用户名: 密码: 验证码:
湘东南地区燕山早期花岗岩浆—热液演化及钨矿成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南岭地区是我国重要有色金属产地,区内广泛分布大型、超大型钨矿。南岭花岗岩成岩及其与成矿的关系一直被学术界所关心。80年代以来,岩浆热液成矿理论研究取得重要进展,随着“岩浆-热液过渡阶段”观点的提出,岩浆-热液过渡性流体性质及成矿作用研究引起大家重视。以往主流观点认为石英脉型、矽卡岩型矿化为岩浆期后热液型,近年研究工作在湘东南地区与钨矿床有关的燕山期花岗岩岩株中发现大量岩浆液态不混溶地质现象,包括花岗岩型矿化、矿囊、云英岩析离体、碱交代脉、“眼球构造”、似伟晶岩(脉)等,其中一些不混溶地质现象中有明显岩浆→热液过渡性质表征,如析离体核部为热液结构,成分以石英和云母为主,边部为岩浆结构,具有花岗岩矿物组成;早阶段碱交代脉中间为花岗岩,两侧为钾长石-萤石脉等……
     以湘东南地区瑶岗仙、柿竹园、湘东钨矿为典型矿床,结合区内多个石英脉型及矽卡岩型钨多金属矿对比研究,通过详细的野外地质学、矿物学、地球化学等工作,针对高分异演化花岗岩晚期岩浆-热液过渡阶段花岗岩演化与成矿作用开展研究,取得以下新认识:
     1、发现一批具重要研究价值的代表岩浆晚期液态分异的地质现象。
     2、建立晚期花岗岩浆-热液连续演化过程,确定石英脉型、矽卡岩钨矿属于岩浆-热液型矿床。在云英岩析离体、碱交代脉、“眼球”状析出物等地质体中,广泛发育熔流包裹体,岩浆与热液之间存在浆液过渡态流体,岩浆→热液是连续演化过程,碱交代脉也有类似特点。
     3、建立岩浆-热液演化过程中成矿元素的迁移过程。岩浆液态分异过程中实现元素的迁移,以云英岩析离体为例,从碱长花岗岩I→析离体边部→核部,成矿元素W、Mo、Bi、Pb、Zn、Nb、Ta富集,挥发性元素Li、F富集,LREE/HREE减小,δEu亏损更加明显。各元素变化具有连续性,迁移方向也有所差异,W在析离体核部富集更明显,而Mo在析离体边部富集更强烈。
     4、初步建立石英脉型和矽卡岩型钨多金属矿岩浆-热液演化成矿模型,矿化严格受岩浆-热液演化过程的控制。脉型钨矿床中,岩浆岩型矿化形成于岩浆晚期分异的富挥发份岩浆;云英岩析离体形成于浆液过渡态流体;含钨石英脉多形成于高温热液阶段。矽卡岩型矿床中,早阶段碱交代脉具有浆液过渡态特点;晚阶段与早阶段碱交代脉渐变过渡,以热液流体为主,是成矿主要阶段。
Nanling region is an important area of non-ferrous metal resources in China,which lots of large or very large tungsten deposits are widely distributed in the area.Diagenesis of the Nanling granite and the relationship between Nanling granite andtungsten deposits have always received attention from academic circle. Since the1980s, the magmatic-hydrothermal metallogenic theory (MHMT) has made importantprogress, and with the theory of MHMT putting forward, studies on the nature ofmagmatic-hydrothermal fluid and mineralization have gradually attracted thegeologists attention. The mainstream history view considered that quartz vein, skarnmineralization were post-magmatic hydrothermal type ore-forming mode. In recentyears, a large number of liquid immiscibility phenomena has found in Yanshan periodgranite strains which had a close relationship with the tungsten deposits in southeastHunan province, including granie-hosted tungsten mineralization, ore chamber,greisens segregations, alkali-metasomatized veins, eye-shape segregations andpegmatitoides, and so on. Some immiscible geological phenomenons recorded thefeatures of magmatic-hydrothermal evolution processes. For example, the core of agreisens segregation shows the textures in hydrothermal stages and it is comprisedmainly of quartz and mica, whereas the rim shows magmatic texture. And the centerof an alkali-metasomatized veins are granitic materials, while the margins are alwayscomprised of K-feldspar and fluorite veins.
     This thesis focuses on some typical tungsten ore deposits in southeast Hunan,including Yaogangxian, Shizhuyuan, Xiangdong and other quartz vein-type,skarn-type tungsten polymetallic deposits, and comparative study of the depositsmentioned above. Through detailed study of field geology, mineralogy, geochemistry,and so on, this thesis exponds the evolution of the high differentiation and evolvedgranite during the late stage of magmatic-hydrothermal transition and metallogenesis.The main results obtains in this paper are given in more detail below.
     1. A number of important geological phenomena which could represent the liquidimmiscibility of late-stage magma were found.
     2. The continuous evolution processes from granitic magmatic to hydrothermalwas constructed, and the quartz vein type and skarn type tungsten deposits belong tomagmatic-hydrothermal type deposits. In the magmatic-hydrothermal transition stage, some geological unites (e.g., greisen, greisen segregations,alkali-metasomatized veins and garnet skarns) widely host melt-fluid inclusions. Thestudies of fluid inclusions in greisen segregations and alkali-metasomatized veinsshows that the magmatic-hydrothermal evolution is a continuous process.
     3. The migration processes of ore-forming elements during the process ofmagmatic-hydrothermal evolution is recognized. Some elements can be concentratedduring the process of liquid immiscibility. Taking greisen segregations as example,from alkaline granite to margin and center of greisen segregations, the ore-formingelements (such as W, Mo,Bi, Pb, Zn, Nb and Ta), associated with volatile elements(Liand F) would be concentrated, meanwhile, the LREE/HREE ratios and δEu aredecreasing. The concentrations of each element are continuous and directional, forexample, W is much more concentrated in center, whereas Mo is much moreconcentrated in margin of the greisen segregations.
     4. The metallogenic models of both quartz-vein-type and skarn-type tungstenpolymetallic deposits are build. The tungsten mineralization is strictly controlled bythe processes of evolution from the magmatic to hydrothermal stage. As forquartz-vein-type tungsten deposit, the granitic-type ore was derived from volatile-richmagma which separated out at the late magmatic stage, the greisen segregations werederived from liquid at the magmatic-hydrothermal transition stage, and theore-bearing quartz veins were always formed at the high-temperature hydrothermalstage. As for the skarn-type deposit, the early alkali-metasomatized veins shows thecharacteristics of the magmatic-hydrothermal transition stage, which gradualtransformed to the late stage alkali-metasomatized veins. The fluid was hydrothermalin late stage alkali-metasomatized veins and this period is the main mineralizationstage.
引文
Aiuppa A. Degassing of halogens from basaltic volcanism:Insight from volcanic gas observations[J]. Chem Geol,2009,263(14):99109
    Audetat A and Pettke T,2003,Themagmatic-hydriothermal evolution of two barren granites: Amelt and fluid inclusion study of the Rito del Medio and Canada Pinabete plutions innortherm New Mexico(USA)1Geochimica etCosmochimicaActa,67:97-121
    Barker,D.S., Igneous rocks[J], Prentiee-Hall,N.J.1983.133.
    Bowman J R, Covert J J, Clark A H, Mathieson G A. The Cantung E zone scheelite skarn orebody,Tungsten, Northwest Territories: oxygen, hydrogen, and carbon isotope studies. EconomicGeology,1985.80:1872–1895.
    Burnham C W, Ohmoto H. Late magmatic and hydrothermal processes in oreformation[A].Studies in Geo-physics, Mineral Resources: Genetic Understandingfor PracticalApplications[M]. Washington D C:National Academy Press,1981.62-72.
    Burnham C W,Ohmoto H. Late-stage processes of felsic magmatism. Mining Geology specialissue,1980,(8):1-11.
    Burnham C W. Magma and hydrothermal fluids [M].Barnes H L.Geochemistry of HydrothermalOre Deposits[M]. New York: John Wiley,1979.63-136.
    Chappell B W and White A J R. Two contrasting granite type. Pacific Geology,1974.8:173-174.
    Chevychelov, V. Yu.; Chevychelova, T. K. Partitioning of Pb, Zn, W, Mo, Cl, and major elementsbetween aqueous fluid and melt in the systems granodiorite (granite, leucogranite)-H2O-NaCl-HCl. Chernogolovka Neues Jahrbuch Fur Mineralogie-Abhandlungen.1997,172(1):101-115.
    Clarke D B. Granitoid Rocks.Chapman&Hall,1982,153-178.
    E Roedder, DS Coombs. Immiscibility in Granitic Melts, Indicated by Fluid Inclusions inEjected Granitic Blocks fromAscension Island. Journal of Petrology,1967.8(3):417-451.
    Einaudi M T, Meinert L D and Newberry R T. Skarn deposits[J]. Econ. Geol.,75th Anniv.,1981.317~391.
    Ferreira V P, Sial A N and Whitney J A. Large-scale silicate liquid immiscibility: a possibleexample from northeastern Brazil. Lithos,1994.33(1):285–302.
    Frezzotti ML. Silicate-melt inclusions in magmatic rocks: Applications to petrology1Lithos,2001.55(1-4):273-299
    Hall D L, Sterner S M and Bodnar R J. Freezing point depression of NaCl-KCl-H2O solutions[J].Economic Geology,1988,83:197-202
    Halter W, Heinrich C and Pettke T. Magma evolution and the formation of porphyry Cu-Au orefluids: evidence from silicate and sulfidemelt inclusions1Mineralium Deposita,2005,39(8):845-863
    Hans Keppler and Peter J. Wyllie. Partitioning of Cu, Sn, Mo, W, U, and Th between melt andaqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF. Contributionsto Mineralogy and Petrology,1991,109:139-150
    Hu X Y, Bi X W, Hu R Z, Shang L B, Fan WL. Experimental study on tin partition betweengranitic silicate melt and coex-isting aqueous fluid [J]. Geochem J,2008,42(2):141150
    Jaffar Al Tayyar, Norman J. Jackson, Saeed Al-Yazidi.Geology and mineralization of the Jabalatalkali-feldspar granite, northern Asir region, Kingdom of Saudi Arabia, Journal of AfricanEarth Sciences.1986,4:183-188
    Jahns R H, Tuttle O F. Layered pegmatite-aplite intrusives[J]. Mineral Soc Am Spec Paper,1963,1:78-92
    Kovalenko V I, Tsaryeva G M, Naumov V B, Hervig R L, Newman S. Magma of pegmatites fromVolhynia: Composition and crystallization parameters determined by magmatic inclusionstudies. Petrology,1996.4:277~290.
    LI XianHua, LI WuXian, LI Zheng-Xiang. On the genetic classification and tectonic implicationsof the Early Yanshanian granitoids in the Nanling Range, South China[J]. Chinese ScienceBulletin,2007,14:1873-1885.
    Lu H Z, Liu Y M, Wang C L, Xu Y Z, and Li H Q. Mineralization and Fluid Inclusion Study ofthe Shizhuyuan W-Sn-Bi-Mo-F Skarn Deposit, Hunan Province, China. Economic Geology.2003.98:955-974
    Manning,D.A.C., The effeet of fluorine on liquidus phasc retationships in the system Qz-Ab-Orwith exeess water at1kb.Contrib.Miner.Petrol.,1981,Vol.76,No.2:206~215.
    Meinert L D. A review of skarn that contain gold[A]. In: Lentz D R, ed. Mineralizedintrusion_related skarn systems[C]. Quebec.1998.Short Course Series26.359~414.
    Naden J and Shepherd TJ. Role of methane and carbon dioxide in gold deposition. Nature,1989.342:793-795
    P. J. Pollard, M. Pichavant, B. Charoy Contrasting evolution of fluorine-and boron-rich tinsystems[J], Mineralium Deposita.1987.22:315-321
    Pettke T, OberliF andHeinrich CA.Themagma andmetal source of giant porphyry-type oredeposits, based on lead isotope microanalysis of individual fluid inclusions1Earth andPlanetary Science Letters,2010.296(3-4):267-277
    Pitcher W S. Granite type and tectonic environment. In: Hsü K (ed). Mountain Building Processes.London:Academic Press,1983.19-40.
    Rajesh H M. Outcrop-scale silicate liquid immiscibility from an alkali syenite (A-typegranitoid)-pyroxenite association near Puttetti, Trivandrum Block, South India. Contributionsto Mineralogy andPetrology,2003.145,612–627.
    Rasmussen K L, Lentz D R, Falck H, David. R M. Pattison Felsic magmatic phases and the role oflate-stage aplitic dykes in the formation of the world-class Cantung Tungsten skarn deposit,Northwest Territories, Canada. Ore Geology Reviews,2011,41(1):75–111
    Rock hold J R, Nabelek P I, Glascock M D. Origin of rhythmic layering in the Calamity Pecksatellite pluton of the Hamey Peak Granite, South Dakota: The role of boron[J]. GeochimCosmchim Acta,1987,51:487~496
    Roedder E. Fluid inclusions. Mineralogical Society of America, reviews in Mineralogy,1984,12:644
    Shepherd T J,RaKin A and Alderton DHM. A Practical Guide to Fluid Inclusion Studies. Blackieand Son Limited.1985,1-154
    Stem L A, Brown G E, Bird D K, et al. Mineralogy and geochemical evolution of Little Threepegmatite-aplite layered intrusive, Ramona, California[J]. Am Mineral,1986,71:406~427
    Sun, S S, and Higgins N C. Nd and Sr isotope study of the Blue Tier batholith, NE Tasmania andits bearing on the origin of tin-bearing alkali feldspar granites: Ore Geology Reviews,1996,10:339365.
    T.B Bai and A.F Koster van Groos. The distribution of Na, K, Rb, Sr, Al, Ge, Cu, W, Mo, La, andCe between granitic melts and coexisting aqueous fluids. Geochimica et CosmochimicaActa.1999,vol.63(7/8):1117-1131
    Thomas R, Foerster H J and Heinrich W. The behaviour of boron in a peraluminous granite–pegmatite system and associated hydrothermal solutions: a melt and fluid inclusion study.Contributions to Mineralogy and Petrology,2003,144,457–472.
    Thomas R, Webster J D, Heinrich W. Melt inclusions in pegmatite quartz: complete miscibilitybetween silicate melts and hydrous fluids at low pressure. Contrib. Mineral. Petrol.2000,139,394~401.
    Veksler I V. Liquid immiscibility and its role at the magmatic hydrothermal transition: a summaryof experimental studies. Chemical Geology,2004,210,7–31.
    Veksler I V and Thomas R. An experimental study of B-, P-and Frich synthetic granite pegmatiteat0.1and0.2GPa. Contributions to Mineralogy and Petrology,2002.143,673–683.
    Veksler I V, Thomas R, and Schmidt C.. Experimental evidence of three coexisting immisciblefluids in synthetic granite pegmatite. American Mineralogist,2002.87,775–779.
    Walshe J L, Solomon M, Whitford D J, Sun S S, and Foden J D. The fole of the mentle in thegesesis of tin deposits and tin provinces of eastern Australia. Economic Geology,2011.106:297–305
    Webster J D, De Vivo B. Experimental and modeled solubili-ties of chlorine in aluminosilicatemelts, consequences of magma evolution, and implications for exsolution of hydrous chloridemelt at Mt. Somma-Vesuvius [J]. Am Mineral,2002,87(8/9):10461061.
    Webster J D, Holloway J R. Partitioning of F and Cl between magmatic hydrothermal fluid andhighly evolved granitic magmas [M]. Stein H J, Hannah J L. Ore-bearing Granite Sys-tem:Petrogenesis and Mineralizing Processes. Geol Soc AmSpec Paper,1990,246:2134.
    Webster J D, Thomas R, Rhede D, et al. Melt inclusions in quartz from an evolved peraluminouspegmatite: Geochemical evidence for strong tin enrichment in fluorine-rich andphosphorus-rich residual liquids. Geochemical Cosmochimica Acta,1997.61(13):2589~2604.
    Webster J D. Partitioning of F between H2O and CO2fluids and topaz rhyolite melt [J]. ContribMineral Petrol,1990,104(4):424438.
    Webster J D. Water solubility and chlorine partitioning in Cl-rich granitic systems: Effect of meltcomposition at2kbar and800℃[J]. Geochim Cosmochim Acta,1992,56(2):679687
    Webster J, ThomasR, FêrsterH J,etal. Geochemical evolution of halogen-enriched granitemagmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge,Germany[J].Mineralium Deposita,2004,39:452-472.
    Wood S A and Samson I M. The Hydrothermal Geochemistry of Tungsten in GranitoidEnvironments: I. Relative Solubilities of Ferberite and Scheelite as a Function of T, P, pH,and mNaCl. Economic Geology,2000.95(1):143-182
    Yoder,Jr.,H.S. The Evolution of the Igneous Rocks..1979.
    Yuvan J, Shelton K, Falck H. Geochemical investigations of the high-grade quartz–scheelite veinsof the Cantung Mine, Northwest Territories. In: Wright D F, Lemkow D, Harris J R (Eds.),Mineral and Energy Resource Assessment of the Greater Nahanni Ecosystem underConsideration for the Expansion of the Nahanni National Park Reserve, Northwest Territories:Geological Survey of Canada Open File.2007.177-190
    Zaw K, and Singoyi B. Formation of Magnetite-Scheelite Skarn Mineralization at Kara,Northwestern Tasmania: Evidence from Mineral Chemistry and Stable Isotopes. EconomicGeology,2000.95(6):1215-1230
    Zoltán Zajacz, Werner E. Halter,Thomas Pettke, Marcel Guillong. Determination of fluid/meltpartition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions:Controls on element partitioning. Geochimica et Cosmochimica Acta.2002,72:2169-2197
    白鸽,袁忠信.碳酸岩地质及其矿产矿床地质研究所科研成果[A]..中国地质科学院矿床地质研究所文集(13)[C].1985:1.
    毕承思.中国矽卡岩型白钨矿矿床成矿基本地质特征[J].中国地质科学院院报,1987,03:49-64.
    蔡明海,陈开旭,屈文俊,刘国庆,付建明,印建平.湘南荷花坪锡多金属矿床地质特征及辉钼矿Re-Os测年[J].矿床地质,2006,03:263-268.
    蔡杨,陆建军,马东升,黄卉,张怀峰.湖南邓阜仙印支晚期二云母花岗岩年代学、地球化学特征及其意义[J].岩石学报,2013,12:4215-4231.
    蔡杨,马东升,陆建军.湖南邓阜仙钨矿辉钼矿铼-锇同位素定年及硫同位素地球化学研究.岩石学报.2012,28(12):3798-3808.
    常海亮,黄惠兰.西华山钨矿床中熔融包裹体的初步研究与矿床成因讨论[J].岩石矿物学杂志,2002,21(2):143-150.
    常海亮,汪雄武,王晓地,刘家齐,黄慧兰.西华山黑钨矿—石英脉绿柱石中熔融包裹体的成分[J].岩石矿物学杂志,2007.26(3):259-266
    常海亮,汪雄武,王晓地等.西华山黑钨矿-石英脉绿柱石中熔融包裹体的成分[J].岩石矿物学杂志.2007.26(3)
    陈骏,C.Halls,C.J.Stanley.湖南柿竹园钨-钼-铋-锡矿床中锡石的产状与成因[J].地质论评,1992,02:164-172+201.
    陈骏,陆建军,陈卫锋,王汝成,马东升,朱金初,张文兰,季峻峰.南岭地区钨锡铌钽花岗岩及其成矿作用[J].高校地质学报,2008,04:459-473.
    程顺波,付建明,马丽艳,蒋桂新,陈希清,卢友月,童喜润.桂东北越城岭—苗儿山地区印支期成矿作用:油麻岭和界牌矿区成矿花岗岩锆石U-Pb年龄和Hf同位素制约[J].中国地质,2013,04:1189-1201.
    邓晋福,莫宣学,赵海玲,等.中国东部燕山期岩石圈-软流圈系统大灾变与成矿环境[J].矿床地质,1999.18(4):309-311.
    地矿部南岭项目花岗岩专题组,南岭花岗岩地质及其成因和成矿作用[M],北京:地质出版社,1989.
    杜乐天.碱交代作用地球化学原理[J].中国科学(B辑化学、生物学、农学、医学、地学),1986,01:81-90.
    冯志文,夏卫华,章锦统,陈紫英.江西黄沙脉钨矿床特征及成矿流体性质讨论[J].地球科学,1989,04:423-432.
    付建明,谢才富,彭松柏,杨哓君,梅玉萍.湖南骑田岭花岗岩及其暗色微粒包体的地球化学与壳幔岩浆的混合作用[J].地球学报,2006:27(6)557-569.
    傅其斌,祝新友,程细音,王艳丽.湖南瑶岗仙钨矿花岗岩中云母研究[J].矿物学报,2011,S1:18-19.
    管申进,张辉,唐勇,张锦煦.100MPa、800℃下Mo和W在流体/花岗质熔体相间分配的实验研究[J].地球化学,2011,06:516-524.
    广东省地质局.南岭区域地质测量普查大队火成岩组,南岭侵入岩[M],北京:地质出版社,1959.
    国标GB/T17412.1岩石分类和命名方案火成岩岩石的分类和命名方案.1998.
    胡受奚,周顺元,任启江,等.碱交代成矿模式及其成矿机制的理论基础[J].地质与勘探,1982.(1):1~4.
    胡受奚,周顺之,刘孝善等.矿床学[M].北京:地质出版社,1982.
    花林宝,丁梅花,真允庆等.长江中下游地区的矽卡岩交代柱特征与深部找矿.地质调查与研究,2010,33(1):115~129
    华仁民,陈培荣,张文兰,等.华南中、新生代与花岗岩类有类的成矿系统[J].中国科学,2003,33(4):335-343.
    华仁民,陈培荣,张文兰,陆建军.论华南地区中生代3次大规模成矿作用[J].矿床地质,2005,02:99-107.
    华仁民,陈培荣,张文兰,姚军明,林锦富,张展适,顾晟彦.南岭与中生代花岗岩类有关的成矿作用及其大地构造背景[J].高校地质学报,2005,03:291-304.
    黄河,张招崇,张舒,张东阳.新疆西南天山霍什布拉克碱长花岗岩体岩石学及地球化学特征——岩石成因及其构造与成矿意义[J].岩石矿物学杂志,2010.29(6):707~718
    黄卉,马东升,陆建军.湖南邓阜仙复式花岗岩体的锆石U-Pb年代学研究[J].矿物学报..2011,增刊:590-591.
    黄卉,马东升,陆建军.湘东邓阜仙二云母花岗岩锆石U-Pb年代学及地球化学研究[J].矿物学报.2013,33(2):245-255.
    黄惠兰,常海亮,付建明,汪雄武,李桃叶.西华山脉钨矿床的形成压力及有关花岗岩的侵位深度[J].矿床地质,2006,05:562-571.
    黄伟林.湖南东坡多金属矿成矿流体地球化学研究:[博士学位论文].贵阳:中国科学院贵阳地球化学研究所.1988.
    蒋少涌,赵葵东,姜耀辉,凌洪飞,倪培.华南与花岗岩有关的一种新类型的锡成矿作用:矿物化学、元素和同位素地球化学证据[J].岩石学报,2006,10:2509-2516.
    康永孚,苗树屏,李崇佑,等.中国钨矿床[M].北京:地质出版社.1993.
    李建平.江西大吉山钨矿成矿特征及东区成矿预测[博士学位论文],北京:中国地质大学(北京).2012.
    李立,熊小林,刘星成,张俊杰. W、Mo元素流体/熔体分配系数及其在热液过程中的地球化学行为[A].中国矿物岩石地球化学学会.中国矿物岩石地球化学学会第14届学术年会论文摘要专辑[C].中国矿物岩石地球化学学会:,2013:2.
    李鹏春.湘东北地区显生宙花岗岩岩浆作用及其演化规律[博士学位论文].广州:中国科学院研究生院(广州地球化学研究所).2006.
    李顺庭,王京彬,祝新友等.湖南瑶岗仙复式岩体的年代学特征.地质与勘探[J],2011,47(2)
    李顺庭,王京彬,祝新友等.湖南瑶岗仙钨多金属矿床辉钼矿Re-Os同位素定年和硫同位素分析及其地质意义[J].现代地质,2011,25(2):228-235.
    李献华,李武显,王选策,李秋立,刘宇,唐国强.幔源岩浆在南岭燕山早期花岗岩形成中的作用:锆石原位Hf-O同位素制约[J].中国科学(D辑:地球科学),2009,07:872-887.
    李兆麟,林文生.某些岩浆岩成岩温度测定[J].地质科学,1982,(1):81~86
    李兆麟.粒间溶液与成矿作用[J].地质学报,1986,(2):189~201
    林新多,姚书振,张叔贞.鄂东大冶式铁矿成矿流体性质的探讨[J].地球科学,1984,04:99-106.
    林新多,张德会,章传玲.湖南宜章瑶岗仙黑钨矿石英脉成矿流体性质的探讨[J].地球科学,1986,02:153-160.
    林新多,许国建.岩浆成因夕卡岩的某些特征及形成机制初探[J].现代地质,1989.3(3):351~358.
    林新多,张德会,章传玲.湖南宜章瑶岗仙黑钨矿石英脉的成因[J].地球科学.1986,11(2)
    林新多.夕卡岩的一种成因——岩浆成因[J].地质科技情报,1987.(2):92~94.
    林新多.岩浆-热液过渡型矿床[M].武汉:中国地质大学出版社.1999.1~139.
    林新多.岩浆-热液过渡型矿床的若干特征[J].现代地质,1998,04:30-37.
    刘凤山,石准立.国外岩浆热液成矿理论研究现状与进展[J].地质科技情报,1994,02:75-77+48+79-80.
    刘惠芳,陆琦.湖南金船塘矿区矽卡岩矿物及Sn元素在绿帘石中的分布特征[J].地球科学(中国地质大学学报),2008.33(2):210-218
    刘铁庚,邱聚田.再论白云鄂博白云碳酸岩的成因[J].地质与勘探,1986,08:35-40.
    刘悟辉.黄沙坪铅锌多金属矿床成矿机理及其预测研究[博士学位论文].长沙:中南大学.2007.
    刘义茂,戴橦谟,卢焕章,胥友志,王昌烈,康卫清.千里山花岗岩成岩成矿的~(40)Ar-~(39)Ar和Sm-Nd同位素年龄[J].中国科学(D辑:地球科学),1997,05:425-430.
    刘义茂.论花岗岩类岩浆的分异作用问题[J].矿物岩石地球化学通讯,1983,03:21-23.
    刘英俊,曹励明.元素地球化学导论[M].北京:地质出版社,1985:1~281.
    刘勇,李廷栋,肖庆辉,耿树方,王晓霞,陈必河.骑田岭花岗岩体的岩浆混合成因:寄主岩及其暗色闪长质包体的锆石U-Pb年龄和Hf同位素证据[J].地质科技情报,2011,30(2):19~27.
    卢焕章,范洪瑞,倪培,欧光习,沈昆,张文淮.流体包裹体[M].北京:科学出版社,2004.345~362
    卢友月,付建明,程顺波,马丽艳,张鲲.湘南界牌岭锡多金属矿床含矿花岗斑岩SHRIMP锆石U-Pb年代学研究[J].华南地质与矿产,2013,03:199~206.
    吕博,杨岳清,孟贵祥等.内蒙古东七一山碱长花岗岩的地球化学特征和成因[J].岩石矿物学杂志.2011,30(3):543~552
    马铁球,伍光英,贾宝华,柏道远,王先辉,陈必河.南岭中段郴州一带中-晚侏罗世花岗岩浆的混合作用——来自镁铁质微粒包体的证据[J].地质通报,2005,24(6):506~512.
    马秀娟.1988.大吉山钨矿包裹体地球化学研究[A].见:李荫清,等主编.流体包裹体在矿床学和岩石学中的应用[C].北京:北京科学技术出版社.64~112.
    毛景文,李红艳,信学等.1998.湖南柿竹园钨锡钼铋多金属矿产地质与地球化学[M],北京:地质出版社,1~215
    毛景文,李红艳.湖南柿竹园矽卡岩-云英岩型W-Sn-Mo-Bi矿床地质和成矿作用[J].矿床地质,1996,15(1):1~15
    毛景文,王登红.花岗岩有关稀有金属矿床研究新进展[J].矿床地质,1997,02:94-97
    毛景文,谢桂青,郭春丽,陈毓川.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景[J].岩石学报,2007,10:2329-2338.
    南京大学地质学系.华南不同时代花岗岩类及其与成矿关系.科学出版社:1981.1-114.
    彭省临,陈子龙,陈旭,杨牧.钨、锡液态分离成矿作用的新证据[J].中南工业大学学报,1995.26(2):143-147
    饶家荣,骆检兰,易志军.锡矿山锑矿田幔-壳构造成矿模型及找矿预测[J].物探与化探,1999,23(4):241~249
    任纪舜,牛宝贵,刘志刚.软碰撞-叠覆造山和多旋回缝合作用[J].地学前缘,1999,6(3):83-93
    舒良树,周新民,邓平,余心起.南岭构造带的基本地质特征[J].地质论评,2006.52(2),251~265.
    苏良赫.液相不共溶在岩石学及矿床学中的重要性[J].地球科学,1984.(1):1-12
    汤中立,李小虎.两类岩浆的小岩体成大矿[A].中国地质学会矿床地质专业委员会、中国地质科学院矿产资源研究所.第八届全国矿床会议论文集[C].中国地质学会矿床地质专业委员会、中国地质科学院矿产资源研究所:,2006:4.
    汤中立.中国的小岩体岩浆矿床[J].中国工程科学,2002,06:9-12.
    唐群力,胡瑞忠,吴开兴.硅酸盐熔/流共存体系中元素分配系数研究几个问题[J].地质地球化学,2003,31(3):8892.
    汪洋.南岭燕山早期花岗岩成因类型的进一步探讨[J].地质论评,2008,02:162-174.
    王昌烈,罗仕徽,胥有志等.柿竹园钨多金属矿床地质[M].北京:地质出版社,1987:116-141
    王德滋,谢磊.岩浆混合作用:来自岩石包体的证据[J].高校地质学报.2008:14(1):16-21.
    王京彬.湖南道县正冲稀有金属云英斑岩的特征和成因[J].地质论评,1990,06:534-539+577.
    王联魁,张绍立,杨文金等.华南花岗岩系列的Sr、O、Pb、Nd同位素与形成环境[J].地质与勘探,1989.25:29-33.
    王联魁,张绍立,杨文金等.花岗岩成因分类的再认识[J].地质与勘探,1989.25(9):24-30.
    王联魁,张绍立,杨文金等.花岗岩成因分类简介与有关概念[J].地球化学,1991.(1):98-100.
    王联魁,黄智龙. Li-F花岗岩液态分离与实验[M].北京:科学出版社.2000.1-236.
    王联魁,王慧芬,黄智龙. Li-F花岗岩液态分离的微量元素地球化学标志[J].岩石学报,2000.15(02):145-152
    王联魁,王慧芬,黄智龙.锂氟花岗质岩石三端元组分的发现及其液态分离成因[J].地质与勘探,1997.33(3):11-20
    王联魁,朱为方,张绍立.液态分离—南岭花岗岩分异方式之一;地质论评,1983.29(2):365-373
    王璞,潘兆橹,翁玲宝等,系统矿物学(上)[M].北京:地质出版社.1982.
    王勇,吕庆田,孟贵祥等.内蒙东七一山碱长花岗岩及其成矿作用[J].地质学报,2011.83(10):1505-1514
    王玉荣,H.T.Hoselton, I-Ming Chou. Sn、Fe、W、Pb和Zn在花岗岩熔体及共存流体相之间的分配实验研究:850℃和400MPa[J].地球化学,2007.36(4):413-418
    王玉荣,李加田,卢家烂,樊文苓.花岗岩浆结晶过程晚期铌、钽富集成矿的地球化学机理探讨[J].地球化学,1979.8(4):283-291
    王玉荣,卢家烂,樊文岭.高温气热溶液中铁元素迁移形式的初步实验研究[A].成岩成矿实验研究[C].北京:科学出版社.1979.135~136.
    魏文凤,胡瑞忠,毕献武,苏文超,宋生琼,石少华.赣南西华山钨矿床成矿流体演化特征[J].矿物学报.2011,31(2):201~210
    翁文灏.中国矿产区域论[J].农商部地质调查所,地质汇报,1920.第2号.
    吴言昌.论岩浆夕卡岩:一种新类型夕卡岩[J].安徽地质,1992.(1):12~26.
    伍光英.湘东南多金属矿集区燕山期花岗岩类及其大规模成矿作用[博士学位论文].北京:中国地质大学(北京).2005.
    席斌斌,张德会,周利敏.南岭地区几个与锡(钨)矿化有关的岩体的岩浆演化[J].地质通报,2007,12:1591-1599.
    夏宏远,梁书艺.华南钨锡稀有金属花岗岩矿床成因系列[M].北京:科学出版社:1991.1-199.
    夏林圻,岩浆岩中的熔体包裹体[J].地学前缘,2002,9(2):403-414
    夏林圻.岩浆岩中的熔体包裹体[J].地学前缘,2002.9(2):403-414夏卫华,陈紫英.黄玉石英中熔浆包裹体的发现及其在华南担锐花岗岩成因上的意义[J].
    地球科学-武汉地质学报,1984.(2):79-83夏卫华,章锦统,冯志文,陈紫英.南岭花岗岩型稀有金属矿床地质[M],武汉:中国地质大学
    出版社:1989.1-120
    夏卫华,章锦统,冯志文等.南岭花岗岩型稀有金属矿床地质[M].武汉:中国地质大学出版社,1989:190~115
    夏卫华.矿床研究中一些值得探讨的问题[J].地质科技情报,1985,01:150-154.
    肖剑,王勇,洪应龙,周玉振,谢明璜,王定生,郭家松.西华山钨矿花岗岩地球化学特征及与钨成矿的关系[J].东华理工大学学报(自然科学版),2009,01:22-31.
    肖庆辉,邢作云,张昱,伍光英,童劲松.当代花岗岩研究的几个重要前沿[J].地学前缘,2003,03:221-229.
    谢家荣.中国之矿产时代及矿产区域[J].地质论评,1936.1(3):363-380.
    熊小林,赵振华,朱金初,饶冰,赖鸣远.钠长花岗岩-H2O-HF体系中流体/熔体间氟的分配实验研究[J].地球化学,1998,01:66-73.
    徐克勤,刘英俊.江西南部加里东花岗岩的发现[J].地质论评,1960.20(3):112-114.
    徐克勤,孙鼎,王德滋,等.华南多旋回的花岗岩类的侵入时代、岩性特征、分布规律及其成矿专属性的探讨[J].地质学报,1963.43(1-2):1-26,141-155.
    徐克勤.湘南钨铁锰矿矿区中矽卡岩型钙钨矿的发现,并论两类矿床在成因上的联系[J].地质学报,1957;37(2)
    徐启东.广西粟木稀有金属花岗岩中长石的成因与意义.矿物岩石,1989.9(1):15-25
    徐启东.湖南香花岭复式碱长花岗岩体侵入期次关系的识别.湖南地质,1991.10(4):289-294
    徐夕生,鲁为敏,贺振宇.佛冈花岗岩基及乌石闪长岩-角闪辉长岩体的形成年龄和起源[J].中国科学(D辑:地球科学),2007.37(1):27-38
    许国建,林新多.安徽长龙山夕卡岩浆型铁矿床成因探讨[J].地球科学,1990.15(6):649~656.
    许建祥,曾载淋,王登红,陈郑辉,刘善宝,王成辉,应立娟.赣南钨矿新类型及“五层楼+地下室”找矿模型[J].地质学报,2008,07:880-887.
    薛春纪,祁思敬,隗合明等.基础矿床学[M].北京:地质出版社.2007:74~111
    杨策,朱金初,张佩华,谢才富.广西姑婆山里松花岗岩中闪长质包体的地球化学特征及其成因探讨[J].高校地质学报,2006,14(1):310-318.
    杨超群,田焕章,杨世义.湘南东坡网脉状云英岩-矽卡岩复合型钨钼铋矿床[A].中国地质科学院宜昌地质矿产研究所文集(1)[C]:1980:22.
    杨锋,李晓峰,冯佐海,白艳萍.栗木锡矿云英岩化花岗岩白云母(40)Ar/(39)Ar年龄及其地质意义[J]..桂林工学院学报.2009.29(1):21-24
    杨武斌,苏文超,廖思平,牛贺才,罗勇,单强,李宁波.巴尔哲碱性花岗岩中的熔体和熔体-流体包裹体:岩浆-热液过渡的信息[J].岩石学报,2011,05:1493-1499.
    姚凤良,孙丰月.矿床学教程[M].北京:地质出版社,2006,76~131
    余行祯,李佩兰.西华山钨矿田成矿热流体性质分析[J].矿产与地质,1988,01:81-88.
    袁见齐,朱上庆,翟裕生.矿床学[M].北京:地质出版社,1984,1-345
    袁忠信,白鸽,杨岳清.稀有金属花岗岩型矿床成因讨论[J].矿床地质,1987.(1):88-94
    袁忠信,张宗清.南岭花岗岩类岩石Sm、Nd同位素特征及岩石成因探讨[J].地质论评,1992,01:1-15.
    翟裕生,石准立,林新多,等.1982.鄂东大冶式铁矿成因的若干问题[J].地球科学,(3):239~251.
    翟裕生,姚书振,蔡克勤.2011.矿床学(第三版)[M].北京:地质出版社,1~345
    张德会,张文淮,许国建.岩浆热液出溶和演化对斑岩成矿系统金属成矿的制约[J].地学前缘,2001,8(3):193-202.
    张德会,金旭东,毛世德,王丽丽.成矿热液分类兼论岩浆热液的成矿效率[J].地学前缘,2011,05:90-102.
    张德会.石英脉型黑钨矿床成矿流体性质的进一步讨论[J]..地球科学,1987.12(2):185-192.
    张德会.1988.试论石英脉型黑钨矿床的液态分离成因[J].地质与勘探,1988(7):15-20
    张辉,刘丛强.新疆阿尔泰可可托海3号伟晶岩脉磷灰石矿物中稀土元素“四分组效应”及其意义[J].地球化学,2001,04:323-334.
    张辉,唐勇,刘丛强,饶冰.熔体-流体作用是过铝质岩浆体系产生稀土“四重效应”的机制?——REE在流体/熔体相分配的实验研究[A].中国矿物岩石地球化学学会.中国矿物岩石地球化学学会第11届学术年会论文集[C].中国矿物岩石地球化学学会:,2007:3.
    张理刚.华南钨矿床黑钨矿的氧同位素研究[J].地球化学,1987,(3):233-242.
    章锦统,夏卫华.黄玉碱长花岗岩及其矿床[J].地质科技情报,1988.7(4):77-84
    章振根,李锡林,林学农,熊光平.3B型花岗岩——一种与锡有关的花岗岩[J].地质地球化学,1983,04:58-59+5.
    赵斌.中国主要夕卡岩及夕卡岩矿床[M].北京:科学出版社.1989.1~342.
    赵劲松,Newberry R J.对柿竹园矽卡岩成因及其成矿作用的新认识[J].矿物学报,1996,16(4):442-449
    赵劲松,丘学林,夏斌.柿竹园多金属超大型矿床脉状云英岩石英里的一个流体一熔融包裹体显微镜下特征和喇曼光谱分析.见:地质流体和流体包裹体研究国际学术会议暨第十五届全国流体包裹体会议论文集.北京:中国地质学会,2007,224-225
    赵一鸣,毕承思,李大新.中国主要矽卡岩铁矿床的挥发组分和碱质交代特征及其在成矿中的作用[J]..地质论评,1983,29(1):66~74.
    赵一鸣,林文蔚,毕承思等.中国矽卡岩矿床[M].北京:地质出版社.1990,1~354.
    赵一鸣.2002.矽卡岩矿床研究的某些重要新进展[J]..矿床地质,21(2):113-121
    赵振华,包志伟,张伯友,熊小林.柿竹园大型钨多金属矿床的壳幔相互作用背景[J].中国科学(D辑),2000,30(增刊):161~168.
    赵振华,熊小林,韩小东.花岗岩稀土元素四分组效应形成机理探讨——以千里山和巴尔哲花岗岩为例[J].中国科学(D辑:地球科学),1999,04:331-338.
    赵振华,增田彰正, Shabani M B.稀有金属花岗岩的稀土元素四分组效应[J]..地球化学,1992,(3):221~233
    赵振华.稀土元素的四重分布.水(流体)与岩石(熔体)相互作用的重要地球化学标志.见:全国第三届矿物岩石地球化学学术交流会议论文摘要汇编.重庆:中国科学技术文献出版社重庆分社,1988,47~49
    周瑞文.钾长一碱长花岗岩与稀土铌钽成矿的关系[J].,地质与勘探,1982.2:12-15
    周新民.南岭地区晚中生代花岗岩成因与岩石圈动力学演化[M].北京:科学出版社.2007.
    朱金初,李人科,周凤英,王汝成,熊小林,许红忠.广西栗木水溪庙不对称层状伟晶岩-细晶岩岩脉的成因讨论[J].地球化学,1996,01:1-9.
    朱金初,饶冰,熊小林.富锂氟含稀有矿化花岗质岩石的对比和成因思考[J].地球化学,2002.31(2):141-152
    朱金初,吴长年,刘昌实,李福春,黄小龙,周东山.新疆阿尔泰可可托海3号伟晶岩脉岩浆—热液演化和成因[J].高校地质学报,2000,01:40-52.
    朱金初,张佩华,谢才富,张辉,杨策.南岭西段花山-姑婆山A型花岗质杂岩带:岩石学、地球化学和岩石成因[J]..地质学报,2006.80(4),529~542.
    朱永峰,曾贻善,艾永富.长英质岩浆中液态不混溶与成矿作用关系的实验研究[J].岩石学报,1995,01:1-8.
    朱永峰.热液矿床的石英脉及蚀变——岩浆液态不混溶作用的产物[J].矿物岩石地球化学通报,1995,03:196-199.
    祝新友,王京彬,王艳丽,等.湖南黄沙坪W-Mo-Bi-Pb-Zn多金属矿床的硫铅同位素地球化学研究[J]..岩石学报,2012,28(12):3809-3822
    祝新友,王京彬,王艳丽,等.石英脉型钨矿床中云英岩析离体及岩浆液态分异成矿研究——以湖南瑶岗仙钨矿床为例[J].矿床地质,2013,03:533-544.
    祝新友,王京彬,王艳丽.南岭锡钨多金属矿区碱长花岗岩的厘定及其意义[J]..中国地质,2012.39(2):359-381

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700