用户名: 密码: 验证码:
基于新型优化算法的主动悬架鲁棒输出反馈控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
悬架是车辆的重要组成部分,它对车辆的性能有着十分重要的影响。相对于传统的被动悬架而言,主动悬架对于改善车辆行驶平顺性和操纵稳定性具有重要的意义。本文结合吉林大学985二期工程“汽车工程科技创新平台”建设项目和教育部新世纪优秀人才资助计划项目“惯性调控主动/半主动悬架技术研究”,以提高车辆行驶平顺性和操纵稳定性为主要目的,对主动悬架鲁棒控制策略进行了深入系统的研究。
     针对以往鲁棒控制器复杂、实用性差等缺陷,本文研究了主动悬架鲁棒输出反馈控制问题。选取闭环系统的H∞性能和H2性能作为优化指标,基于双线性矩阵不等式(BMI)技术提出了鲁棒输出反馈控制器存在的充分条件,以保证主动悬架闭环系统具有一定的稳态和动态性能。本文首先对BMI优化问题的求解方法进行了研究,提出了将线性矩阵不等式(LMI)与差分进化算法(DE)相结合的新型优化算法(DELMI算法),而后将其应用于主动悬架鲁棒控制器的求解中;其次,对主动悬架的单目标和多目标输出反馈控制进行了研究,通过与以往主动悬架的对比验证了所提控制策略的可行性和有效性;最后,为了避免控制器摄动给系统带来的不利影响,对主动悬架的非脆弱H2/广义H2控制问题进行了研究。本文对所提出的控制策略逐一进行了公式推导,利用DELMI算法进行了实例设计,并从频域、时域和鲁棒性等方面对主动悬架的性能作了仿真与分析。
     由于主动悬架是由被动悬架和作动器组成,因此被动悬架的性能将影响到控制策略的选取以及主动悬架的最终性能。试验部分首先对被动悬架进行了性能测试,验证了被动悬架自身参数的不确定性,表明了采用鲁棒控制策略设计主动悬架的合理性;其次,针对主动悬架进行了基于dSPACE的实时仿真试验,结果进一步验证了所提出控制算法的有效性。本文的研究成果可为主动悬架控制技术的实用化提供参考。
As one of the most important parts of a vehicle, suspension plays an important role on attenuating the excitation caused by road unevenness, and holding adhesion tire and road. Spring stiffness and damping coefficient of passive suspension are chosen according to experience or a specific optimization method. Once chosen, they can’t be changed so that passive suspension can’t adapt the complex levity of vehicle parameters and working condition. Profound researches on active suspension system and its control technology have been carried out to overcome the limitation of passive suspension. With contrast to passive suspension, active suspension can provide timely active forces according to vehicle movement state and road profile to make suspension working with its optimal state, so active suspension plays an important role on improving vehicle performance. As an active research domain, research on active suspensions has become an advanced subject in the field of vehicle dynamics and control.
     This dissertation combined the Jiin University 985 automobile innovation project and new century excellent talents in ministry of education-funded project "inertial control active/semi-active suspension technology research", which mainly study the output feedback robust control of active suspension to solve the complexity and bad practicality of robust controller. This dissertation chooses different optimization performances to design several kinds of active suspension according to different feedback signals. After comparing and analyzing the designed active suspensions, this dissertation concludes the best control strategy. The main researches are stated as follows:
     Chapter 1 Exordium. Introduce the function of active suspension briefly; summarize its status, trends and performance requirements, concludes the existing problems on robust control of active suspension home and abroad. On this basis, the main study content is presented.
     Chapter 2 Model of active suspension and its performance evaluation. First, different road profiles and their math models are introduced. Second, establish the half-car active suspension model based on suspension system dynamics equation, and clearly illustrates the performance requirements of active suspension. Finally, on the basis of establishing the uncertain half-car suspension model to analyze robustness, method is stated for evaluating active suspension system, which lays a theoretical basis for suspension design and performance appraisal.
     Chapter 3 Noval optimization algorithm of active suspension. First, the basic knowledge of linear matrix inequality (LMI) is introduced. Second, introduce a new evolution technology—differential evolution by illustrating its characteristic, realization process and application. Finally, a hybrid algorithm by mixing DE and LMI as well as its steps and flow chart are presented in order to solve BMI optimization problem.
     Chapter 4 Single-object robust output feedback control of active suspension. Taking H∞and H2 performance of active suspension as optimization targets, we study the optimal H∞and H2 active suspension control. According to different feedback signals, we design several kinds of active suspensions by DELMI, and then compare them from the aspects of frequency domain, time domain and robustness. Simulation results show that active suspension designed by suspension deflection owns the best performance.
     Chapter 5 Multi-object robust output feedback control of active suspension. In order to meet the demands of various performances, we choose H∞and H2 performance of optimization outputs as optimized target, and use generalized H2 (GH2) performance to make hard constraints changing in their allowable ranges. We design H∞/GH2 and H2/GH2 active suspension using DELMI, and then compare them with the reported active suspensions designed by state and output feedback control.
     Chapter 6 Non-fragile H2/GH2 robust output feedback control of active suspension. Traditional robust controller is usually fragile. In order to overcome the shortcoming, we study the H2/GH2 non-fragile controller design based on output feedback using DELMI algorithm. Then, we design non-fragile active suspension (NF active suspension) using suspension deflection. Simulation results confirm that NF active suspension is non-fragile and robust within the framework of the perturbation.
     Chapter 7 Experiment section. First, we test the performance of passive suspension, illuminating the necessity of robust control. Second, disscuss the importance of real-time simulation in the early development of active suspension, and make dSPACE-based real-time simulation experiments to validate the correctness of the proposed control strategy.
     Chapter 8 Conclusion and expectation. The main study achievements, creation parts in study are advanced, and the expectation for the future work is also put forward.
     The innovative research works in this dissertation is as follows:
     1. Present the existence condition of active suspension robust output feedback controller using BMI, and propose a noval optimization algorithm based on DE and LMI. The algorithm is simple and gives an important innovation in theory. DELMI algorithm is applied to the robust active suspension controller design, which demonstrates the practicability and effectiveness.
     2. In order to design a simple robust active suspension controller with high performance, a single target and multi-objective robust output feedback control is studied. Simulation results show that H2MC2 suspension has the best performance which can achieve even surpass the reported suspensions.
     3. From the point of practicality, non-fragile H2/GH2 output feedback control is studied considering the influence caused by controller perturbation. Based on DELMI algorithm, we design NF active suspension according to suspension deflection. Analysis results validate that it can restrain the bad influence caused by controller perturbation but also have strong robustness.
     The research results in the dissertation give reference for the practicality of the vehicle active suspension.
引文
[1] Karnopp D, Crosby M J, Harwood RA. Vibration control semi-Active force generators [J], ASME Journal of Engineering for Industry, 1974, 96(2):619-626.
    [2] Thompson A G. An active suspension with optimal linear state feedback [J].Vehicle System Dynamics, 1976, 5(4):187-203.
    [3] Thompson AG. Optimal and suboptimal linear active suspension for road vehicles [J], Vehicle System Dynamics, 1984, 13(2): 61-72.
    [4]王国丽,顾亮,孙逢春.车辆主动悬架技术的现状和发展趋势[J].兵工学报,2000(8):80-83.
    [5]张玉春,王良曦,丛华.汽车主动悬挂控制的研究现状和未来挑战[J].控制理论与应用, 2004, 21(1):139-144.
    [6]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005.
    [7] Elsayed M.Elbeheiry, Dean C. Karnopp, Mohamed E. Elaraby, et al. Advanced Ground Vehicle Suspension Systems: A classified Bibliography [J]. Vehicle System Dynamics, 1995, 24(3):231–258.
    [8]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社, 2002.
    [9] Hrovat D. Survey of Advanced Suspension Developments and Related Optimal Control Applications [J]. Automatica, 1997, 33(10):1781-1817.
    [10]张庙康,胡海岩.车辆悬架振动控制系统研究的进展[J].振动、测试与诊断, 1997,17(1):7-15.
    [11]戴焕云.车辆主动悬挂的鲁棒控制研究[D].成都:西南交通大学机械工程学院,1999.
    [12] Ulsoy AG., Hrovat D, Tseng T. Stability Robustness of LQ and LQG Active Suspensions [J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1994, 116(1):123–131.
    [13]土谷武士·江上等.最新自动控制技术:数字预见控制[M].北京:北京科技出版社, 1994.11.
    [14]刘少军.现代控制方法及计算机辅助设计[M].长沙:中南大学出版社,2003
    [15]何将三,李艳.汽车主动悬架的最优预见控制[J].汽车工程,1999,21(6), 333-337.
    [16]刘少军,钟掘,郭淑娟等.最优预见控制设计及在汽车主动悬架控制中的应用[J].中南工业大学学报, 1997,28(2):174-177.
    [17] Liu S.J, Li Y. Study on preview control method of active suspension based on a half-car model [J]. Journal of Central South University of Technology, 1999, 6(1): 54-55.
    [18] Marzbanrad J, Ahmadi G., Zohoor H., etal. Stochastic optimal preview control of a vehicle suspension [J]. Journal of Sound and Vibration, 2004, 275(3-5): 973-990.
    [19] Thompson AG., Davis BR. Computation of the rms state variables and control forces in a half-car model with preview active suspension using spectral decomposition methods [J].Journal of Sound and Vibration, 2005, 285(3):571-583.
    [20] Kim H.J, Yang H S, Park YP. Improving the vehicle performance with active suspension using road-sensing algorithm. Computers and Structures, 2002, 80 (18-19):1569–1577.
    [21] Marzbanrad J, Ahmadi G., Zohoorc H., et al. Stochastic optimal preview control of a vehicle suspension [J]. Journal of Sound and Vibration, 2004,275 (3-5): 973–990.
    [22]韩曾晋.自适应控制[M].北京:清华大学出版社,1995.
    [23] Sunwoo M, Cheok KC, Huang NJ. Model reference adaptive control for vehicle active suspension systems [J].IEEE Transactions on Industrial Electronics, 1991, 38(3):217-222.
    [24] Alleyne A, Hedrick JK. Nonlinear adaptive control of active suspensions [J]. IEEE Transactions on Control Systems Technology, 1995, 3(1):94-101.
    [25]孙建民,杨清梅,陈玉强. LMS自适应主动控制汽车悬架系统试验研究[J].中国机械工程, 2003,14(24):2153-2155.
    [26]孙增圻.智能控制理论与技术[M].北京:清华大学出版社,1992.
    [27] D’Amato FJ, Viassolo DE. Fuzzy control for active suspensions [J]. Mechatronics, 2000, 10(8):897-920.
    [28] Farong K, Zongde F. An experimental investigation into the design of vehicle fuzzy active suspension [C]. IEEE International Conference on Automation and Logistics, 2007, 959– 963.
    [29] Liu SJ, Huang ZH, Chen YZ. Automobile active suspension system with fuzzy control [J]. Journal of Central South University of Technology, 2004, 11(2): 206-209.
    [30] Lin YJ, Lu YQ, Padovan J. Fuzzy logic control of vehicle suspension systems [J]. International Journal of Vehicle Design, 1993, 14(5-6): 457-470.
    [31] Yoshimura T, Nakaminami K, Kurimoto M, et al. Active suspension of passenger cars using linear and fuzzy-logic controls [J]. Control Engineering Practice, 1999, 7(1): 41-47.
    [32] Yoshimura T. Active suspension of vehicle using fuzzy logic [J]. International Journal of System Science. 1996, 27(2):215–219.
    [33] Yoshimura T. A semi-active suspension of passenger cars using fuzzy reasoning and the field testing [J].International Journal of Vehicle Design, 1998, 19(2): 150-166.
    [34] Huang SJ, Lin WC. Adaptive fuzzy controller with sliding surface for vehiclesuspension control [J]. IEEE Transactions on Fuzzy Systems, 2003, 11(4): 550-559.
    [35]陈金钉.基于T-S模糊模型的汽车主动悬架鲁棒控制研究[D].秦皇岛:燕山大学电气工程学院,2007.
    [36]宋晓琳,于德介,殷智宏.采用免疫算法优化设计汽车主动悬架的模糊控制器[J].系统仿真学报, 2006,18(9):2634-2637.
    [37]宋晓琳,于德介,金耀等.基于DNA免疫算法的汽车主动悬架模糊规则优化[J].振动与冲击, 2007,26(9):63-66.
    [38]郭建华,李幼德,李静.基于遗传算法的主动悬架模糊控制器设计[J].系统仿真学报, 2007,19(18):4178-4181.
    [39] Moran A, Nagai M. Optimal preview control of rear suspension using nonlinear neural networks [J]. Vehicle System Dynamics, 1993, 22(5-6): 321– 334.
    [40] Moran A, Nagai M.Optimal active control of nonlinear vehicle suspensions using neural networks [J]. JSME International Journal, Series C: Dynamics, Control, Robotics, Design and Manufacturing 1994, 37 (4):707-718.
    [41] Nagai M,Moran A,Tamura Y,et al.Identification and control of nonlinear active pneumatic suspension for railway vehicles using neural networks [J]. Control Engineering Practice,1997,5(8):1137-1144.
    [42] Guleza K, Guclu R. CBA-neural network control of a non-linear full vehicle model [J]. Simulation Modelling Practice and Theory, 2008, 16(9): 1163-1176.
    [43] Yildirim S. Vibration control of suspension systems using a proposed neural network [J]. Journal of Sound and Vibration, 2004, 277(4-5):1059–1069.
    [44]王磊,佘翊妮,孟彬等.神经网络控制在汽车主动悬架中的应用[J].重庆工学院学报,2006,20(5):15-18.
    [45]黄剑鸣,富丽娟.汽车主动悬架系统的神经网络控制算法[J].重庆工学院学报(自然科学版),2008,22(3):100-103.
    [46] Choi SB, Choi Y.T, Park DW. A sliding mode control of a full car electrorheological suspension system via hardware in-the-loop simulation [J].Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2000, 122(1):114-121.
    [47]宋晓琳,于德介,金耀.基于免疫进化的汽车主动悬架的控制及其鲁棒性[J].中国机械工程, 2006,17(10):1096-1098.
    [48]宋晓琳,于德介,金耀等.基于DNA免疫算法的汽车主动悬架模糊规则优化[J].振动与冲击, 2007,26(9):63-66.
    [49]宋晓琳,赵丕云,于德介.基于混沌免疫进化算法的汽车主动悬架控制策略研究[J].湖南大学学报(自然科学版),2008,35(5):31-35.
    [50]宋晓琳,殷智宏,郭孔辉,杨笠.基于免疫算法的汽车主动悬架控制研究[J].汽车工程,2006,28(5):465-467.
    [51]宋晓琳,于德介,殷智宏.采用免疫算法优化设计汽车主动悬架的模糊控制器[J].系统仿真学报, 2006, 18(9):2634-2637.
    [52]宋晓琳,于德介,殷智宏,金耀.基于矢量矩的汽车主动悬架免疫控制策略研究[J].湖南大学学报(自然科学版), 2006, 33(4):46-49.
    [53] Yamashita M, Fujimori K, ayakawa K H, etal.Application of H∞control to active suspension systems [J]. Automatica, 1994, 30(11):1717-1729.
    [54] Sammier D, Sename O, Dugard L. H∞control of active vehicle suspensions [C]. IEEE Conference on Control Applications-Proceedings, 2000, 1: 976-981.
    [55] Karlsson N, Dahleh M, Hrovat D. Nonlinear H∞control of active suspensions [C]. Proceedings of the American Control Conference, 2001, 5: 3329–3334.
    [56] Liu F, Jiang P, Su H, Chu J. Robust H∞control for time delay systems with additive controller uncertainty [C]. Proceedings of the World Congress on Intelligent Control and Automation, 2002, 3:1718–1722.
    [57]李克强,董珂,永井正夫.多自由度车辆模型主动悬架及鲁棒控制[J].汽车工程, 2003,25 (1):7-11.
    [58] Chen H, Guo KH. Constrained H∞control of active suspensions: an LMI approach [J]. IEEE Transactions on control systems technology, 2005, 13(3):412-421.
    [59]宋刚,吴志刚,林家浩.考虑时域硬约束的车辆主动悬架H∞控制[J].农业机械学报, 2009, 40(4):11-17.
    [60]于树友.基于滚动优化的约束H∞主动悬架控制系统研究[D].吉林大学通信工程学院,2005.
    [61]陈虹,韩光信,刘志远.基于LMI的约束系统H∞控制及其滚动优化实现[J].控制理论与应用, 2005, 22(2):189-195.
    [62]史明光,方敏,陈无畏.基于LMI的四自由度车辆模型主动悬架H∞控制[J].合肥工业大学学报(自然科学版),2004,27 (3):237-241.
    [63] H.P. Du, N. Zhang. H∞control of active vehicle suspensions with actuator time delay [J]. Journal of Sound and Vibration, 2007, 301(1-2):236–252.
    [64]孙涛,喻凡,沈晓鸣.基于频率整型的H∞主动悬架控制研究[J].振动与冲击,2006,25(1):146-149, 158.
    [65]孙涛,喻凡,张振东等.重载车辆油气悬架不确定分析及H∞控制器设计[J].振动与冲击,2007,26(9):51-54, 93.
    [66]陈虹,马苗苗,孙鹏远.主动悬架H2/广义H2输出反馈控制[J].控制理论与应用,2007,24(5):790-794.
    [67]陈虹,马苗苗,孙鹏远.基于LMI优化的主动悬架多目标控制[J].自动化学报,2006,32(4): 550-559.
    [68]于树友,马苗苗,陈虹.基于LMI优化的H∞/广义H2输出反馈主动悬架控制[J].南京航空航天大学学报, 2006, 38(B07),25-29
    [69] Gao HJ, Lam J, Wang CH. Multi-objective control of vehicle active suspension systems via load-dependent controllers [J]. Journal of Sound and Vibration, 2006, 290 (3-5):654-675.
    [70]方敏,史明光,陈无畏.汽车主动悬架多目标H2/H∞混合控制[J].农业机械学报,2005,36(3): 4-7, 18.
    [71]吉明,姚绪梁.鲁棒控制系统[M].哈尔滨:哈尔滨工程大学出版社,2002.
    [72] Gaspar P, Szaszi I I, Bokor J. Design of robust controllers for active vehicle suspension using the mixed synthesis [J]. Vehicle System Dynamics, 2003, 40(4): 193-228.
    [73]孙涛,喻凡,柳江等.基于混合不确定建模的主动悬架鲁棒综合控制分析[J].上海交通大学学报,2006,6(40):936-941.
    [74]孙涛,张振东.油气主动悬架不确定性对重载车辆平顺性的影响分析[J].振动工程学报,2007,20(6):629-634.
    [75]孙涛,冯金芝,喻凡.车辆悬架不确定性对行驶平顺性能影响的鲁棒保守性分析[J].振动与冲击,2008,27(8):52-55.
    [76]陈虹,赵桂军,孙鹏远等. H2和H∞主动悬架统一的理论框架与比较[J].汽车工程,2003, 25(1):1-6.
    [77]孙鹏远.基于LMI优化的主动悬架多目标控制研究[D].吉林大学通信工程学院,2004.
    [78]曹爱君.汽车主动悬架输出反馈控制器的降阶及其快速原型实现[D].吉林大学通信工程学院,2007.
    [79]余志生.汽车理论[M].北京:机械工业出版社,1999.
    [80]俞立.鲁棒控制——线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    [81] Boyd S, El Ghaoui L, Feron E, Balakishnan V. Linear Matrix Inequalities in System and Control Theory [M]. Philadelphia: SIAM, 1994.
    [82] Scherer CW, Weiland S. Linear Matrix Inequalities in Control [M]. Lecture note, 2000.
    [83] Burl JB. Linear Optimal Control: H2 and H∞Methods [M].Addison Wesley Publishing, 1998.
    [84] Rotea MA. The generalized H2 control problem [J]. Automatica.1992, 29(2):373–385.
    [85] Scherer C, Gahinet P, Chilali M. Multi-objective output-feedback control via LMI optimization [J]. IEEE Transactions on Automat Control, 1997, 42(7):896–911.
    [86] Storn R, Price K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization 1997, 11(4): 341–359.
    [87]余兵.差分进化算法及其应用[D].西安:西安工程大学理学院,2007.
    [88]宁桂英.差分进化算法及其应用研究[D].南宁:广西民族大学数学与计算机科学学院,2008.
    [89]吴亮红.差分进化算法及其应用研究[D].长沙:湖南大学电气与信息工程学院,2007.
    [90]刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7),721-729.
    [91]周艳平,顾幸生.差分进化算法研究进展[J].化工自动化及仪表, 2007, 34(3): 1-5.
    [92] Price K, Kenneth V. Differential evolution vs. the functions of the 2nd ICEO[C]. Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, 1997. 153–157.
    [93] Liu B, Wang L, Jin Y H, et al. Control and synchronization of chaotic systems by differential evolution algorithm [J]. Chaos, Solitons and Fractals, 2007, 34(2): 412–419.
    [94] Peng B, Liu B, Zhang FY, Wang L. Differential evolution algorithm-based parameter estimation for chaotic systems [J]. Chaos, Solitons and Fractals, 2009, 39(5):2110-2118.
    [95] Chang WD. Parameter identification of Rossler’s chaotic system by an evolutionary algorithm [J]. Chaos, Solitons and Fractals, 2006, 29(5): 1047–1053.
    [96] Leandro dos Santos Coelho, Guerra FA. B-spline neural network design using improved differential evolution for identification of an experimental nonlinear process [J]. Applied Soft Computing Journal, 2008, 8(4):1513-1522.
    [97] Gao XZ, Wang X, Ovaska SJ. Fusion of clonal selection algorithm and differential evolution method in training cascade–correlation neural network [J]. Neurocomputing, 2009, 72(10-12):2483-2490.
    [98] Ilonen J, Kamarainen J K, Lampinen J. Differential evolution Training Algorithm for feed-forward neural networks [J]. Neural Processing Letters, 2003, 17(1): 93-105.
    [99]方强,陈德钊,俞欢军等.基于优进策略的差分进化算法及其化工应用[J].化工学报,2004,55(4):598-602.
    [100]余娟,钱锋等.基于改进差分进化算法的超临界水氧化动力学参数估计[J].华东理工大学学报(自然科学版), 2006,32(1):94-97,124.
    [101] Kiranmai D, Jyothirmai A, Murty C V. Determination of kinetic parameters in fixed-film bio-reactors: an inverse problem approach [J]. Biochemical Engineering Journal, 2005, 23(1):73-83.
    [102]姜爽.差分进化算法在工业机器人轨迹规划中的应用[D].长春:吉林大学机械科学与工程学院,2007.
    [103]王艳宜.基于差分进化算法的六杆间歇机构优化综合[J].现代机械, 2006(5):54-55.
    [104] Joshi R, Sanderson AC. Minimal representation multisensor fusion using differentialevolution [J]. IEEE Transactions on Systems, Man and Cybernetics: A, 1999, 29(1): 63-76.
    [105] Krink T, Paterlini S, Resti A. Using differential evolution to improve the accuracy of bank rating systems [J]. Computational Statistics and Data Analysis 2007, 52(1): 68-87.
    [106]李颖,徐桂芝,饶利芸等.微分进化算法在头部电阻抗成像中的应用[J].中国生物医学工程学报,2005,24(6):672-675,695.
    [107]徐志高,关正西,张炜.模糊神经网络在导弹动力系统多故障诊断中的应用[J].弹箭与制导学报,2005,25(1):15-18.
    [108] Fukuda M, Kojima M. Branch-and-cut algorithms for the bilinear matrix inequality eigenvalue problem [J].Computational Optimization and Applications, 2001, 19(1): 79-105.
    [109] Hassibi A, How J, Boyd S. Path-following method for solving BMI problems in control [C]. Proceedings of American Control Conference, 2:1385-1389.
    [110] Shimomura T, Fujii T. Multiobjective control design via successive over-bounding of quadratic terms [C]. Proceedings of the 39th IEEE Conference on Decision and Control, 2000, 39, 2763-2768.
    [111] Cao YY, James L, Sun YX. Static output feedback stabilization: an ILMI approach [J].Automatica, 1998, 34(12): 1641-1645.
    [112] Huang D, Nguang S.K. Static output feedback controller design for fuzzy systems: An ILMI approach [J]. Information Sciences, 2007, 177(14): 3005-3015.
    [113] Wu HN. An ILMI approach to robust static output feedback fuzzy control for uncertain discrete-time nonlinear systems [J]. Automatica, 2008, 44(9): 2333-2339.
    [114]王远钢.基于BMI方法的扇形极点配置输出反馈控制[J].自动化学报, 2008,34(9):1192-1195.
    [115]时圣柱.基于BMI方法的静态输出反馈控制设计[D].南京:南京理工大学理学院,2007.
    [116] Vidyasagar M. Randomized algorithms for robust controller synthesis using statistical learning theory [J]. Automatica 2001, 37 (10): 1515-1528.
    [117] Vidyasagar M, Blondel VD. Probabilistic solutions to some NP-hard matrix problems [J]. Automatica, 2001, 37 (9): 1397–1405.
    [118] Calafiore GC, Dabbene F, Tempo R. Randomized algorithms for probabilistic robustness with real and complex structured uncertainty [J]. IEEE Transactions on Automatic Control, 2000, 45 (12):2218-2235.
    [119] Calafiore GC, Dabbene F. A probabilistic framework for problems with real structureduncertainty in systems and control [J]. Automatica, 2002, 38(8):1265-1276.
    [120] Hrovat D. Survey of advanced suspension developments and related optimal control applications [J]. Automatica, 1997, 33(10):1781-1817.
    [121] Lin YC, Khalil HK. Two-scale design of active suspension control using acceleration feedback [C]. Proceedings of Conference on Control Applications, 1992, 884–889.
    [122]于树友,陈虹.基于滚动优化的H∞/广义H2主动悬架控制[J].吉林大学学报(工学版),2007,37(5):1164-1169.
    [123] Ak?ay H, Türkay S. Influence of tire damping on mixed H2/H∞synthesis of half-car active suspensions [J]. Journal of Sound and Vibration, 2009, 322(1-2): 15-28.
    [124] Chen H, Guo K. An LMI approach to multiobjective RMS gains control for active suspensions [J]. Proceedings of the American Control Conference, 2001, 4, 2646-2651.
    [125] Keel LH, Bhattacharyya SP. Robust, fragile, or optimal? [J]. IEEE Transactions on Automatic Control, 1997, 42(8):1098-1105.
    [126] Dorato P. Non-fragile controller design: an overview[C]. Proceedings of the American Control Conference, 1998, 2829-2831.
    [127]王武,杨富文.具有控制器增益摄动的非脆弱H2控制[J].福州大学学报(自然科学版),2005,33(3):293-297.
    [128]王武,杨富文.线性不确定性的鲁棒非脆弱H∞状态反馈控制[J].福州大学学报(自然科学版),2004,32(5):563-567.
    [129]王武,杨富文.具有控制器增益变化的不确定时滞系统的鲁棒H∞控制[J].自动化学报,2002,28(6):1043-1046.
    [130]王武,杨富文.不确定离散系统的鲁棒非脆弱H∞控制[J].控制工程,2005,12(4):335-338.
    [131]王武,杨富文.线性区间系统的鲁棒非脆弱H∞控制[J].集美大学学报(自然科学版),2005, 10(2):109-113.
    [132]林瑞全,杨富文.基于H∞控制理论的非脆弱控制的研究[J].控制与决策,2004, 19(5):598-600.
    [133]王武,杨富文.不确定时滞系统的时滞依赖鲁棒非脆弱H∞控制[J].控制理论与应用, 2003, 20(3):473-476.
    [134]李钢生,屈百达,黄俊.多时滞不确定系统的非脆弱H∞鲁棒控制[J].西安交通大学学报, 2005,39(12):1349-1352.
    [135]刘宏亮,樊丽颖,段广仁.线性时滞系统的鲁棒广义H2弹性控制[J].电机与控制学报, 2008,12(2):213-217.
    [136]姚成法,侯明善,杨常伟,韩旭. LMI方法非脆弱鲁棒H∞控制器设计[J].电光与控制,2007,14(6):85-87.
    [137] Zhang BY, Zhou SS, Li T. A new approach to robust and non-fragile H∞control for uncertain fuzzy systems [J]. Information Sciences, 2007, 177(22): 5118-5133.
    [138] Lien CH. H∞non-fragile observer-based controls of dynamical systems via LMI optimization approach [J]. Chaos, Solitons and Fractals, 2007, 34(2):428-436.
    [139] Lien CH, Cheng WC, Tsai CH, et al. Non-fragile observer-based controls of linear system via LMI approach [J]. Chaos, Solitons & Fractals, 2007, 32(4):1530-1537.
    [140]邵克勇,宋衍茹,张良等.具有控制器增益摄动的非脆弱鲁棒控制器设计[J].大庆石油学院学报,2007,31(3):87-91.
    [141]杨涤.系统实时仿真开发环境与应用[M].北京:清华大学出版社,2004
    [142]陈鹏展,唐小琦,李银刚.基于dSPACE的伺服控制模型实时仿真研究[J].微特电机,2008,36(9):25-27, 41.
    [143]马培蓓,吴进华,纪军,徐新林.dSPACE实时仿真平台软件环境及应用[J].系统仿真学报,2004,16(4):667-670.
    [144]郝雯娟.基于dSPACE的交流电机矢量控制系统无速度传感器研究[D].南京:南京航空航天大学自动化学院, 2008.
    [145] dSPACE.ControlDesk Experiment Guide [Z].Realease4.2, Paderborn: dSPACE GmbH, 2005.
    [146] dSAPCE ControlDesk Experiment Guide [M].dSAPCE Gmbh, 2004.
    [147]王伟才,王银燕.基于dSPACE的涡轮增压器动态性能实时仿真研究[J].系统仿真学报, 2007, 19(15):3559-3563.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700