用户名: 密码: 验证码:
干旱区典型绿洲盐渍地地物光谱特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展,人口的增长,不合理的利用土地资源导致了土地质量退化等生态问题的出现,而土壤盐渍化问题正是干旱、半干旱地区土地质量退化的主要问题,因此及时、精准、动态地获取盐渍土理化特征信息,对治理盐渍土、防止其进一步退化和进行农业可持续发展至关重要。地物的光谱特征研究是现代遥感技术的重要组成部分,地物的光谱特征也是识别地物的主要标志之一。光学遥感的最重要特征是图谱合一,光谱信息是多光谱技术的重要优势,其应用过程需要地面实测光谱和图像光谱相结合。因此,地物光谱的采集获取与处理至关重要,光谱数据质量直接影响到应用结果。
     研究盐渍化土壤的光谱特性是利用遥感技术实现在区域尺度上进行土壤盐渍化监测和评价的工作基础,是建立地面数据和遥感数据关系的桥梁。本文以新疆塔里木盆地北缘地区——渭干河–库车河三角洲绿洲为研究区域,采用光谱学技术以及遥感技术相结合的方法,在对遥感机理和地物光谱理论深入理解的基础上,研究干旱区典型绿洲盐渍地地物的光谱特征,并建立光谱模型与定量反演方法,开展多源光谱数据在土壤盐渍化监测方面的应用示范研究。本研究主要得出以下结论:
     (1)详细阐述了COST模型的理论及其算法,模型参数的确定及其获取途径。COST模型在完成TM卫星遥感数据大气辐射纠正的同时实现了地表反射率反演,为TM卫星遥感数据的应用研究奠定了基础。结果表明:用野外实测的准同步光谱数据与之进行比较分析,得到影像光谱值与实测光谱的相关系数R=0.9249,相关性较好。因此,可以将经过大气校正后的影像光谱值代替实测地物的光谱值进行分析。
     (2)使用ASD光谱仪进行地物光谱数据测量,并对光谱数据的进行预处理,以消除仪器本身噪声及外界条件的影响。然后,论述了光谱数据转换的几种方法,并对现有的光谱匹配处理技术如二值编码匹配、光谱角度匹配、光谱吸收指数、光谱特征匹配、光谱匹配滤波等进行阐述,重点分析了光谱吸收特征参数。又将实测高光谱数据重采样到TM数据的波段范围,建立两者关系。然后将重采样后的数据映射到该空间中,得到二维散点图。实现光谱数据从光谱曲线空间到光谱特征空间的映射变换。并从光谱曲线的本身出发,利用提取光谱维特征模型,给出了控制干旱区盐渍地,盐生植物光谱特征的特征位置。进一步分析了在不同干燥和不同粒径条件下的盐渍地光谱曲线特征。
     (3)对遥感数据的光谱特征和地物光谱理论作了深入的阐述,并结合几种典型的地物对遥感信息光谱数据和测量光谱数据进行比较分析。采用光谱线性算法建立端元光谱与遥感图像像元光谱的转换模型,实现了从实测端元光谱尺度向遥感多光谱像元尺度的定量光谱转换,同时对TM图像的光谱波段进行细划分,利用波谱知识库的数据支持来模拟获取具有更高光谱分辨率的细分光谱光学遥感图像的方法。依据波谱数据库等先验知识的支持,通过遥感成像时辐射传输的模拟运算,在宽光谱光学遥感数据提供的图像纹理信息和地类信息的基础上,获取细分光谱波段的模拟光学遥感图像,同时避免了难以接受的计算量。细分光谱模拟图像的实验结果表明:本方法能够较为可靠的模拟出真实高光谱分辨率图像的信息,模拟方法可信。而且,围绕高光谱土壤信息的特征提取,着重研究了土壤的光谱特性与土壤理化特征参数(八大离子,电导率,含盐量,pH,TDS以及紧实度数据等)的关系,建立盐渍土理化特征与野外实测光谱数据之间的定量回归模型。
     (4)将.NET和SuperMap平台相结合,用SQL Server数据库存储数据,采用B/S模式,使用C#语言设计并开发了地物光谱信息系统,并针对干旱区绿洲的特点建立了典型地物光谱数据库。该系统实现了对研究区典型地物光谱信息及其相关属性数据的分类存储和管理;地图与属性数据的可视化双向查询;地物光谱响应曲线的绘制;导数光谱数据处理,包络线,归一化及曲线绘制,初步具备了简单的光谱数据挖掘和分析能力,为该地区后续土壤盐渍化研究提供了一个高效、可靠、便捷的数据管理和应用平台。
     总之,本研究的工作成果对于干旱区典型绿洲盐渍土,盐生植物的光谱特征研究有着重要指示意义。为发展和完善我国盐渍土理化特征的可见光-近红外反射光谱分析理论奠定科学积累,并进一步为干旱区土壤盐渍化、沙漠化灾害等环境恶化问题的解决提供新的科学技术手段。
With the economic development and the population increase, unreasonable land development caused ecological problems such as land degradation, while soil salinization becomes a major problem in arid and semi-arid area. So acquiring accurate soil characteriscs information timely is important for evaluation soil salinization to protect soil from degrading and realizing agriculture sustainable development.The study on spectral characteristics in surface features is an important component of modern remote sensing technology. It is also one of the main signs for discriminating the surface features. The most imponant characteristic of remote sensing is the unities of map and spectmm information, and the spectrum information is an important advantage in hyperspectral technology, whose application process requires ground spectra data and picture spectrum combined together.Therefore, the collection and processing of spectral data is essential, and the quality of spectral directly affects the results of the application.
     It is a work foundation that study soil salinization, the spectrum characteristics by using remote sensing technology to achieve on regional scale for monitoring and evaluation of soil salinization, and also is to establish the ground data and remote sensing data relationship of the bridge. In this paper, the author takes the delta of Weigan and Kuqa rivers located in the North of Tarim Basin as study area, adopting spectroscopy technology and remote sensing technology method. This thesis indicates some major conclusions as the following:
     (1) The paper expatiated the COST model method and arithmetic,and how to confirm the parameters.With COST model finishing atmospheric and radiometric correction of TM,retrieve of earth reflection had been carried out. It is show that we can get reflecting rate image after the pretreatment of remote sensing data, TM image by adopting the COST model, and comparatively analyzes the anisochronous spectrum data and it and receives their coefficient correlation value, 0.9249.so we can use reflecting rate image to analyze spectrum data replacing the corresponding surface feature spectrum in the field of Open-air measurement. By construing the difference of the several kinds of typical surface features in this area in terms of the mechanism of the spectrum and spectrum curve, this is theory base and practice foreshadowing further of drawing saline-alkali soil information make kind.
     (2) Using ASD spectrograph spectral properties of vegetation to measure spectral data in surface features. the spectral data must be removed the equipment itself and the outside world noise conditions.Aimed at this experimental application study, choose appropriate way from existing spectral matching processing technologies such as Binary Encoding, Spectral Angle Mapping, Spectral Absorption Index, Spectral Feature Fitting, Matched Filter and mixed-pixel analysis of the issue. Resembling the hperspectral data to the TM data’s wave band scope, establishes both relation.And then re-sampled data is mapped to the space, we could get the two-dimensional scatter plot and achieve the space to spectral space mapping transformation. The author extracted the spectrum dimension character model from the spectrum curve. And did some analysis to the model, and gave the general application of the model and other application on growth evaluation of vegetation.But also analyzes spectrum curve characteristics under the condition of the different drying and different particle sizes.
     (3) The article reviews the theory development of spectrum of remote sensing and information drawn and makes deep exposition to spectrum characteristic and surface feature spectrum theory of the remote sensing data. It comparatively analyses the information spectrum data of remote sensing and the measure spectrum for several kinds of typical surface features. We set up the linear model to accomplish the quantitative transformation from edmember scale to pixel scale. This paper also proposes a method which uses TM images with lower spectrum resolutiom to simulate images with higher speemun resolutions.Based on previously obtained data (i.e.spectrum library) and simulations of the radiation transmission process. Our method uses the texture and sorting information of objects which is derived from a TM image with a wider spectral band, and to finally simulate an image with a subsection of spectral band. During the simulation process, unacceptable calculations were avoided. Our results show that our technique is effective.More over, the thesis focused on retrieving soil physical and chemical characteristic parameters (ions, electric conductivity, salinity, moisture content, pH, TDS and compactness data, etc.) from the hyperspectral data.The hyperspectral reflectance data were transformed to several mathematics mathematic transformations, such as reciprocal, logarithm, differential and so on. Using single-correlation analysis, the quantifying regression models between soil reflectance and soil ions, electric conductivity, salinity, pH, TDS and compactness were established.
     (4) Unified .NET and the SuperMap platform with SQL Server database stored data, used the B/S pattern and the C# language to design and develope the typical surface object spectral information system, and established the typical surface object spectral database according to the characteristics of arid areas oasis. The system implemented the classified storage and the management of typical surface object spectral information and the related attribute data of the study areas; this system also implemented visualized two-way query between the maps and attribute data, the drawings of the surface object spectral response curves and the processing of the derivative spectral data,continuum cure and normalizaed data by the continuum removal and its drawings. In addition, the system initially possessed a simple spectral data mining and analysis capabilities, and this advantage provided an efficient, reliable and convenient data management and application platform for the Ugan-Kuqa River Delta Oasis’s follow-up study in soil salinization. Finally, it’s easy to maintain and convinient to secondary development and practically operate in good condition.
     To sum up, the result of this research will produce the significant meaning for the research on the saline-alkali soil in the arid area. And in the expansion XinJiang that a large part of it belongs to the arid area, taking the delta oasis of Weigan and Kuqa rivers as study area has realistic meaning to the environment research in arid area.
引文
[1]郝建亭.光谱数据处理及其在植被信息提取中的应用——以岷江上游毛儿盖地区为例[D].成都理工大学硕士学位论文.2008.5.
    [2] Graciela Metternicht,J.Alfred Zinck.Remote Sensing of Soil Salinization Impact on Land Management[M].CRC Press,2009.
    [3]水利部计划司,农水司.全国灌溉面积发展"九五"计划及2010年规划.中国水利水电科学研究院,1997,1-3.
    [4]石迎春,辛民高,郭娇,等.西北地区黑河中游盐渍化地区土壤盐分特征[J].现代地质,2009,23(1):28-37.
    [5]陈小兵,杨劲松,杨朝晖,等.基于水盐平衡的绿洲灌区次生盐碱化防治研究[J].水土保持学报,2007,21(3):32-37,51
    [6] R.P.SHRESTHA. Relating soil electrical conductivity to remote sensing and other soil properties for assessing soil salinity in Northeast Thailand [J].Land Degradation & Development,2006,17:677-689.
    [7]陈康,金晓媚,万力,等.应用MODIS数据进行土壤盐渍化评价方法研究[J].科技导报,2009,27(14):59-63.
    [8] Abdelbasset Lakhdar,Mokded Rabhi,Tahar Ghnaya,et al.Effectiveness of compost use in salt-affected soil[J].Journal of Hazardous Materials,2009,171:29-37.
    [9]关元秀,王劲峰,刘高焕.黄河三角洲土地盐碱化遥感监测、预测和治理研究[D].中国科学院地理科学与资源研究所博士学位论文,2001:178-181.
    [10]周小虎,周鼎武.数字化地物反射光谱数据库研究进展[J].光谱学与光谱分析.2009,29(6):1616-1622.
    [11]Rao B R M,Ravi Sankar T,Dwivedi R S,et al.Spectral Behavior of Salt-affected Soils[J].International of Remote Sensing, 1995, 16(12):2125-2136.
    [12] Dehaan R L, Talor G R. Field-Derived spectra of salinized soils and vegetation as indicators of irrigation induced soil salinization[J]. Remote Sensing of Environment,2002 ,80 :406-418.
    [13]J.FARIFTEH,F,VAN DERMEER E.J.M.CARRANZA. Similarity measures for spectral discrimination of salt-affected soils [J]. International Journal of Remote Sensing,2007,28(23):5273-5293.
    [14]J.Farifteh,F.Van der Meer,M.Van der Meijde,et al.Spectral characteristics of salt-affected soils :Alaborator experiment[J].Geoderma,2008,145:196-206.
    [15]Leone A P.Sommer S. Multivariate Analysis of Laboratory Spectra for the Assessment of Soil Development and Soil Degradation in the Southern Apennines (Italy) [J].Remote SensingEnvironment, 2000,(2) :346-359.
    [16]Mougenot B,Pouget M,Epema G.Remote sensing of salt-affected soils[J]. Remote sensing Reviews.1993,7:241-259.
    [17]Csillag F,Pasztor L,Biehl.Spectral band selection for the characterization of salinity status of soils[J].Remote sensing of Environment,1993,(43):231-242.
    [18]Mettmicht G,Zinck J A.Spatial discrimination of salt and sodium affected soil surfaces[J].International Journal of Remote Sensing,1997,18(12):2571-2586.
    [19]Yufeng Ge, Cristine L.S. Morgan, Sabine Grunwald,et al. Comparison of soil reflectance spectra and calibration models obtained using multiple spectrometers[J].Geoderma,2011,161:202-211.
    [20]Jing Wang,Ting He Chunyan Lv,et al. Mapping soil organic matter based on land degradation spectral response units using Hyperion images[J]. International Journal of Applied Earth Observation and Geoinformation, 2010,12S:S171-S180.
    [21]D.Summers,M.Lewis,B.Ostendorf,et al.Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties[J]. Ecological Indicators,2011,11:123-131.
    [22]李和平,田长彦,乔木,等.新疆耕地盐渍土遥感信息解译标志及指标探讨[J].干旱地区农业研究,2009,27(2):218-222.
    [23]何祺胜,塔西甫拉提·特依拜,丁建丽,等.塔里木盆地北缘盐渍地遥感调查及成因分析——以渭干河-库车河三角洲绿洲为例[J].自然灾害学报, 2007, 16 (5): 24-29.
    [24]姚荣江,杨劲松.黄河三角洲地区浅层地下水与耕层土壤积盐空间分异规律定量分析[J].农业工程学报, 2007, 23(8) :45-51.
    [25]岳卫峰,杨金忠,童菊秀,等.干旱地区灌区水盐运移及平衡分析[J].水利学报, 2008, 39 (5): 623-632.
    [26]刘炳成,李庆领.土壤中水、热、盐耦合运移的数值模拟[J].华中科技大学学报(自然科学版), 2006, 36(1): 14-16.
    [27]姚荣江,杨劲松,邹平,等.基于电磁感应仪的田间土壤盐渍度及其空间分布定量评估[J].中国农业科学, 2008, 41(2) :460-469.
    [28]王学全,高前兆,卢琦.内蒙古河套灌区水资源高效利用与盐渍化调控[J].干旱区资源与环境,2005,19(6): 118-123.
    [29]张凯,郭妮,王润元,等.西北荒漠草甸植被光谱反射特征研究[J].地球科学进展,2006,21(10):1063-1069.
    [30]夏学奇,季峻峰,陈骏,等.土壤理化参数的反射光谱分析[J].地学前缘,2009,16(4):354-362.
    [31]赵金,陈曦,古丽·加帕尔,等.塔里木河荒漠植被光谱可分性模拟[J].中国沙漠,2009,29(2):270-278.
    [32]林文鹏,李厚增,黄敬峰,等.上海城市植被光谱反射特征分析[J].光谱学与光谱分析,2010,30(11):3111-3114.
    [33]赵钊,李霞,尹业彪,等.荒漠植物含水量的光谱特征分析[J].光谱学与光谱分析,2010,30(9):2500-2503.
    [34]周萍,王润生,阎柏琨,等.高光谱遥感土壤有机质信息提取研究[J].地理科学进展,2008,27(5):27-34.
    [35]刘焕军,张柏,宋开山,等.黑土土壤水分光谱响应特征与模拟[J].中国科学院研究生院学报,2008,25(4):503-509.
    [36]彭杰,张杨珠,庞新安,等.新疆南部土壤有机质含量的高光谱特征分析[J].干旱区地理,2010,33(5):740-746.
    [37]扶卿华,倪绍祥,王世新等.土壤盐分含量的遥感反演研究[J].农业工程学报,2007,23(1):48-54.
    [38]屈永华,段小亮,高鸿永等.内蒙古河套灌区土壤盐分光谱定量分析研究[J].光谱学与光谱分析,2009,29(5):1362-1366.
    [39]Weng Yong-ling,Gong Peng,Zhu Zhi-liang. A Spectral Index for estimating soil salinity in the Yellow River Delta Region of China using EO-1 hyperion data[J].Pedosphere,20(3):278-288.
    [40]Weng Yongling,Gong Peng,Zhu Zhiliang.Soil salt content estimation in the yellow river delta with satellite hyperspectral data[J].Canada Journal of Remote Sensing,2008,34(3):259-270.
    [41]Weng Yongling,Gong Peng,Zhu Zhiliang. Reflectance spectroscopy for the assessment of soil salt content in soils of the yellow river delata of China[J].International Journal of Remote Sensing,2008,29(10):5511-5531.
    [42]张飞,丁建丽,塔西甫拉提·特依拜.渭干河—库车河三角洲绿洲盐渍化地地物光谱数据分析[J],光谱学与光谱分析,2008,28(12):2921-2926.
    [43]张飞,塔西甫拉提·特依拜,丁建丽.新疆典型绿洲主要地物光谱反射特征研究——以渭干河-库车河三角洲绿洲为例[J].红外与毫米波学报,2010,29(3):190-195.
    [44]满苏尔·沙比提,热合漫·玉苏甫,阿布拉江·苏莱曼.渭干河-库车河三角洲绿洲土地资源合理利用对策分析[J].干旱区资源与环境,2004,18(1):111-115.
    [45]满苏尔·沙比提,陈冬花.渭干河-库车河三角洲绿洲形成演变和可持续发展研究[J].资源科学,2005,27(6):118-124.
    [46]库车县水利志编纂委员会编.库车县水利志[M].乌鲁木齐:新疆科技卫生出版社,1993.22-23.
    [47]钱云,郝毓灵.新疆绿洲[M].乌鲁木齐:新疆人民出版社,2000.358-359.
    [48]库车沙雅新和三县农业气候区划办公室.新疆维吾尔自治区库车沙雅新和三县农业气候手册(内部手册)[R].1982.1-10.
    [49]新疆维吾尔自治区水利厅和新疆水利学会.新疆河流水文水资源[M].乌鲁木齐:新疆科技卫生出版社,1999.1-440.
    [50]沙雅县规划委员会编.新疆沙雅县社会经济发展总体规划[R].1990.50-52,101-105.
    [51]新疆维吾尔自治区畜牧工程勘察规划设计院.库车县退耕还林还草建设项目可行性研究报告[R].2001.2-8
    [52]新疆农科院农业现代化研究所·库车、沙雅、新和、拜城区域水资源开发与供需平衡[R].1990.16-18
    [53]新疆维吾尔自治区水利厅和新疆水利学会.新疆河流水文水资源[M].乌鲁木齐:新疆科技卫生出版社,1999.387-388,439-440.
    [54]王遵亲.中国盐渍土[M].北京:科学出版社. 1993:1-126.
    [55]满苏尔·沙比提,阿布拉江·苏莱曼.新疆库车县耕地资源利用结构优化对策[J].资源科学,2002,24(5):26-31.
    [56]王雪梅,柴仲平,塔西甫拉提·特依拜.渭干河–库车河三角洲绿洲盐生植被物种多样性研究[J].水土保持研究,2010,17(6):86-89,94.
    [57]郗金标,张福锁,田长彦.新疆盐生植物[M].北京:科学出版社.2006, 8-14.
    [58]塔西甫拉提·特依拜,张飞,赵睿,等.新疆干旱区土地盐渍化信息提取及实证分析[J].土壤通报, 2007, 38(4): 625-630.
    [59]佟才,王志平,段丽杰.盐渍化土地恢复调控的研究进展[J].北方环境,2004,29(5):32-35.
    [60]何祺胜,塔西甫拉提·特依拜,丁建丽.基于决策树方法的干旱区盐渍地信息提取研究—以渭干河-库车河三角洲绿洲为例[J].资源科学,2006,28(6):134-140.
    [61]江红南.基于3S技术的干旱区土壤盐渍化时空演变研究[D].新疆大学硕士学位论文,2007.
    [62]江红南,塔西甫拉提·特依拜,徐佑成,等.于田绿洲土壤盐渍化遥感监测研究[J].干旱区研究, 2007, 24(2): 168~173.
    [63]张飞.渭干河—库车河三角洲绿洲盐渍化土壤特征研究[D].新疆大学硕士学位论文,2007.
    [64]梅安新,彭望禄,秦其明,等.遥感导论[M].北京:高等教育出版社,2001:46-47.
    [65]陈云浩,李晓兵,谢峰.我国西北地区地表反照率的遥感研究[J].地理科学, 2001,21(4): 327-333.
    [66]刘三超,张万昌,蒋建军,等.用TM影像和DEM获取黑河流域地表反射率和反照率[J].地理科学, 2003,23(5): 585-591.
    [67]李玉环,王静,吕春燕,等.基于TM/ETM+遥感数据的地面相对反射率反演[J].山东农业大学学报(自然科学版),2005,36(4):545-551.
    [68]Chavez P S,Jr.Image-based atmospheric correction:Revisited and Improved[J].Photogrammetric Engineering and Remote Sensing,1996,62(9):1025-1036.
    [69]Gyanesh Chander, Brian L.Markham, Dennis L.Helder.Summary of current radiometric calibration coef fi cients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors[J].Remote Sensing of Environment,2009,5(113):893-903.
    [70]Moran M S.Jackson R D,Slater P N.Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output[J].Remote Sensing of Environment,1992,41:169-184.
    [71]赵英时.遥感应用分析原理与方法[M].北京:科学出版社. 2003, 20-30.
    [72]Vermote E F,Tanre D,Deuze J L,et a1.The Second Simulation of the Satellite Signal in the Solar Spectrum(6S), User’s Guide.France:Laboratoire d’Optique Atmospherique. 1997.
    [73]陈天江,王亚丽,普小云.快速傅里叶变换在喇曼光谱信号噪声平滑中的应用[J].云南大学学报,2005,27(6):509-513.
    [74]佐藤辛男著,雨宫好文主编.信号处理入门[M].北京:科学出版社,2001,27-33.
    [75]李民赞等.光谱分析技术及其应用[M].北京:科学出版社,2006,116.
    [76]杜华强.荒漠化地区高光谱遥感数据预处理及地物光谱重建的研究[D].黑龙江:东北林业大学硕士学位论文,2002.5.
    [77]张飞,塔西甫拉提·特依拜,丁建丽.等.塔里木盆地北缘绿洲盐渍化地地物光谱特征分析[J].东北林业大学学报,2008,36(6):37-42.
    [78]Palacios-Orueta,A.,Ustin,S L.Remote sensing of soil properties in the Santa Monica Uountains I.Spectral analysis[J].Remote Sensing of Environment,1998,65(2):170-183.
    [79]Cloutis E A. Hyperspectral geological remote sensing: evaluation of analytical techniques[J].Journal of Remote Sensing, 1996,17(12):2215-2242.
    [80]许卫东,尹球,匡定波.地物光谱匹配模型比较研究[J].红外与毫米波学报,2005,24(4):296-300.
    [81]Goetz,A.F.H.,Vane,G,Solomon,J.E.,and Rock,B.N.lmaging spectrometry for earth remote sensing:Science,1985,228:1147-1153.
    [82]郝建亭.光谱数据处理及其在植被信息提取中的应用——以岷江上游毛儿盖地区为例[D].四川:成都理工大学硕士学位论文,2008.5
    [83]白继伟.基于高光谱数据库的光谱匹配技术研究[D].北京:中国科学院遥感应用研究所硕士学位论文,2002.6
    [84]王晋年,郑兰芬,童庆禧.成像光谱图像吸收鉴别模型与矿物填图研究[J].环境遥感, 1996, 11(1) : 20-30.
    [85]苏红军,杜培军.高光谱数据特征选择与特征提取研究[J].遥感技术与应用,2006,21(4):288-293.
    [86]王晋年,张兵,刘建贵,等.以地物识别和分类为目标的高光谱数据挖掘[J].中国图象图形学报,1999,4A(11): 957-964.
    [87]谭昌伟,郭文善,王纪华.浅析遥感光谱特征参量的原理及基本方法[J].遥感技术与应用,2010,25(1):155-160.
    [88]郑兰芬,王晋年.成像光谱遥感技术及其图像光谱信息提取分析研究[J].环境遥感,1992,7(1):49-58.
    [89]苏红军,杜培军,盛业华.高光谱遥感数据光谱特征提取算法与分类研究[J].计算机应用研究,2008,25(2):390-394.
    [90]赵永超.光谱遥感中典型地物目标的光谱分析和信息提取模型[D].中科院遥感博士后研究工作报告,2001.
    [91]谢伯承.基于高光谱遥感不同发生层土壤的光谱信息的提取研究[D].西北农林大学,硕士论文,2004.
    [92]刘伟东.高光谱遥感土壤信息提取与挖掘研究[D].中国科学院遥感应用研究所,博士论文,2002.
    [93]丁圣彦,李昊民,钱乐祥.应用遥感技术评价植被生化物质含量的研究进展[J].生态学杂志, 2004,23(4):109-117.
    [94]王志平,杨建峰,薛彬,等.利用高光谱数据进行地物识别分类研究[J].光子学报,2008,37(3):561-565.
    [95]谢伯承,薛绪掌,刘伟东,等.基于包络线法对土壤光谱特征的提取及其分析[J].土壤学报,2005,42(1):171-175.
    [96]谭倩,赵永超,童庆禧,等.植被光谱维特征提取模型[J].遥感信息,2001,(1):14-18.
    [97]季美菊.西昌遥感试验场地物光谱测试与统计分析.遥感·地图·地理信息系统在资源与环境研究中的应用[M].成都地图出版社出版,1991.
    [98]彭望琭等.遥感数据的计算机处理与地理信息系统[M].北京:北京师范大学出版社,1991.
    [99]刘琼招.西昌山地遥感试验场工作的进展.遥感·地图·地理信息系统在资源与环境研究中的应用[M].成都地图出版社出版,1991.
    [100]陈述彭等.地学的探索第三卷,遥感应用[M].北京:科学出版社,1990.
    [101]章孝灿,黄智才,赵元洪.遥感数字图像处理[M].杭州:浙江大学出版社,1997,20-27.
    [102]乔延利,郑小兵,等.卫星光学传感器全过程辐射定标[J].遥感学报,2006,10(5):616-623.
    [103]肖青.李敏,机载光学图像至光学图像转换方法研究[J].北京师范大学学报(自然科学版),2007,43(3):234-240.
    [104]肖青.机载遥感数据的定量化研究[D],中国科学院研究生院:博士学位论文2002.
    [105]肖青,柳钦火,李小文.高分辨率机载遥感数据的交叉辐射影响及其校正[J].遥感学报,2005,9(6):625-633.
    [106]叶泽田,顾行发.利用MIVIS数据进行遥感图像模拟的研究[J],测绘学报,2000,29(3):235-239.
    [107]万华伟,王锦地,屈永华,等.植被波谱空间尺度效应及尺度转换方法初步研究[J].遥感学报,2008,12(4):538-545.
    [108]陈劲松.塔里木河流域生态环境遥感监测研究[D].长安大学,2005.5.
    [109]尹占娥编著.现代遥感导论[M]北京:科学出版社,2010.
    [110]袁春琼,沈涛,刘传胜,等.五家渠猛进水库及周边地区地物光谱遥感数据分析[J].中国沙漠),2003,23(5):549-553.
    [111]孙家柄.遥感原理与应用[M].武汉,武汉大学出版社,2010,20.
    [112]万余庆,阎永忠,张凤丽.延河流域植物光谱特征分析[J].国土资源遥感,2001,49(3):15-20.
    [113]吴呁昭,田庆久,季峻峰,等.土壤光学遥感的理论,方法及应用[J].遥感信息,2003,(1):40-47.
    [114]Metternicht G I,Zink J A.Remote sensing of soil salinity:potentials and constraints[J].Remote Sensing of Environment,2003,85:1-20.
    [115]亢庆,于嵘,张增祥,等.基于ASTER图像的干旱区土壤盐碱化遥感应用研究[J].干旱区地理,2005,28(5):675-680.
    [116]Mulders M.Remote sensing in soil science.Development in soil science [M].Amsterdam: Elsevier,1987, 379.
    [117]戚浩平,翁永玲,赵福岳,等.茶卡–共和盆地土壤盐分与光谱特征研究[J].国土资源遥感,2010,(86):4-8.
    [118]Crowley J K. Visible and near- infrared (0. 4~2. 5?m) Reflectance Spectra of Playa Evaporite Minerals[J]. Journal of Geochemical Research, 1991,96 (16): 231- 240.
    [119]Dark N A. Reflectance Spectra of Evaporate Minerals (400~2500nm): Application for Remote sensing[J]. International Journal of Remote Sensing, 1995, 16(14): 2555- 2571.
    [120]王洁,徐瑞松.广东西部主要土壤的光谱特征[J].生态环境,2008,17(5):1931-1936.
    [121]Alfredo Huete.Remote sensing of soils and soil processes,Part 1,Remote Sensing for Natural Resources Management and Environmental Monitoring:Manual of Remote Sensing,3ed,V01.4,edited by Susan Usfin.ISBN:0471-31793-4,2004,John Wiley&Sons,Inc.
    [122]翁永玲,宫鹏.土壤盐渍化遥感应用研究进展[J].地理科学,2006,26(3):369-375.
    [123]G.I.Mettemicht, J.A.Zinck. Remote sensing of soil salinity: potentials and constrains[J].Remote Sensing of Environment, 2003,85: l-20.
    [124]Edward M.Barnes,Kenneth A Sudduth,John W.Hummel,et al.Remote-and ground-Based sensor techniques to map soil propellies[J].Photogranuneuic Engineering & Remote Sensing,2003,69(6):619-630.
    [125]GareyA.Fox and George J.Sabbagh.Estimation of soil organic matter from red and neat-infrared remote sensed data using a soil line Euclidean distanog technique[J].Soil Science Society of America Journal, 2002,66:1922-1929.
    [126]David B, Lobell and Gregory P.Asner. Moisture effects on soil reflectance [J].Soil Science S ciety of America Joumal, 2002, 66:722-727.
    [127]王静,刘湘南,黄方,等.基于ANN技术和高光谱遥感的盐渍土盐分预测[J].农业工程学报,2009,25(12):161-166.
    [128]何挺,王静,程烨,等.土壤水分光谱特征研究[J].土壤学报,2006,43(6):1027-1032.
    [129]翁永玲,戚浩平,方洪宾,等.基于PLSR方法的青海茶卡–共和盆地土壤盐分高光谱遥感反演[J].土壤学报,2010,47(6):1255-1263.
    [130]Liu Wei-dong,F Baret,Gu Xing-fa,et al.Relating soil surface moisture to reflectance[J].Remote sensing of the environment,2002,81(2-3):238-246.
    [131]徐元进,胡光道,张振飞.包络线消除法及其在野外光谱分类中的应用[J].地理与地理信息科学,2005,2l(6):ll-14.
    [132]刘晚苟,山仑,邓西平植物对土壤紧实度的反应[J].植物生理学通讯,37(3),2001,254-260.
    [133]Karavanova E I, Shrestha D P,Orlov D S.Application f remote sensing techniques for the study of soil salinity in semi-arid Uzbekistan. Presented at second international conference on land degradation,―meeting the challenges of land degradation in the 21st century‖,Khon Kaen, Thailand,January 25-29,1999.
    [134]童庆禧,田国良.中国典型地物波谱及其特征分析[M] .北京:科学出版社,1990.
    [135]万余庆,谭克龙,周日平等.高光谱遥感应用研究[M ].北京:科学出版社,2006.
    [136]陈述彭,鲁学军,周成虎.地理信息系统导论[M].北京:科学出版社,1999.
    [137]Alisbury J W, Walter L S, Vergo N, et al. Infrared(2·1~25μm) Spectra of Minerals. Hopkins: Johns Hopkins University Press,1991.
    [138]田庆久,宫鹏.地物波谱数据库研究现状与发展趋势[J].遥感信息,2002,3:2-6.
    [139]童庆禧,张兵,郑兰芬.高光谱遥感原理、技术与应用[M].北京:高等教育出版社,2006:137-138.
    [140]孔维姝,王秀珍,唐延林.导数光谱在棉花农学参数测定中的作用探讨[J].西南农业大学学报(自然科学版),2004,26(1):5-9.
    [141]Yanfeng Gu,Chen Wang,Shizhe Wang,et al.Kernel-based regularized-angle spectral matching for target detection in hyperspectral imagery[J]. Pattern Recognition Letters,2011,32:114-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700