用户名: 密码: 验证码:
风电功率预测及微电网概率潮流分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风力发电是微电网的重要单元,风速及风电功率的随机性对微电网运行产生了不利影响。研究风速及风电功率预测技术,并在此基础上进一步预测风速的随机性对微电网潮流分布的影响,对微电网能量管理具有重要意义,本文对此课题展开了深入研究。提出了小波-支持向量机以及基于改进型差分进化算法的脊波神经网络等新型预测模型以提高预测精度、建立了概率预测模型对风速及风电功率预测结果的不确定性进行评估、建立了微电网潮流预测模型、分析风速、光照的随机性对微电网潮流的影响。通过上述研究取得了一些创新性研究成果,所提出的方法和结论能够为微电网能量管理提供有价值的参考。本文的主要研究内容及创新点可概括如下:
     1.在小时风速预测方面,研究基于历史气象数据的支持向量机风速预测方法,采用自适应粒子群算法对最小二乘支持向量机模型参数进行优化;将小波分解技术和支持向量机相结合进行短期风速预测。利用小波分解技术将历史训练集的风速时间序列分解成基础低频分量和高频概貌分量,再使用支持向量机预测各个小波分量,最后将预测结果分别予以重构得到最终风速预测值。同时提出一种风速预测误差修正方法,利用误差的预测值对初步预测风速进行校正从而提高了预测精度。
     2.在小时风电功率预测方面,采用改进型差分进化算法训练脊波神经网络预测模型,通过直接预测和间接预测两种方法分别预测风电功率。研究表明,所提出的脊波神经网络对高维函数的逼近能力、泛化性能和训练速度都有一定改善,提高了风电功率预测精度。
     3.在不确定性预测方面,分析了风速及风电功率预测结果的不确定性,建立了概率预测模型对风速及风电功率的预测结果进行不确定性评估。不确定性预测包含两个方面,一个是求出预测风速在某个范围内实际发生的概率,本文采用条件概率计算方法求解这一问题;另一个是在分析风电功率预测误差及功率波动的统计规律基础上,采用非参数区间估计方法求取在一定置信度下的风电功率置信区间。
     4.在微电网潮流预测方面,研究了风速和光照随机性对微电网潮流的影响。在风速及风电功率预测的基础上,将马尔科夫链模型和蒙特卡洛模拟方法相结合,研究微电网概率潮流预测,预测风速的变化对微电网在并网和孤岛两种运行状态下的潮流所产生的具体影响;建立了风速和光照条件联合概率预测模型,研究同时考虑风、光随机性时,微电网的概率潮流分布。
Wind generation system is an important unit of a microgrid. The randomness of wind and windpower has a great adverse influence on operation characteristic of a microgrid. It is of greatsignificance for energy management system of microgrid to predict power flow based on theprediction of wind speed and wind power production. To address these problems, wavelet andsupport vector machine prediction model and the ridgelet neural network trained by improveddifferential evolution algorithm are proposed to enhance prediction precise of wind speed and windpower production. Futher, a probabilistic prediction model is established to assess the uncertaintyof predictive results. Based on these results, the power flow prediction model of a microgrid isestablished to predict and analyze the influence of wind randomness on the microgrid. Theoutcomes of these researches are of great reference value for energy management system of amicrogrid. The main innovative achievements are as follows:
     1. For the aspect of hourly wind speed prediction, the support vector machine (SVM) predictionmethods by the historical meteorological data are studied. The parameters of least square supportvector machine (LSSVM) are determined by adaptive particle swarm optimization (APSO). A windspeed forecasting model based on wavelet and support vector machine (Wavelet-SVM) isestablished also in which the original wind speed sequences are decomposed into coarse componentsand detail components firstly, and each wavelet component is separately forecasted bycorresponding support vector machine model. Finally, the forecasting results of original wind speedseries are achieved by wavelet reconstruction. In additional, a new forecast method based onpredictive error correction is presented in the paper. The preliminary predicted wind speed iscorrected with predict error to improve the prediction accuracy.
     2. For the aspect of hourly wind power prediction, the ridgelet neural network based on improveddifferential evolution algorithm is adopted to predict wind power production by the means of directlyprediction and indirectly prediction methods. The simulation results show that the approximationability for high-dimensional function, generalization performance, and train speed of the proposedridgelet neural network are improved. By the prediction model, the wind power productionpredictive precise is enhanced.
     3. Based on the analysis of uncertainties of wind speed and wind power prediction, theprobabilistic prediction models are established to assess the uncertainty of wind and wind powerpredicted results from two aspects, one is to calculate the probability of actual wind speed within acertain range by the conditional probability calculation method, and the other is to calculate theconfidence intervals of predictive wind power corresponding to a certain confidence level by meansof non-parametric confidence interval estimation on basis of analyzing the statistical regularities of power forecast errors and power fluctuation values.
     4. For the power flow prediction of microgrid, the influence of the wind randomness on theoperation characteristic of a microgrid is studied firstly, and then Markov process and Monte Carlosimulation methods are combined together to carry out probabilistic forecasting of power flow.Finally, the impact of wind speed on the microgrid power flow is analyzed under the operationmodes of both grid-connection and off-grid. In additional, a conditional joint probability model inview of the randomness of wind and light is established to research the probabilistic power flow ofa microgrid.
引文
[1] Marnay C, Rubio F J, Siddiqui A S. Shape of the microgrid [C],2001IEEE Power EngineeringSocietyW interM eet ing. Columbus,USA:2001.
    [2] Hatziargyriou N,Asano H,Iranvani R,et al.Microgrids[J].IEEE Power and Energy Magazine,2007,5(4):78-94.
    [3]丁明,张颖媛,茆美琴.微网研究中的关键技术[J].电网技术,2009,33(11):6-11.
    [4]茆美琴,丁明,张榴晨,等.多能源发电微网实验平台及其能量管理信息集成[J].电力系统自动化,2010,34(1):106-110.
    [5] Katiraei F,Iravani M R,Lehn P W.Micro-grid autonomous operation during and subsequentto islanding process[J].IEEE Trans. on Power Delivery,2005,20(1):248-257.
    [6] Lasseter R H.CERTS microgrid[J].IEEE International Conference on System of Engineering,San Antonio,2007.
    [7] Sanchez M.Overview of microgrid research and development activities in the EU[C]. Montreal2006-Symposium on Microgrids,2006.
    [8]周青,谢小林.基于可再生能源的分布式微电网技术发展现状与趋势浅析[J].绿色建筑,2011,6:59-61.
    [9] Funabashi T,Yokoyama R. Microgrid field test experiences in Japan[C].IEEE PowerEngineering Society General Meeting,Montreal,2006.
    [10]郑漳华,艾芊.微电网的研究现状及在我国的应用前景[J].电网技术,2008,32(16):27-31.
    [11]鲁宗相,王彩霞,闵勇,等.微电网研究综述[J].电力系统自动化,2007,31(19):100-107.
    [12]张佳佳,陈金富,范荣奇.微网高渗透对电网稳定性的影响分析[J].电力科学与技术学报,2009,24(1):26-29.
    [13]姚玮,陈敏,牟善科.基于改进下垂法的微电网逆变器并联控制技术[J].电力系统自动化,2009,33(6):77-80.
    [14]丁明,杨向真,苏建徽.基于虚拟同步发电机思想的微电网逆变电源控制策略[J].电力系统自动化,2009,33(8):89-93.
    [15] F. D. Kanellos, A. I. Tsouchnikas, N. D. Hatziargyriou. Microgrid simulation duringgrid-connected and islanded modes of operation [C]. International conference on powersystems transients, in Montreal, Canada on June19-23.
    [16] V. Costa, M. Oliveira, and M. Guedes,“Developments in the analysis of unbalancedthree-phase power flow solutions,” Int. J. Elect. Power Energy Syst.,2007,29(2):175–182,Feb.
    [17] Jong-Yul Kim, Jin-Hong Jeon and Seul-Ki Kim. Performance Evaluation of MicrogridManagement Function in KERI pilot plant[C]. International conference onr enewable energiesand power quality. Spain, Granada,March,2010.
    [18]唐西胜,齐智平.应用于微电网的储能及其控制技术[J].太阳能学报,2012,33(3):517-523
    [19]茆美琴,孙树娟,苏建徽.包含电动汽车的风/光/储微电网经济性分析[J].电力系统自动化,2011,35(14):30-35.
    [20]马溪原,吴耀文,方华亮.采用改进细菌觅食算法的风/光/储混合微电网电源优化配置[J].中国电机工程学报,2011,31(25):17-25.
    [21]王新刚,艾芊,徐伟华.含分布式发电的微电网能量管理多目标优化[J].电力系统保护与控制,2009,37(20):79-83.
    [22]刘天琪,江东林.基于储能单元运行方式优化的微电网经济运行[J].电网技术,2012,36(1):45-50.
    [23] Matthias Lange. Analysis of the Uncertainty of Wind Power Predictions. PhD dissertation,Carl von Ossietzky Oldenburg University,2003.
    [24]陈雁,文劲宇,程时杰.考虑输入变量相关性的概率潮流计算方法[J].中国电机工程学报,2011,31(22):80-87.
    [25] GIEBEL G. The state of the art in short term prediction of wind power:A literature overview[R].Roskilde,Denmark: Riso National Laboratory,2003.
    [26]周毅,侯志明,刘宇迪.数值大气预报基础[M].北京:气象出版社,2003.
    [27]冯双磊,王伟胜,刘纯,戴慧珠.风电场功率预测物理方法研究[J].中国电机工程学报,2010,30(2):1-6.
    [28] George Sideratos and Nikos D. Hatziargyriou. An Advanced Statistical Method for WindPower Forecasting [J]. IEEE Transactions on power systems,2007,22(1):258-265.
    [29] Bossanyi E A.Short-term wind prediction using Kalman filters[J].Wind Engineering,1985,9(1):1-8.
    [30] Kamal L,Jafri Y Z.Time series models to simulate and forecast hourly averaged wind speedin Wuetta, Pakistan[J].Solar Energy,1997,61(1):23-32.
    [31] Pinson P,Siebert N,Kariniotakis G.Foreeasting of Regional Wind Generation by a DynamieFuzzy-Neural Networks Based up scaling Approach[C]. European Wind Energy Conference&Exhibition EWEC2003,Madrid.
    [32] Alexiadis M C,Dokopoulos P S,H S Sahsamanoglou. Wind speed and Power forecastingbased on spatial correlation models [J]. IEEE Transactions on Energy Conversion,1999,14(3).
    [33] Kariniotakis G,Stavrakakis G,Nogaret E.Wind power forecasting using advanced neuralnetwork models[J].IEEE Trans Energy Conversion,1996,11(4):762-767.
    [34]王晓兰,李辉.风电场输出功率年度预测中有效风速预测研究[J].2010,30(8):117-122.
    [35]孙元章,吴俊,李国杰.基于风速预测和随机规划的含风电场电力系统动态经济调度[J].中国电机工程学报,2009.29(4):41-47.
    [36]孙春顺,王耀南,李欣然.小时风速的向量自回归模型及应用[J].中国机电工程学报,2008,28(14):112–117.
    [37]潘迪夫,刘辉,李燕飞风电场风速短期多步预测改进算法[J].中国电机工程学报,2008.28(26):87-91.
    [38]栗然,王粤,曹磊.基于Box-Cox变换的风电场短期风速预测模型[J].现代电力,2008,25(4):35-39.
    [39]李文良,卫志农,孙国强.基于改进空间相关法和径向基神经网络的风电场短期风速分时预测模型[J],电力自动化设备,2009,29(6):89-92.
    [40] Juan J. Flores, Roberto Loaeza, Hector Rodriguez. Wind speed forecasting using a hybridneural-evolutive approach[C]. MICAI2009, LNAI, pp.600–609.
    [41]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国机电工程学报,2005,25(11):1-5.
    [42] Cameron W. Potter. Very short-term wind forecasting for rasmanian power generation [J].IEEE transactions on power systems,2006,21(2):965-972.
    [43]王慧勤.基于支持向量机的短期风速预测研究[J].宝鸡文理学院学报(自然科学版),2009,29(1):16-18.
    [44]杜颖,卢继平,李青,邓颖玲.基于最小二乘支持向量机的风电场短期风速预测[J].电网技术,2008,32(15):62-66.
    [45] Wenjian Wang, et al. Determination of the spread parameter in the Gaussian kernel forclassification and regression [J]. Neuro computing (S0893-6080),2003,55:643-663.
    [46]郭辉,刘贺平,王玲.最小二乘支持向量机参数选择方法及其应用研究[J].系统仿真学报,2006,18(7):2033-2051.
    [47]王丽婕,冬雷,胡国飞.基于多嵌入维数的风力发电功率组合预测模型[J].控制与决策,2010,25(4):577-580.
    [48]刘纯,范高锋,王伟胜,戴慧珠.风电场输出功率的组合预测模型[J].电网技术,2009,33(13):74-79.
    [49]刘辉,田红旗,李燕飞.基于小波分析法与滚动式时间序列法的风电场风速短期预测优化算法[J].中南大学学报,2010,41(1):370-375.
    [50]王丽婕,冬雷,廖晓钟,高阳.基于小波分析的风电场短期发电功率预测[J].中国电机工程学报,2009,29(28):30-33.
    [51]杨琦,张建华,王向峰,李卫国.基于小波–神经网络的风速及风力发电量预测[J]电网技术,2009,33(17):45-48.
    [52] Gneiting T,Larson K,Westrick K,et al.Calibrated probabilistic forecasting at the statelinewind energy center:the regime-switching space-time method [J].Journal of the AmericanStatistical Association,2006(101):968-979.
    [53] Nielsen H A,Madsen H,Nielsen T S.Using quantile regression to extend an existing windpower forecasting system with probabilistic forecasts[J].Wind Energy,2006(9):95-108.
    [54] Juban J,Fugon L,Kariniotakis G.Probabilistic short-term wind power forecasting based onkernel density estimators [C]//European Wind Energy Conference.Milan,Italy:EuropeanWind Energy Association,2007:7-10.
    [55] Pinson P,Kariniotakis G N.wind power forecasting using fuzzy neural networks enhancedwith on-line prediction risk assessment[C]//2003IEEE Bologna Power Tech Conference.Bologna,Italy:IEEE Power Engineering Society,2003:8-15.
    [56] Lange M.On the uncertainty of wind power predictions-analysis of the forecast accuracy andstatistical distribution of errors[J].Journal of Solar Energy Engineering,2005(127):177-184.
    [57] Lange M,Heinemann D.Relating the uncertainty of short-term wind speed predictions tometeorological situations with methods from synoptic climatology[C]//European Wind EnergyConference&Exhibition2003.Madrid,Spain:European Wind Energy Association,2003:132-139.
    [58] George N. Kariniotakis. Uncertainty of Short-term Wind Power Forecasts-A Methodology forOn-line Assessment.[C].8thInternational Conference on Probabilistic Methods Applied toPower Systems, Iowa State University, Ames, Iowa, September12-16,2004.
    [59]刘杨华,吴政球.孤岛运行的微电网潮流计算方法研究[J].电力系统保护与控制,2010,38(23):16-20.
    [60]刘杨华,吴政球,林舜江.孤岛运行的微电网三相不平衡潮流计算方法研究[J].湖南大学学报,2009,36(7):36-40.
    [61] K.L. Lian, M. Syai’in, C. L. Liu etc. Robust Microgrid Power Flow using Particle SwarmOptimization[C]. XI International School on Nonsinusoidal Currents and compensation,ISNCC2013, Zielona Gora, Poland.
    [62] Abdelaziz, Hany E. Farag, Ehab F. El-Saadany,etc. A novel and generalized three-phase powerflow algorithm for islanded microgrids using a newton trust region method [J]. IEEETRANSACTIONS ON POWER SYSTEMS,2013,28(1):190-199.
    [63] M.Z. KAMH, R. IRAVANI. Unbalanced model and power-flow analysis of microgrids andactive distribution systems [J]. IEEE transactions on power delivery,2010,25(4):2851-2858
    [64]段玉兵,龚宇雷,谭兴国。基于蒙特卡罗模拟的微电网随机潮流计算方法[J]电工技术学报,2006,26(1):274-278.
    [65]邓卫,唐西胜,齐智平.异步风力发电机对微网稳定性的影响与对策[J].中国电机工程学报,2011,31(1):32-37.
    [66]王守相,江兴月,王成山.含风力发电机组的配电网潮流计算[J].电网技术,2006,30(21):42-45.
    [67]陈海焱,陈金富,段献忠.含分布式电源的配电网潮流计算[J].电力系统自动化,2006,30(1):35-40.
    [68]王成山,郑海峰,谢莹华.计及分布式发电的配电系统随机潮流计算[J].电力系统自动化,2005,29(24):39-44.
    [69] Papadopolos M,Malatestas P,Hatziagyriou N.Simulation andanalysis of small and mediumsize power systems containing wind turbines[J].IEEE Trans on Power systems,1991,6(4):1453-1458.
    [70]陈金富,陈海焱,段献忠.含大型风电场的电力系统多时段动态优化潮流[J].中国电机工程学报,2006,26(3):31-35.
    [71]吴义纯,丁明,张力军.含风电场的电力系统潮流计算[J].中国电机工程学报,2005,25(4):36-39.
    [72] A. Bracale, G. Carpinelli, M. Mangoni etc. Wind Power Forecast Methods and VeryShort-term Steady-State Analysis of an Electrical Distribution System. Electrical EngineeringResearch Report vol.1, issue1.
    [73]周松林,茆美琴,苏建徽.基于预测误差校正的支持向量机短期风速预测[J].系统仿真学报,2012,24(4):16-22.
    [74] Zhou Songlin, Mao Meiqin, Liuchen chang. Forecasting of Wind Speed Based on WaveletAnalysis and Support Vector Machine. PEDG2010,Jun.2010,hefei,pp:864-867.
    [75]茆美琴,周松林,苏建徽.基于脊波神经网络的短期风电功率预测[J].电力系统自动化,2011,35(7):1-5.
    [76]周松林,茆美琴,苏建徽.基于主成分分析与人工神经网络的风电功率预测[J].电网技术,2011,35(9):128-132.
    [77]周松林,茆美琴,苏建徽.基于小波分析与支持向量机的风速预测[J].太阳能学报,2012,33(3):452-456.
    [78]周松林,茆美琴,苏建徽.风电功率短期预测及非参数区间估计[J].中国电机工程学报,2010,31(25):10-16.
    [79]周松林,茆美琴,苏建徽.考虑风力发电随机性的微电网潮流预测[J].中国电机工程学报,2013,33(22):26-34.
    [1] Pai Pingfeng,Hong Weichiang. Forecasting regional electricity load based on recurrent supportvector machines with genetic algorithms[J]. Electric Power System s Research,2005,74(3):417-425.
    [2] Chen Bojuen,Chang Mingwei,Lin Chihjen. Load forecasting using support vector machines: astudy on EUNITE competition2001[J]. IEEE Transactions on Power Systems,2004,19(4):1821-1830.
    [3]张林,刘先珊,殷和俊.基于时间序列的支持向量机在负荷预测中的应用[J].电网技术,2004,28(19):38-41.
    [4]牛东晓,刘达,邢棉,等.基于自组织映射支持向量机的日前电价预测[J].电网技术,2007,31(18):15-21.
    [5]董辉,傅鹤林,冷伍明.支持向量机的时间序列回归与预测[J].系统仿真学报,2006,18(7):1785-1788.
    [6] U Thissen, R van Brakel, A P de Weijer, et al. Using support vector machines for time seriesprediction [J]. Chemom. Intell. Lab. Syst.(S0169-7439),2003,69(1):35-49.
    [7]邓乃扬,田英杰.数据挖掘中的新方法–支持向量机[M].北京:科学出版社,2004.
    [8] Vapnik V.The nature of statistical learning theory[M].New York: Springer-Verlag,1995.
    [9]曾绍华,支持向量回归机算法理论研究与应用[A],重庆大学博士论文,2006,10.
    [10] Osuna Edgar,Freund Robert,Girosi Federico.Improved training algorithm for support vectormachines.Neural Networks for Signal Processing-Proceedings of the IEEE Workshop,1997,276-285.
    [11] Zhang Li,Zhou Weida,Jiao Licheng. Wavelet Support Vector Machine [J]. IEEE Transactionson Systems, Man, and Cybernetics-Part B: Cybernetics (S1083-4419),2004,34(1):34-39.
    [12]单志超,林春生,向前.基于局域支持向量机的海浪水压场混沌预测[J].系统仿真学报,2008,20(23):6470-6476.
    [13]赵登福,庞文晨,张讲社,等.基于贝叶斯理论和在线学习支持向量机的短期负荷预测[J].中国电机工程学报,2005,25(13):92-97.
    [14]张彦宁,康龙云,周世琼,曹秉刚.小波分析应用于风力发电预测控制系统中的风速预测[J].太阳能学报,2008,29(5):520-524.
    [15]王丽婕,冬雷,廖晓钟,高阳.基于小波分析的风电场短期发电功率预测[J].中国电机工程学报,2009,29(28):30-33.
    [16]杨琦,张建华,王向峰,李卫国.基于小波–神经网络的风速及风力发电量预测[J].电网技术,2009,33(17):44-48
    [17]刘斌,苏宏业,褚健.一种基于最小二乘支持向量机的预测控制算法[J].控制与决策,2004,19(12):1399-1402.
    [18]张浩然,汪晓东.回归最小二乘支持向量机的增量和在线式学习算法[J].计算机学报,2006,29(3):400-406.
    [19]刘遵雄,钟化兰,张德运.最小二乘支持向量机的短期负荷多尺度预测模型[J].西安交通大学学报,2005,39(6):620-623.
    [20]辛治运,顾明,基于最小二乘支持向量机的复杂金融时间序列预测[J],清华大学学报(自然科学版),2008,48(7):1147-1149.
    [21]褚蕾蕾.计算智能的数学基础[M].北京:科学出版社,2002.
    [22] http://www.wunderground.com/weatherstation
    [23]彭玉华.小波变换与工程应用[M].北京:科学出版社,1999.
    [24] Mallat, S., Hwang,W. L., Singularity Detection and procession with wavelets[J]. IEEE Trans.On Information Theory,1992,38, pp.617~643.
    [25]周惠成,彭勇.基于小波分解的月径流预测校正模型研究[J].系统仿真学报,2007,19(5):1104-1108.
    [26] Aussem A, Campbell J, Murtagh F. Wavelet-based feature extraction and decompositionstrategies for financial forecasting [J]. Journal of Computational Intelligence in Finance(S1092-7018),1998,6(2):5-12.
    [27]蒋传文,侯志俭,李涛,等.基于小波分解的径流非线性预测[J].上海交通大学学报,2002,36(7):1053-1056.
    [28]邰能灵,候志俭,李涛,等.基于小波分析的电力系统短期负荷预测方法[J].中国电机工程学报,2003,23(1):45-50.
    [29] Mallat S. Multiresolution Approximation and Wavelets[J]. Transactions AmericanMathematics Society,1989,2(3):69-88.
    [30] Daubechies. Ten lectures on wavelets [M]. Philadelphia: Society for Industrial and AppliedMathematics,1992.
    [31] Peng Yuhua. Wavelet Transform and Engineering Application [M]. Beijing: Science Press,1999.
    [32] Boggess Albert, Narcowich Francis J.小波与傅里叶分析基础[M].北京:电子工业出版社,2004.
    [33] A Aussem, F Murtagh. Combining neural network forecasts on wavelet-transformed timeseries [J]. Connection Science(S0954-0091),1997,9:113-121.
    [34] Amir B Geva. ScaleNet—Multiscale Neural-Network Architecture for Time SeriesPrediction[J]. IEEE Transactions on Neural Networks.(S1045-9227),1998,9(5):1471-1482.
    [35] DonaldB.Per.ival,And rewT.walden著,程正兴等译.时间序列分析的小波方法[M」.北京机械工业出版社,2006.3.
    [36] RENAUD O, STARCK J, MURTAGH F. Wavelet-based combined Signal Filtering andPrediction.[J]. IEEE Transactions on Systems, Man, and Cybernetics–Part B (S1083-4419),2005,35(6):1241-1251.
    [37]丁宁,周新志.基于改进多孔算法的时间序列预测[J].系统仿真学报,2007,19(17):4082-4085.
    [1] E J Candes. Ridgelets and Their Derivatives: Representation of Images with Edges[R].Department of Statistics, Stanford University, Saint-Malo Proceedings and LarryL.Schumaker(eds),1999:1-10.
    [2] M N Do. Directional Multiresolution Image Representations[D]. Department of CommunicationSystems, Swiss Federal Institute of Technology Lausanne,2001.
    [3] J L Starck, E J Candès, D L Donoho. The Curvelet Transform for Image Denoising[J].Trans.Image Processing,2002,11(6):670-684.
    [4] M N Do, M Vetterli. The Finite Ridgelet Transform for Image Representation [J]. Trans. ImageProcessing,2003,12(1):16-28.
    [5] E J Candes, D L Donoho. Curvelets—A surprisingly Effective Non adaptive Representation forObjects with Edges [C]. Curve and Surface Fitting: Saint-Malo.1999.
    [6]焦李成,侯彪,刘芳.基函数网络逼近:进展与展望[J].工程数学学报,2002,19(1):21-36.
    [7]唐永茂,施鹏飞.基于有限瓦dgeelt变换的图像去噪[J].计算机应用与软件,2006,23(l).
    [8]刘丽,王曙钊,李敬社.脊波变换的研究现状与应用前景[J].信息与电子工程,2005,3(4)
    [9] Candes E J. Ridgelets: Theory and Applications [A]. Ph.D.Thesis,Department of Statistics,Stanford University,1998.
    [10]杨淑媛,王敏,焦李成.基于脊波和神经网络的大压缩比遥感图像压缩[J].红外与毫米波学报,2007,26(4):297-301
    [11]杨淑媛,焦李成,王敏.一种自适应脊波网络模型[J].西安电子科技大学学报,2005,32(6):890-894
    [12]茆美琴,周松林,苏建徽.基于脊波神经网络的短期风电功率预测[J].电力系统自动化,2011,35(7):1-5.
    [13] Nima Amjady, Farshid Keynia, Hamidreza Zareipour. Short-term wind power forecastingusing ridgelet neural network[J]. Electric Power Systems Research,2011,8:2099-2107.
    [14] R. Storn, K. Price. Differential evolution–a simple and efficient heuristic for globaloptimization over continuous spaces[C]. J. Global Optim.11(4)(1997)341–359.
    [15] T.H.M. El-Fouly, E.F. El-Saadany, and M.M.A. Salama, Grey Predictor for Wind EnergyConversion Systems Output Power Prediction[J]. IEEE transactions on power systems.2006,21(3):1450-1452.
    [16]韩爽.风电场功率短期预测方法研究[A].华北电力大学.2008
    [1] Pinson P,Nielsen H A,Moller J K,et al.Nonparametric probabilistic forecasts of wind power:required properties and evaluation[J].Wind Engineering,2007,10(6):497-516.
    [2]卫志农,王丹,孙国强等.基于级联神经网络的短期负荷概率预测新方法[J].电工技术学报,2005,1(1):95-98.
    [3]方仍存,周建中,张勇传.短期负荷概率性预测的混沌时间序列方法[J].华中科技大学学报2009,37(5).
    [4]周建中,张亚超,李清清,等.基于动态自适应径向基函数网络的概率性短期负荷预测[J]电网技术,2010,34(3):37-41.
    [5]杨文佳,康重庆,夏清,等.基于预测误差分布特性统计分析的概率性短期负荷预测[J].电力系统自动化,2006,30(19):47-52.
    [6] Zheng Hua, Zhang Lizi, Xie Li. SVM-Model of System Marginal Price Based on DevelopedIndependent Component Analysis[C].2004International Conference on Power SystemTechnology,November21-24,2004, Pan Pacific, Singapore.
    [7]王彩霞,鲁宗相,乔影.基于非参数回归模型的短期风电功率预测[J].电力系统自动化,2010,34(16):78-82.
    [8]张国强,张伯明.考虑风电接入后二次备用需求的优化潮流算法[J].电力系统自动化,2009,33(8):25-28.
    [9] Bludszuweit H,Domínguez-Navarro J A.Statistical analysis of wind power forecast error[J].IEEE Trans. on Power Systems,200823(3):983-991.
    [10] Doherty R, Malley M O. A new approach to quantify reserve demandin systems withsignificant installed wind capacity[J].IEEE Trans. On Power Systems,2005,20(2):587-595.
    [11]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报,2008,28(34):118-123.
    [12] Gagliano S,Raiti S,Tina. Hybrid solar/wind power system probabilistic modeling for longterm performance assessment [J]. Solar Energy,2006,85(5):578-588.
    [13]郑春厚.独立分量分析算法及其应用研究[A].中国科学技术大学,2006.
    [14]马建仓,牛奕龙,陈海洋.盲信号处理[M].北京:国防工业出版社,2006:85-95.
    [15]余英林,谢胜利,蔡汉添等.信号处理新方法导论[M].北京:清华大学出版社,2004.
    [16]陈超,高宪军,李德鑫.基于独立分量分析的混叠跳频信号分离算法[J].吉林大学学报,2008,26(6):347-351.
    [1] Lexiadis M A, Dokopoulo S P, Samanoglou S H, et al. Short-term forecasting of wind speedand related electrical power[J].Solar Energy,1998,63(1):61-68.
    [2]王守相,黄丽娟,王成山,等.分布式发电系统不平衡三相潮流计算[J].电力系统自动化设备,2007,27(8):11-15.
    [3]王守相,江兴月,王成山.含风力发电机组的配电网潮流计算[J].电网技术,2006,30(21):42-45.
    [4]刘杨华,吴政球.孤岛运行的微电网潮流计算方法研究[J].电力系统保护与控制,2010,38(23):16-20.
    [5]段玉兵,龚宇雷,谭兴国.基于蒙特卡罗模拟的微电网随机潮流计算方法[J].电工技术学报,2006,26(1):274-278.
    [6]赵晶晶,李新,许中.含分布式电源的三相不平衡配电网潮流计算[J].电网技术,2009,33(3):94-98.
    [7] A. Bracale, G. Carpinelli, M. Mangoni etc. Wind Power Forecast Methods and VeryShort-term Steady-State Analysis of an Electrical Distribution System. Electrical EngineeringResearch Report vol.1, issue1.
    [8]吴俊玲,周双喜,孙建锋,等.并网风力发电场的最大注入功率分析[J].电网技术,2001,28(20):28-32
    [9]胡文杰.高渗透率下微电网潮流计算及其运行的多目标优化[A].北京交通大学,2010
    [10]邓卫,唐西胜,齐智平.异步风力发电机对微网稳定性的影响与对策[J].中国电机工程学报,2011,31(1):32-37.
    [11]王义民,于兴杰,畅建霞.基于BP神经网络马尔科夫模型的径流量预测[J].武汉大学学报(工学版),2885,41(5):14-17.
    [12]周封,金丽斯,刘健.基于多状态空间混合Markov链的风电功率概率预测[J].电力系统自动化,2012,36(6):29-33.
    [13]闫永权,张大方.基于频繁的Markov链预测模型[J].计算机应用,2007,24(3):42-43.
    [14]黄银华,彭建春,李常春.马尔科夫理论在中长期负荷预测中的应用[J].电力系统及其自动化学报,2011,23(5):131-136.
    [15]胡迪鹤.随机过程论[M].武汉:武汉大学出版社,2003.
    [16] SHAMSHAD A, BAWADI M A. First and second order Markov chain models for syntheticgeneration of wind speed time series [J]. Energy,2005,30(5):693-708.
    [17] NFAOUI H, ESSIARAB H, SAYIGH A M. A stochastic markov chain model for simulatingwind speed time series at Tangiers [J]. Renewable Energy,2004,29(4):1407-1418.
    [18]刘永庆,刘东生.基于马尔科夫链的主机异常检测方法研究[J].计算机与数字工程,2010,38(7):20-23.
    [19]丁明,李生虎,黄凯.基于蒙特卡罗模拟的概率潮流计算[J].电网技术,2001,25(11).
    [20] K. Rudion, Z. A. Styczynski, N. Hatziargyriou, S. Papathanassiou, etc. Development ofbenchmarks for low and medium voltage distribution networks with high penetration ofdispersed generation [C].3rd International Symposium on Modern Electric Power Systems,Wroclaw,6-8Sep,2006.
    [21]陈昌松,段善旭,殷进军.基于神经网络的光伏阵列发电预测模型的设计[J].电工技术学报,2009,24(9).
    [22] Yona A, Senjyu T, Funabashi T. Application of recurrent neural network to short-term aheadgenerating power forecasting for photovoltaic system[C]. IEEE Power Engineering SocietyGeneral Meeting,2007.
    [23]张艳霞,赵杰.基于反馈型神经网络的光伏系统发电功率预测[J].电力系统保护与控制,2011,39(15):96-101.
    [24]朱永强,田军.最小二乘支持向量机在光伏功率预测中的应用[J].电网技术,2011,35(7):54-59.
    [25]傅美平,马红伟,毛建容.基于相似日和最小二乘支持向量机的光伏发电短期预测[J].电力系统保护与控制,2012,40(16):65-69.
    [26]丁明,吴兴龙,陆巍.含多个不对称光伏并网系统的配电网三相随机潮流计算[J].电力系统自动化,2012,36(16):47-51.
    [27]丁明,徐宁舟.基于马尔可夫链的光伏发电系统输出功率短期预测方法[J].电网技术,2011,35(1).
    [28]于晗钟志勇,黄杰波.采用拉丁超立方采样的电力系统概率潮流计算方法[J].电力系统自动化,2009,33(21).
    [29] http://solardat.uoregon.edu/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700