IEEE-RAS International Conference,2011:602-607.
    [11]Abdel-Malek.Karim, Arora.Jasbir, et al.A physics-based digital human model[J] International Journal of Vehicle Design,2009,51(4):324-340.
    [12]Penmatsa.Rajeev, Bhatt.Rajankumar, Farrell.Kimberly, et al. Estimation of mass and inertia properties of human body segments for physics-based human modeling and simulation applications[J].SAE International Journal of Passenger Cars-Mechanical Systems,2009, 2(1):1626-1631.
    [13]Lan.H, Al-Jumaily.A.M, Lowe.A. An investigation into the upper arm deformation under inflatable cuff[C]. ASME International Mechanical Engineering Congress and Exposition, 2008:621-624.
    [14]Franci.R, Parenti-Castelli.V, Belvedere.C, et al. A new one-DOF fully parallel mechanism for modelling passive motion at the human tibiotalar joint[J]. Journal of Biomechanics,2009, 42(10):1403-1408.
    [15]Rummel. Juergen, Seyfarth. Andre. Stable running with segmented legs[J]. International Journal of Robotics Research,2008,27(8):919-934.
    [16]Baldisserri.Benedetta, Castelli.Vincenzo.Parenti. A new 3D kinematic model for the passive motion of the tibia-fibula-ankle complex[C]. ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010,2010:47-55.
    [17]Kim.Joo H, Xiang.Yujiang, Bhatt.Rajankumar, et al. Throwing motion generation of a biped human model[C].The 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics,2008:587-592.
    [18]Huryn. T.P, Luu.B.L, Van.Der.Loos, et al. Investigating human balance using a robotic motion platform[C]. IEEE International Conference on Robotics and Automation 2010,2010: 5090-5095.
    [19]Kociolek. Aaron M, Keir. Peter J. Modelling tendon excursions and moment arms of the finger flexors:Anatomic fidelity versus function[J]. Journal of Biomechanics,2011,44(10): 1967-1973.
    [20]Rankin. Jeffery W, Neptune. Richard R. Musculotendon lengths and moment arms for a three-dimensional upper-extremity model[J]. Journal of Biomechanics,2012,45(9): 1739-1744.
    [21]Pontonnier.Charles, Dumont.Georges. From motion capture to muscle forces in the human elbow aimed at improving the ergonomics of workstations[J]. Virtual and Physical Prototyping,2010,5(3):113-122.
    [22]Iwami.Takehiro,Miyawaki.Kazuto,Ishikawa.Yoshinori, et al. Model simulation of novel spine for the motion stress analysis with muscle stimulation[C].2008 International Symposium on Micro-NanoMechatronics and Human Science,2008:435-440.
    [23]Chouvatut. Varin, Madarasmi.Suthep, Tucerya.Mihran.3D face and motion from feature points using adaptive constrained minima[C]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,2011:2207-2219.
    [24]Barbalios.Nikos, Nikolaidis.Nikos, Pitas.Ioannis.3D human face modeling from uncalibrated images using spline based deformation[C]. The 3rd International Conference on Computer Vision Theory and Applications,2008:455-459.
    [25]Pronovost.Sylvain, West.Robert. Improving usability and integration of human behavior representation engineering across cognitive modeling, human factors, and modeling and simulation best practices[C].19th Annual Conference on Behavior Representation in Modeling and Simulation,2010:82-89.
    [26]Edward.Lydie, Lourdeaux.Domitile, Barthes.Jean-Paul. Cognitive modeling of virtual autonomous intelligent agents integrating human factors[C].IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology,2009:353-356.
    [27]Endorphin [EB/OL]. [2011-10-10]. http://www.naturalmotion.com/products/endorphin/.
    [28]Shiratori. T, Hodgins. J. K. Accelerometer-based user interfaces for the control of a physically simulated character[J]. ACM Trans on Graphics,2008,27(5):1-10.
    [29]Delp. S. L, Anderson. F. C, Arnold. A.S, et al. Open-source software to create and analyze dynamic simulations of movement[J]. IEEE Trans on Biomedical Engineering,2007, 54(11):1940-1950.
    [30]L. Assassi, N. Magnenat-Thalmann. Biomechanical Modeling of the Human Articulation for Osteoarthritis Analysis[C]. Computer Methods in Biomechanics and Biomedical Engineering,2012:573-578.
    [31]B. Gilles, N. Magnenat-Thalmann. Musculoskeletal MRI segmentation using multi-resolution simplex meshes with medial representations[J]. Medical Image Anaylsis, 2010,14:291-302.
    [32]B. Kevelham, N. Magnenat-Thalmann. Virtual try on:an application in need of GPU optimization[C]. Proceedings of the ATIP/A*CRC Workshop on Accelerator Technologies for High-Performance Computing,2012:1-10.
    [33]U. Bonanni, M. Montagnol, N. Magnenat-Thalmann.Multilayered visuo-haptic hair simulation[J]. The Visual Computer,2008,24(10):901-910.
    [34]Xiang, Y., Arora, J. S., Rahmatalla. S, et al. Human Lifting Simulation using Multi-objective Optimization Approach[J]. Multibody Systems Dynamics,2009,23 (4):431-451.
    [35]Marler, R. T., Arora, J. S., Yang, J, et al. Use of Multi-objective Optimization for Digital Human Posture Prediction[J]. Engineering Optimization,2009,41(10):295-943.
    [36]Marler, T., Yang, J., Kim, J., Harrison, C. Posture Prediction with External Loads-A Pilot Study[J]. SAE International Journal of Passenger Cars-Mechanical Systems,2009,2(1): 1014-1023.
    [37]Goussous, F., Marler, T., Abdel-Malek, K. A New Methodology for Human Grasp Prediction[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A:Systems and Humans,2009,39(2):369-380.
    [38]D. Slonneger, M. Croop, N. Badler, et al. Human model reaching, grasping, looking and sitting using smart objects[C]. International Ergonomic Association-Digital Human Modeling,2011.
    [39]Stocker, B. Sunshine-Hill, J. Drake, I. Perera, J. Kider, N. Badler. CRAM it! A comparison of virtual, live-action and written training systems for preparing personnel to work in hazardous environments[C]. IEEE Virtual Reality,2011:95-102.
    [40]N. Pelechano, J. Allbec, N. Badle. Controlling individual agents in high-density crowd simulation[C]. ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), 2007:99-108.
    [41]Phillips, N. Badler. Jack:A toolkit for manipulating articulated figures[C]. ACM SIGGRAPH Symposium on User Interface Software,1988:221-229.
    [42]T.J. Smith, J. Shi, J. Granieri, N. Badler. J. Smart avatars in JackMOO[C]. Virtual Reality Annual International Symposium,1999:156-163.
    [43]N. I. Badler, K. Manoochehri, G. Waiters. Articulated Figure Positioning by Multiple Constraints[J]. IEEE Computer Graphics And Applications,1987,7(6):28-38.
    [44]Marek Vondrak, Leonid Sigal, Jessica Hodgins, Odest Jenkins. Video-based 3d motion capture through biped control[C]. ACM SIGGRAPH 2012.
    [45]Junggon Kim, Nancy S. Pollard. Fast simulation of skeleton-driven deformable body characters[C]. ACM Transactions on Graphics,2011.
    [46]Natasha Kholgade, Iain Matthews, Yaser Sheikh. Content retargeting using parameter-parallel facial layers[C]. ACM SIGGRAPH/Eurographics Symposium on Computer Animation,2011:195-204.
    [47]Kwang Won Sok, Katsu Yamane, Jehee Lee, Jessica Hodgins. Editing dynamic human motions via momentum and force[C]. The ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2010),2010:11-20.
    [48]Taesoo Kwon, Jessica K. Hodgins. Control systems for human running using an inverted pendulum model and a reference motion capture sequence[C]. The ACM SIGGRAPH/Eurographics Symposium on Computer Animation,2010:129-138.
    [49]Jessica Hodgins, Sophie Joerg, Carol Sullivan,et al. The saliency of anomalies in animated human characters[C]. ACM Transactions on Applied Perception,2010.
    [50]李华.数字化虚拟人[J].科学,2002,54(5):20-23.
    [51]夏时洪,魏毅,王兆其.人体运动仿真综述[J].计算机研究与发展,2010,47(8):1354-1361.
    [52]李宗民,刘玉杰,李振波,崔丽,李华Bezier矩及其在人体姿态识别中的应用[J].计算机工程与应用,2005,24:38-40.
    [53]李淳芃,王兆其,夏时洪,朱登明.基于局部支撑姿态的逆运动学求解[J].计算机学报,2007,30(11):1982-1987.
    [54]朱登明,王兆其.基于运动序列分割的运动捕获数据关键帧提取[J].计算机辅助设计与图形学学报,2008,20(6):787-792.
    [55]朱登明,王兆其.基于动作单元分析的人体动画合成方法研究[J].计算机研究与发展,2009,46(4):610-617.
    [56]邓宇,李振波,李华.基于视频的三维人体运动跟踪系统的设计与[J].计算机辅助设计与图形学学报,2007,19(6):769-774.
    [57]魏毅,夏时洪,王兆其.基于物理的人体空中运动仿真[J].软件学报,2008,19(12):3228-3236.
    [58]荆树旭,何发智,刘华俊.一种运动轨迹矢量化的实时拳法类型识别方法[J].小型微型计算机系统,2008,29(12):2285-2290.
    [59]高岩,陈敏刚,王长波,陈志华,马利庄.基于层次约束的2维动画关键帧插值算法[J].中国图象图形学报,2011,16(9):1745-1752.
    [60]王长波,王龙.面向虚拟交互展示的人脸合成方法[J].计算机与现代化,2010,10:68-71.
    [61]高岩,许建中,王长波,邱兆文,马利庄.约束条件下的人脸五官替换算法[J].中国图形图象学报,2010,15(3):502-506.
    [62]李众,马利庄,陈志华,吴小毛,高岩.基于运动路径变换的人体运动编辑[J].计算机工程与应用,2006,17:86-89.
    [63]杜宇,陈志华,徐骏剑.基于运动图的路径编辑技术[J].计算机应用,2011,31(10):2745-2749.
    [64]张鑫,王章野,王作省,彭群生.人体运动建模的实时逆运动学算法[J].计算机辅助设计与图形学学报,2009,21(6):853-860.
    [65]张艺江,秦学英,Mien Pettre,彭群生.虚拟群体与动态视频场景的在线实时融合[J].计算机辅助设计与图形学学报,2011,23(1):185-191.
    [66]苍海,李翰君,高维纬.排球运动员步态支撑期的足底压力特征[J].沈阳体育学院学报,2012,31(1):84-97.
    [67]李翰君,童丽平,周兴龙,曲峰.下肢运动影像解析与高速红外运动捕捉系统实验数据的比较[J].北京体育大学学报,2011,34(1):126-128.
    [68]张美珍,曲峰.跑台和地面上跑动时的生物力学分析[J].北京体育大学学,2011,34(11):55-61.
    [69]王洪生,白雪岭,张希安,张琳琳,王成焘.人体行走过程中上肢运动仿真及生物力学特征分析[J].上海交通大学学报,2009,8:1302-1306.
    [70]王成焘,王冬梅,白雪岭,叶铭.“中国力学虚拟人”研究及应用[J].生命科学,2010,35:1235-1240.
    [71]唐刚,王洪生,张希安,王成焘.基于反向动力学的人体肌肉力预测平台[J].中国组织工程研究与临床康复,2010,35:6475-6478.
    [72]唐刚,白雪岭,王洪生,王成焘.基于关节坐标系的人体运动学仿真[J].计算机仿真,2011,8:94-97.
    [73]魏高峰,田丰,唐刚,王成焘.基于超级计算人体骨骼肌系统弯腰搬物整体有限元的建模与仿真[J].中国组织工程研究与临床康复,201l,30:5539-5542.
    [74]J. Funge, X. Tu, D. Terzopoulos. Cognitive Modeling:Knowledge, Reasoning and Planning for Intelligent Characters[C]. Siggraph'99,1999:11-13.
    [75]L. Moccozet, N. M. Thalmann. Dirichlet Free Form Deformations and their Application to Hand Simulation[C]. Computer Animation'97,1997:93-102.
    [76]Anders Lau Olsena, Henrik Gordon Petersen.Inverse kinematics by numerical and analytical cyclic coordinate descent[J].Robotica,2011,29(4):619-626.
    [77]A. Balestrino, G. De Maria, L. Sciavicco. Robust control of robotic manipulators[C]. The 9th IFAC World Congress,1984:2435-2440.
    [78]David E. Orin, William W. Schrader. Efficient computation of the jacobian for robot manipulators[J] The International Journal of Robotics Research,1984,3(4):66-75.
    [79]W. A. Wolovich, H. Elliott. A computational technique for inverse kinematics[C]. The 23rd IEEE Conference on Decision and Control,1984:1359-1363.
    [80]A. Balestrino, G. De Maria, L. Sciavicco. Robust control of robotic manipulators[C]. The 9th IFAC World Congress,1984:2435-2440.
    [81]Duleba, I., Sasiadek, J.Z. Modified Jacobian method of transversal passing through singularities of nonredundant manipulators[C]. The American Control Conference, 2000:2839-2843.
    [82]C. W. Wampler. Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods[C]. IEEE Transactions on Systems, Man and Cybernetics, 1986,16(1):93-101.
    [83]Y. Nakamura, H. Hanafusa. Inverse kinematic solutions with singularity robustness for robot manipulator control[J]. Journal of Dynamic Systems, Measurement, and Control,1986, 108(3):163-171.
    [84]Samuel R. Buss, Jin-Su Kim. Selectively damped least squares for inverse kinematics[J]. Journal of Graphics Tools,2005,10(3):37-49.
    [85]Chris Hecker, Bernd Raabe, Ryan W. Enslow, John Deweese, Jordan Maynard, Keesvan Prooijen. Real-time motion retargeting to highly varied user-created morphologies[J]. ACM Transactions on Graphics(TOG),2008,27(3):1-11.
    [86]Keith Grochow, Steven L. Martin, Aaron Hertzmann. Style-based inverse kinematics[C]. ACM SIGGRAPH 2004,2004,23(3):522-531.
    [87]Robert W. Sumner, Matthias Zwicker, Craig Gotsman, Jovan Popovi'c. Mesh-based inverse kinematics. ACM Transactions on Graphics (TOG),2005,24(3):488-495.
    [88]Kevin G. Der, Robert W. Sumner, Jovan Popovic. Inverse kinematics for reduced deformable models[C]. ACM SIGGRAPH 2006,2006,25(3):1174-1179.
    [89]Chris Welman. Inverse kinematics and geometric constraints for articulated figure manipulation[D]. The school of Computer Science of Simon Fraser University,1993.
    [90]Li-Chun Tommy Wang, Chih Cheng Chen. A combined optimization method for solving the inverse kinematics problems of mechanical manipulators[J]. IEEE Transactions on Robotics and Automation,1991,7(4):489-499.
    [91]Jeff Lander. Making kine more flexible[J]. Game Developer,1998,5(3):15-22.
    [92]Damian Merrick, Tim Dwyer. Skeletal animation for the exploration of graphs[C]. Australasian Symposium on Information Visualization,2004:61-70.
    [93]Adrian A. Canutescu, Roland L. Dunbrack. Cyclic coordinate descent:A robotics algorithm for protein loop closure[J]. Protein Science,2003,12(5):963-972.
    [94]R.Mukundan. Triangulation:A new algorithm for inverse kinematics[C].2007 The Image and Vision Computing,2007:181-186.
    [95]R.Mukundan. A robust inverse kinematics algorithm for animating a joint chain[J]. International Journal of Computer Applications in Technology,2009,34(4):303-308.
    [96]Luis Unzueta, Manuel Peinado, Ronan Boulic, Angel Suescun. Full-body performance animation with sequential inverse kinematics[J]. Graphical Models,2008,70(5):87-104.
    [97]Richard Kulpa, Franck Multon. Fast inverse kinematics and kinetics solver for humanlike figures[C]. International Conference on Humanoid Robots,2005:38-43.
    [98]Da Silva M, Abe Y, Popovic J. Simulation of human motion data using short-horizon model-predictive control[J].Computer Graphics Forum,2008,27(2):371-380.
    [99]Da Silva M, Abe Y, Popovic J. Interactive simulation of stylized human locomotion[J]. ACM Trans on Graphics 2008,27(3):1-10.
    [100]Muico U, Yongjoon L, Popovid J, et al. Contace-aware nonlinear control of dynamic characters[J]. ACM Trans on Graphics,2009,28(3):1-9.
    [101]Raibert M H, Hodgins J K. Animation of dynamic legged locomotion[J]. Computer Graphics,1991,25(4):349-358.
    [102]Hodgins J K. Animating human motion[J]. Scientific American,1998,278(3):64-69.
    [103]Hodgins J K, Sweeney P K, LawTence D G. Generating natural looking motion for computer animation[C].Graphics Interface,1992:265-272.
    [104]Hodgins J K. Simulation of human running[C]. IEEE Int Conf on Robotics and Automation, IEEE Computer Society,1994:1320-1325.
    [105]Hodgins J K, Wooten W, Brogan D C, et al. Animating human athletics[C]. SIGGRAPH 1995,1995:71-78.
    [106]潘志庚,程熙,唐冰.一种实时虚拟人反应式动画生成算法[J].计算机研究与发展,2009.46(1):151-158.
    [107]Yin K K., Loken K, Van De Panne M. Simbicon:Simple biped locomotion control[J]. ACM Trans on Graphics,2007,26(3):1-10.
    [108]Yin K K, Coros S, Beaudoin P, et al. Continuation methods for adapting simulated skills[J]. ACM Trans on Graphics,2008,27(3):1-7.
    [109]Coros S, Beaudoin P, Yin K K, et al. Synthesis of constrained walking skills[J]. ACM Trans on Graphics,2008,27(5):1-10.
    [110]M. Walker, D. Orin. Efficient. Dynamic Computer Simulation of Robot Manipulators[J]. ASME Journal on Dynamic Systems, Measurement and Control,1982,104:205-211.
    [111]A. Fijany, I. Sharf, G. D'Eleuterio. Parallel O(logN) Algorithms for Computation of Manipulator Forward Dynamics[J]. IEEE Transactions on Robotics and Automation,1995, 11(3):389-400.
    [112]R. Featherstone, A. Fijany. A Technique for Analyzing Constrained Rigid-Body Systems, and its Application to the Constraint Force Algorithm[J]. IEEE Transactions on Robotics and Automation,1999,15(6):1140-1144.
    [113].R.Featherstone. Robot Dynamics Algorithm[M]. Boston:Kluwer Academic Publishers, 1987:50-150.
    [114]R. Featherstone. A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics. Part 1:Basic Algorithm[J]. International Journal of Robotics Research,1999,18(9):867-875.
    [115]R. Featherstone. A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics. Part2:Trees, Loops, and Accuracy[J]. International Journal of Robotics Research,1999,18(9):876-892.
    [116]D. Baraff. Linear-Time Dynamics Using Lagrange Multipliers[C]. SIGGRAPH'96, 1996:137-146.
    [117]D. Marhefka, D. Orin. Simulation of Contact Using a Nonlinear Damping Model [C].1996 IEEE International Conference on Robotics and Automation,1996:1662-1668.
    [118]K. Hunt, F. Crossley. Coefficient of Restitution Interpreted as Damping in Vibroimpact[J].ASME Journal of Applied Mechanics,1975,42(2):440-445.
    [119]P. Lotstedt.Numerical Simulation of Time-Dependent Contact Friction Problems in Rigid Body Mechanics[J]. SIAM Journal of Scientific Statistical Computing,1984,5(2):370-393.
    [120]F. Pfeiffer, C. Glocker. Multibody Dynamics with Unilateral Contacts[M]. Wiley Series in Nonlinear Science,1996,66-236.
    [121]D. Stewart, J. Trinkle. An Implicit Time-Stepping Scheme for Rigid Body Dynamics with Coulomb Friction[C]. IEEE International Conference on Roboticsand Automation, 2000:162-169.
    [122]Brian. Vincent. Mirtich. Impulse-Based Dynamic Simulation of Rigid Body Systems[D]. Berkeley, University of California,1996.
    [123]Liu Z C. Efficient animation techniques balancing both user control and physical realism[D].Princeton University,1996.
    [124]Guenter B. Efficient symbolic differentialtion for grahics applications[J].ACM Trans on Graphics,2007,26(3):1-13.
    [125]Hollerbach J. A recurisive Lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity [J].IEEE Trans on Systems,Man,and Cybernetics,1980,10(11):730-736.
    [126]Popovic.Z.Motion transformation by physically based spacetime optimization[D].Carnegie Mellon University,1999.
    [127]D. Orin, R. McGhee, M. Vukobratovic, G. Hartoch.Kinematic and Kinetic Analysis of Open-chain Linkages Utilizing Newton-Euler Methods[J]. Mathematical Biosciences,1979, 43:107-130.
    [128]J.Luh, M.Walker, R. Paul. On-line Computational Scheme for Mechanical Manipulators[J].ASME Journal on Dynamic Systems, Measurment and Control,1980, 102(2):69-76.
    [129]W. W. Armstrong, M. W. Green. The dynamics of Articulated Rigid Bodies for Purposes of Animation[C]. Graphics Interface'85,1985:407-415.
    [130]Y. Nakamura, Y. Yokokohji, H. Hanafusa, T. Yoshikawa. Unified Recursive Formulation of Kinematics and Dynamics for Robot Manipulators[C]. Japan-USA Symposium on Flexible Automation,1986:53-60.
    [131]Wei Yi, Xia Shihong, Zhu Dengming, et al. A robust method for analyzing the physical correctness of motion capture data[C].ACM Symp on Virtual reality software and technology, 2006:338-341.
    [132]Fang A C, Pollard NS. Efficient synthesis of physically valid human motion[J].ACM Trans on Graphics,2003,22(3):417-426.
    [133]J. Kleinfinger, W. Khalil. Dynamic Modeling of Closed-Loop Robots[C]. The 16th International Symposium on Industrial Robots,1986:401-412.
    [134]D. Rosenthal. An Order n Formulation for Robotic Systems[J]. The Journal of the Astronautical Sciences,1990,38(4):511-529.
    [135]D. Bae, E. Haug. A Recursive Formulation for Constrained Mechanical System Dynamics: Part Ⅰ. Open Loop Systems[J]. Mechanics of Structures and Machines,1987,15(3):359-382.
    [136]D. Bae, E. Haug. A Recursive Formulation for Constrained Mechanical System Dynamics: Part Ⅱ. Closed Loop Systems[J]. Mechanics of Structures and Machines,1988,15(4): 481-506.
    [137]Y. Nakamura, M. Ghodoussi. Dynamics Computation of Closed-Link Robot Mechanisms with Non redundant and Redundant Actuators[J]. IEEE Transactions on Robotics and Automation,1989,5(3):294-302.
    [138]D. Surla, M. Rackovic. Closed-Form Mathematical Model of the Dynamics of Anthropomorphic Locomotion Robotic Mechanism[C]. The 2nd ECPD International Conference on Advanced Robotics, Intelligent Automation and Active Systems,1996:327-331.
    [139]B. Perrin, C. Chevallereau, C. Verdier. Calculation of the Direct Dynamics Model of Walking Robots:Comparison Between Two Methods[C]. IEEE International Conference on Robotics and Automation,1997:1088-1093.
    [140]C. Babski, D. Thalmann. A Seamless Shape for HANIM Compliant Bodies[C]. VRML99, 1999:21-28.
    [141]洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,1999:40-160.
    [142]Jonathan Blow. Inverse kinematics with quaternion joint limits[J]. Game Developer,2002.
    [143]Jane Wilhelms, Allen Van Gelder. Fast and easy reach-cone joint limits[J]. Journal of Graphic Tools,2001,6(2):27-41.
    [144]Walter Maurel, Daniel Thalmann. Human shoulder modeling including scapulo-thoracic constraint and joint sinus cones[J]. Computers and Graphics,2000,24:203-218.
    [145]James Urey Korein. A geometric investigation of reach[M]. Cambridge:MIT Press,1985: 41-58.
    [146]P. Baerlocher, B. Boulic. Parametrization and range of motion of the ball-and-socket joint[C]. Deformable Avatars,2001:180-190.
    [147]The Mathworks-MATLAB and Simulink for technical computing[EB/OL].[2011-11-15]. http://www.mathworks.com.
    [148]Blender foundation:3d content creation suite program[EB/OL].[2012-01-08]. http://www.blender.org.
    [149]Steven M. LaValle. Planning Algorithms[M]. New York: Cambridge University Press, 2006:25-60.
    [150]冯波.三维角色动画中运动控制的主要技术[J].科技资讯,2007,9:196-197.
    [151]葛云芳.运动编辑及其在虚拟环境中的应用[D].杭州:浙江大学计算机应用,2004.
    [152]方水光,邵丹璐,金英连,王斌锐.柔性仿人机械臂设计与动力学仿真[J].工程设计学报,2012,19(4):307-311.
    [153]余慧杰.具有生理学特性的高精度人体肌肉疲劳建模及其在手臂屈伸运动中的应用研究[D].上海:复旦大学力学与工程科学系,2008.
    [154]Mousas.Christosl, Newbury.Paul. Real-time motion editing for reaching tasks using multiple internal graphs[C].17th International Conference on Computer Games:AI, Animation, Mobile, Interactive Multimedia, Educational and Serious Games,2012:51-55.
    [155]Albrecht.S., Ramirez-Amaro,.K, Ruiz-Ugalde. F, et al. Imitating human reaching motions using physically inspired optimization principles[C].11th IEEE-RAS International Conference on Humanoid Robots,2011:602-607.
    [156]Richard Kulpa, Franck Multon. Fast inverse kinematics and kinetics solver for humanlike figures[C]. International Conference on Humanoid Robots,2005:38-43.
    [157]Kallmann, M., Marsella, S. Hierarchical motion controllers for real-time autonomous virtual humans.5th International Working Conference,2005:253-265.
    [158]Kallmann, M.:Analytical inverse kinematics with body posture control[J]. Computer animation and Virtual Worlds,2008,19(2):79-91.
    [159]Massone, L.L.E., Myers, J.D. The role of plant properties in arm trajectory formation:a neural network study[J]. IEEE Trans Syst Man Cybern B Cybern,1996,26(5):719-732.
    [160]Karniel, A., Inbar, G.F.:A model for learning human reaching movements[C]. The 18th Annual International Conference of the IEEE,1996:619-620.
    [161]Fagg, A.H., Sitkoff, N., Barto, A.G., Houk, J.C. A model of cerebellar learning for control of arm movements using muscle synergies[C].1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation,1997:6-12.
    [162]Ogihara, N., Yamazaki, N. Generation of human reaching movement using a recurrentneural network model[C]. Systems, Man, and Cybernetics, IEEE SMC '99 Conference,1999:692-697.
    [163]Kashima, T., Isurugi, Y., Shima, M. Analysis of a muscular control system in human movements[J]. Biological Cybernetics,2000,82 (2):123-131.
    [164]Schutte, L.M. Using musculoskeletal models to explore strategies for improving performance in electrical stimulation-induced leg cycle ergometry[D].Stanford: Stanford University,1992.
    [165]Lan, N. Stability analysis for postural control in a two-joint limb system[J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2002,10(4):249-259.
    [166]De Sapio, V., Warren, J., Khatib,O., Delp, S.L. Simulating the task-level control of human motion:a methodology and framework for implementation[J]. Visual Computer,2005, 21(5):289-302.
    [167]李春霞.IK问题的求解及虚拟人步行运动控制技术的研究[D].武汉,武汉理工大学计算机学院,2004.
    [168]Kallmann, M., Aubel, A., Abaci, T., Thalmann, D. Planning collision-free reaching motions for interactive object manipulation and grasping[C]. Eurographics 2003 Computer Graphics Forum,2003,22:313-322.
    [169]Yoshida, E., Kanoun, O., Esteves, C., Laumond, J.P. Task-driven support polygon humanoids[C]. The 6th IEEE-RAS International Conference on Humanoid Robots, 2006:208-213.
    [170]高玉琴,何云峰,于俊清.改进的基于AABB包围盒的碰撞检测算法[J].计算机工程与设计,2007,28(16):3815-3817.
    [171]A. Shapiro, D. Chu, B. Allen, P. Faloutsos.The Dynamic Controller Toolkit[C].Sandbox Videogame Symposium,2007:15-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700