用户名: 密码: 验证码:
长江河口盐水入侵对气候变化和重大工程的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口受流域和海洋双重作用,是陆海相互作用激烈的区域。气候变化和重大工程导致河口水文、盐水入侵和生态环境等变化,越来越受到政府和社会的关注。气候变化对河口的影响,主要体现在流域降水的变化导致入海径流量的变化,以及海平面上升。重大工程对河口的影响,主要体现在流域重大工程对入海水沙的影响,如三峡大坝和南水北调工程对长江入海径流量的影响,以及河口重大工程对局地河势的影响。本文应用改进的三维数值模式ECOM-si,以2012年为基准年数值模拟和定量分析长江河口水动力和盐水入侵,预测和分析至2030、2050和2100年在气候变化和重大工程联合作用下长江河口水动力、盐水入侵和淡水资源及其变化。保持某个因子不变,比较模式计算结果与上述各年份综合计算结果,定量剥离气候变化和重大工程各项单独因子对盐水入侵的影响。本文还数值模拟和分析了1999年冬季、2006年秋季和2011年春季长江低径流量情况下海平面上升对盐水入侵和淡水资源的影响。主要成果有:
     1.气候变化和重大工程在数值模式边界条件中的给出。数值模拟气候变化和重大工程对长江河口盐水入侵的影响,需要确定不同年代的海平面和径流量,以给出模式的边界条件。海平面变化考虑由气候变化导致的绝对海平面上升、地基沉降和地壳下沉(相对海平面),径流量变化考虑由气候变化引起的径流量变化和三峡水库、南水北调工程的影响。通过历史资料分析和以往研究成果比较,得出2012、2030、2050和2100年入海径流量分别为13755、13057、12792和13631m3/s,相对海平面上升值分别为112.1、281.1和703.6mm。
     2.数值模拟和动力分析上述不同年份长江河口枯季盐水入侵对气候变化和重大工程的响应。采用通量机制分解方法分析大小潮期间盐水入侵的动力机制。结果表明,斯托克斯输运是长江河口向陆盐份输送的主要动力因素,同时也是北支倒灌的主要原因。北港口门在大潮期间盐份输送在河道内向海,在滩地上向陆,小潮期间由于垂向切变增强,盐份在河道内向陆、滩地上向海输送。南槽大潮期间向陆的斯托克斯输运占主导地位,小潮期间欧拉输运在科氏力作用下呈现北进南出的态势,同时上段盐份在潮泵和垂向切变共同作用下向陆入侵。南北槽之间有明显的盐份交换,南槽上溯的高盐水进入北槽后下泄,使北槽形成向海的盐份输送。通过机制分析发现,长江河口大潮期间淡水资源主要受到北支倒灌和外海盐水上溯两方面的威胁,而在小潮期间威胁主要来自下游。2100年由于海平面上升值最大,盐水入侵最强,2012年因为入海径流量最大,盐水入侵最弱。长江河口2月的淡水资源在2030、2050和2100年相对于2012年分别减少18.64%、11.39%和33.43%。
     3.定量剥离和动力分析气候变化和重大工程中单一因子对长江河口盐水入侵和淡水资源的影响。由气候变化导致的长江枯季入海径流量在未来呈增加的趋势,河口盐水入侵有所削弱。进入北支的径流量增加,抑制了北支盐水倒灌。口门附近大潮期间盐度减小,向陆的斯托克斯输运在径流量增加后有所减小是影响盐度的主要原因。小潮期间由于径流增大了北港河道内的表底层盐度梯度,使得垂向切变作用增强,而在南槽径流抑制了北进的欧拉输运,从而减弱入侵强度,北槽的盐份输送相应减少。2月的淡水资源在2030、2050和2100年受气候变化引起的径流量变化影响分别增加5.46%、30.31%和27.71%。
     海平面上升增大了潮汐振幅,致使潮汐强度增加,同时也使河道增深,过水面积加大,径流减弱,而且海平面上升后垂向环流加强,增强了垂向分层结构。在北支,潮汐强度增加使得2030和2100年的盐水倒灌加剧,而2050年则由于过水断面加大使得进入北支的径流增加,导致倒灌减弱。在口门,大潮期间盐水入侵增强,其主要原因是潮汐强度加强使得向陆的斯托克斯输运加大;小潮期间由于水深加深,北港垂向切变显著增强,南槽北侧的欧拉输运增加,从而口门盐水入侵增强。2月的河口淡水资源在2030和2100年受海平面上升影响分别减少8.95%和49.45%,而2050年由于北支倒灌减弱,淡水资源增加约4.41%。
     三峡水库在枯季持续性的放水,显著增加了长江入海径流量。三峡工程引起的枯季入海径流量增加明显抑制了大潮期间向陆的斯托克斯输运,使河口盐度明显下降,盐水入侵减弱。2030和2100年情况基本一致,但2050年受海平面上升引起的地形变深非线性作用影响,斯托克斯输运减弱程度较小,导致总体拉格朗日向陆输运略有增加,九段沙滩地上向陆的盐通量明显降低,使整体南槽盐度降低。小潮期间,尤其在2050年径流量较小的情况下,垂向切变作用显著增强。2月的河口淡水资源在2030、2050和2100年受三峡工程影响分别增加30.26%、45.46%和32.38%。
     南水北调工程显著减小了长江入海径流量,导致河口盐度明显增高。大潮期间向陆的斯托克斯输运和向海的欧拉输运造成的盐份输运模式增强。小潮期间北港盐度锋面向口内移动,垂向切变作用减弱;南槽径流抑制作用减小,向陆的欧拉输运增强,同时上游斜压力增加,盐水进一步入侵南港,相应的北槽向海盐份输送也加强。2月的河口淡水资源在2030、2050和2100年受南水北调工程影响分别减少19.21%、42.79%和34.41%。
     通过气候变化和重大工程各项因子与长江河口淡水资源及北支倒灌盐通量的相关性分析发现,三峡工程和南水北调工程是2030和2050年影响河口盐水入侵的主要因素,但在2100年盐水入侵增强的主要因子是海平面上升,三峡和南水北调工程带来的影响相应减弱。
     4.数值模拟和分析了1999年冬季、2006年秋季和2011年春季长江低径流量情况下海平面上升对盐水入侵和淡水资源影响。结果表明,相比于2012年径流量一般的情况,1999年盐水入侵强度显著增强,而2006和2011年情况下影响水库的时段显著增加。在低径流量和海平面上升同时发生的不利情况下,除了2006年海平面上升至2050年情况,由于过水断面增加北支倒灌减弱,东风西沙水库、陈行水库和青草沙水库取水口盐度略有下降,其余情况下水库不宜取水的时间均出现不同程度的增加。
The estuary, which is known as a complex zone of land-ocean interaction, is affected by both river basin and ocean. The influences of climate change and major projects on hydrodynamic and biological environments and saltwater intrusion in the estuary have been greatly concerned by government and society. The impacts of climate change on the estuary are mainly reflected in the variations of river discharge that is caused by precipitation and sea-level rise. And the impacts of major projects are reflected in the change of river discharge altered by engineering such as the Three Gorges Project and the South-to-North Water Diversion Project, and the alteration of local river regime. Based on the improved3-D numerical model ECOM-si, the hydrodynamic process and saltwater intrusion in the Changjiang River estuary were simulated and quantitative analyzed in2012as the standard year. And then the situations of saltwater intrusion and water resources in the estuary were predicted under the interactions of climate change and major projects in2030,2050and2100. By maintaining one of the factors, the effects of climate change and major projects on saltwater intrusion were removed quantitatively. Besides, the drought periods like winter in1999, autumn in2006and spring in2011were simulated and analyzed, and the combined effects between lower river discharge and sea-level rise on saltwater intrusion and freshwater resources were discussed. The main conclusions are summarized as follows:
     1. To attain the boundary conditions affected by climate change and major projects. It is necessary to confirm the sea level and river discharge in different years as boundary conditions for studying the responses of saltwater intrusion to climate change and major projects. The sea-level rise includes the absolute sea-level rise caused by climate change, and the land and crustal subsidences (the relative sea-level rise). And the variation of river discharge that we consider is mainly affected by precipitation caused by climate change, and the Three Gorges Project and the South-to-North Water Diversion Project. In accordance with the contrast between historical analysis and results, the river discharge in2012,2030,2050and2100are attained respectively with the value of13755,13057,12792and13631m3/s, and the sea-level rise in each year relative to that in2012are112.1,281.1and703.6mm respectively.
     2. The responses of saltwater intrusion to climate change and major projects in dry season in the Changjiang River estuary were simulated and analyzed. By analyzing the salt flux and its decomposed terms, the dynamic mechanisms of salt transport processes during spring and neap tides were studied. The results showed that the Stokes transport is the main dynamic factor for up-estuary salt transport in the Changjiang River estuary; meanwhile it is an important reason for the saltwater-spill-over (SSO) from the North Branch into the South Branch. Near the river mouth, salt transports upstream along main channel in the North Channel, while it goes downstream on tidal flats during spring tide. However, during neap tide, the directions of salt transport in the channel and tidal flats are contrary due to the strengthened vertical shear. In the South Passage, the Stokes transport is the major mechanism for up-estuary salt transport during spring tide, while during neap tide the salt transports upstream along north side and downstream along south side under Coriolis force, in the meantime, saltwater intrudes upstream continuously under tidal pumping and vertical shear transports near the upper reaches. The salt exchange is distinct between the South and North Passages. Saltwater that transports upstream along the South Channel turns downstream in the North Passage, resulting in the seaward salt Eulerian transport. By the result of mechanism analysis, freshwater resource in the Changjiang River estuary is threatened by the SSO and up-estuary migrated seawater during spring tide, while seawater is the main reason during neap tide. It is most serious in2100as the highest sea level, while in2012the intrusion is comparatively weaker for larger river discharge. During the whole February, the freshwater resources in2030,2050and2100relative to that in2012decrease by18.64%,11.39%and33.43%, respectively.
     3. The effect of each factor affected by climate change and major projects on saltwater intrusion in the Changjiang River estuary was analyzed and removed quantitatively. The results show that saltwater intrusion can be weakened as the improved tendency of river discharge caused by climate change in the future. Because it increases the freshwater that discharges into the North Branch, the SSO can be suppressed. Near the river mouth, the up-estuary Stokes transport decreases under increased river discharge during spring tide, indicating the decreased salinity. During neap tide, the salinity gradient between surface and bottom layers in the North Channel are enlarged as the increased river discharge, promoting the strengthened vertical shear. While the Eulerian transport that transports salt along the north side in the South Passage is weakened, resulting in the reduction of saltwater intrusion, and thereby reduces salt transport in the North Passage. During the whole February, the freshwater resources in2030,2050and2100increase by5.46%,30.31%and27.71%respectively as the increased river discharge caused by climate change.
     The effect of sea-level rise includes the larger tidal amplitude, which can improve tidal strength, and the deeper channel, which means the larger discharge area. Meanwhile, the vertical flow exchange can be strengthened as sea-level rise, and furthermore enhances the vertical stratification.In the North Branch, the SSO is aggravated by the enhanced tidal strength in2030and2100, while in2050it is weakened as the increased freshwater discharging into the channel with a larger discharge area. Near the river mouth, the larger Stokes transport under enhanced tidal strength is the main reason for stronger saltwater intrusion during spring tide. However, due to the deeper topography and weaker tidal strength during neap tide, the vertical shear transports more salt into the estuary in the North Channel, and the Eulerian transport increases along the north side in the South Passage, indicating that saltwater intrusion becomes more serious. During the whole February, the freshwater resources in2030and2100decrease by8.95%and49.45%respectively as sea-level rise, while in2050it increases by4.41%due to the weaker SSO.
     The Three Gorges Reservoir that releases freshwater persistently in dry season can distinctly increase downstream river discharge, while the South-to-North Water Diversion Project diverts water resources to the north, resulting in the decrease of river discharge. The increased river discharge after the Three Gorges Project suppresses the up-estuary Stokes transport obviously during spring tide, and salinity decreases near the river mouth. The mechanisms in2030and2100are similar, while by the nonlinear effect as sea-level rise in2050, the value of reduced Stokes transport is less in the South Passage, and then the total up-estuary Lagrangian transport increases slightly. The salt transport on the Jiuduan Sandbank is weakened, decreasing salinity in the South Passage. During neap tide, more salt transports into the estuary by strengthened vertical shear, especially in2050that river discharge is smaller. During the whole February, the freshwater resources in2030,2050and2100increase by30.26%,45.46%and32.38%respectively as the influence of the Three Gorges Project.
     The South-to-North Water Diversion Project decreases river discharge, especially in dry season, and salinity increases obviously in the estuary. During spring tide, the circulation between up-estuary Stokes transport and seaward Eulerian transport enhances. During neap tide, salinity front moves upstream in the North Channel, resulting in a weaker vertical shear. In the South Passage, up-estuary Eulerian transport becomes larger as decreased river discharge, meanwhile the baroclinic force is strengthened in the upper reaches, indicating that saltwater migrates upstream into the South Channel, and the salt transports more to the sea in the North Passage. During the whole February, the freshwater resources in2030,2050and2100decrease by19.21%,42.79%and34.41%respectively as the South-to-North Water Diversion Project.
     According to the correlation analysis between each factor of climate change and major projects and freshwater resources and the SSO in the Changjiang River estuary, the Three Gorges Project and the South-to-North Water Diversion Project are the main reasons for saltwater intrusion in2030and2050while sea-level rise is the most important factor in2100, and the effects of major projects decrease correspondingly.
     4. The influences of saltwater intrusion and freshwater resources in drought periods, such as winter in1999, autumn in2006and spring in2011, were simulated and analyzed, and the combined effects together with sea-level rise were discussed. The results showed that compared to that in2012, saltwater intrusion is more serious in1999, and the hazard for Dongfengxisha, Chenhang and Qingcaosha reservoirs sustains a longer time in2006and2011. Under the unfavorable situation that sea level rises, the threat of water intake in all the reservoirs can be extended by saltwater intrusion. Except for the weakened SSO in2006as the increased discharge area by sea-level rise under2050level, salinity decreases slightly.
引文
Arakawa A, Lamb V R. Computational design of the basic dynamical process of the UCLA general circulation model [C]. Methods in Computational Physics, Academic Press,1977, 17:173-265.
    Blumberg A F. A primer for ECOM-si [R]. Technical Report of HydroQual, Mahwah, New Jersey,1994,66p.
    Blumberg A F, Mellor G L. A description of a three-dimensional coastal ocean circulation model [C]. In:Heaps, N.S. (ed.), Coastal and Estuarine Science, Volume 4, Three-Dimensional Coastal Ocean Models. Washington, DC:American Geophysical Union.1987, pp.1-16.
    Bowden K F, Fairbaim L A, Hughes P. The distribution of shearing stresses in a tidal current [J]. Geophysical Journal of the Royal Astronomical Society,1959, (2):288-305.
    Bowden K F. The mixing processes in a tidal estuary [J]. International Journal of Air and Water Pollution,1963, (7):344-356.
    Bowden K F. Circulation, salinity and river discharge in the Mersey estuary [J]. Geophysical Journal of the Royal Astronomical Society,1966, (10):383-400.
    Bowden K F. Circulation and diffusion [C]. Estuaries, Publication by Association for the Adancement of Science,1967,15-36.
    Chen C S, Zhu J R, Ralph E, et al. Prognostic Modeling Studies of the Keweenaw Current in Lake Superior. Part I Formation and Evolution [J]. Journal of Physical Oceanography. 2001,31:379-395.
    Chen X Q, Zong Y Q, Zhang E F, et al. Human impacts on the Changjiang (Yangtze) River basin, China, with special reference to the impacts on the dry season water discharges into the sea [J]. Geomorphology,2001,41 (2-3),111-123.
    Craft C, Clough J, Ehman J, et al. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services [J]. Frontiers in Ecology and the Environment,2008,7(2): 73-78.
    Fofonoff N P, Millard R C. Algorithms for computation of fundamental properties of seawater [C]. UNESCO Technical Papers in Marine Science,44. UNESCO Division of Marine Science:Paris, France.1983,53 pp.
    Frederick K D, Major D C. Climate change and water resources [J]. Climatic Change,1997, 37(1):7-23.
    Gornitz. Case Study:Climate Change and Coastal Management in Practice-A cost-benefit assessment in the Humber [R]. UK.,1993.
    Grabemann H J, Grabemann I, Herbers D, et al. Effects of a specific climate scenario on the hydrography and transport of conservative substances in the Weser Estuary, Germany:a case study [J]. Climate Research,2001,18(1-2):77-87.
    Hansen D V. Currents and mixing in the Columbia River Estuary [J]. Transaction of a Joint Conference of Ocean Science and Ocean Engineering,1965,943-955.
    Hansen D V, Rattray M. Gravitational circulation in straits and estuaries [J]. Journal of Marine Research,1965,23(2):104-122.
    Hong B, Shen J. Responses of estuarine salinity and transport processes to potential future sea-level rise in the Chesapeake Bay [J]. Estuarine, Coastal and Shelf Science,2012,104: 33-45.
    Houston J. Sea level rise.In:Charles W.F. (ed.), Coastal Hazards. The Netherlands:Springer, 2013, pp.245-266.
    Ibanez C, Canicio A, Day J W, et al. Morphologic development, relative sea level rise and sustainable management of water and sediment in the Ebre Delta, Spain [J]. Journal of Coastal Conservation,1997,3(2):191-202.
    IPCC, Climate Change 1992; the Supplementary Report to the IPCC Impacts Assessment [R]. Cambridge, Cambridge University press,1992.
    IPCC. Climate Change 1995:The Science of Climate Change. Contribution of Working Group I to the second Assessment Report of the Intergovernmental Panel on Climate Change [A]. Cambridge University, United Kindom and New York, NY, USA,1996.
    IPCC TAR. Land-ocean interactions and climate change - insights from the ELOISE projects, 2001.
    Intergovernmental Panel on Climate Change. Summary for Policymakers of the Synthesis Report of the IPCC Fourth Assessment Report. Cambridge:IPCC,2007:2-4.
    Khang N D, Kotera A, Sakamoto T, et al. Sensitivity of salinity intrusion to sea level rise and river flow change in Vietnamese Mekong Delta-Impacts on availability of irrigation water for rice [Oryza sativa] cropping [J]. Journal of Agricultural Meteorology,2008 64(3):167-176.
    Large W G, Pond S. Open ocean momentum flux measurements in moderate to strong winds [J]. Journal of Physical Oceanography,1981,11:324-336.
    Li L, Zhu J R, Wu H. Impacts of wind stress on saltwater intrusion in the Yangtze Estuary [J]. Science China Earth Sciences,2012,55(7):1178-1192.
    Mellor G L, Yamada T. A hierarchy of turbulence closure models for planetary boundary layers [J]. Journal of the Atmospheric Sciences,1974,33,1791-1896.
    Mellor G L, Yamada T. Development of a turbulence closure model for geophysical fluid problem [J]. Reviews of Geophysics and Space Physics,1982,20,851-875.
    Murphy A H. Skill score based on the mean square error and their relationship to the correlation coefficient [J]. Monthly Weather Review,1988,116(12),2417-2424.
    Officer C B. Physical Oceanography of Estuaries [M]. New York,1975.
    Paw J N, Chua T E. Climate changes and sea level rise:implications on coastal area utilization and management in south-east Asia [J]. Ocean and Shoreline Management, 1991,15(3):205-232.
    Naik P K, Jay D A. Estimation of Columbia River virgin flow:1879 to 1928 [J]. Hydrological processes,2005,19(9):1807-1824.
    Peters N E, Meybeck M. Water quality degradation effects on freshwater availability:Impacts of human activities [J]. Water International,2000,25(2):185-193.
    Pritchard D W. Salinity distribution and circulation in the Chesapeake Bay estuaries system [J]. Journal of Marine Research,1952,11:106-123.
    Pritchard D W. A study of the salt balance in a coastal plain estuary [J]. Journal of Marine Research,1954,13:133-144.
    Pritchard D W. The dynamic structure of a coastal plain estuary [J]. Journal of Marine Research,1956,15:33-42.
    Qiu C, Zhu J R, Gu Y L. Impact of seasonal tide variation on saltwater intrusion in the Changjiang River estuary [J]. Chinese Journal of Oceanology and Limnology,2012, 30(2):342-351.
    Qiu C, Zhu J R. Influence of seasonal runoff regulation by the Three Gorges Reservoir on saltwater intrusion in the Changjiang River Estuary [J]. Continental Shelf Research, 2013,71:16-26.
    Ranjan P, Kazama S, Sawamoto M. Effects of climate change on coastal fresh groundwater resources [J]. Global Environmental Change,2006,16(4):388-399.
    Rice K C, Hong B, Shen J. Assessment of salinity intrusion in the James and Chickahominy Rivers as a result of simulated sea-level rise in Chesapeake Bay, East Coast, USA [J]. Journal of Environmental Management,2012,111:61-69.
    Ross M S, Sah J P, Meeder J F, et al. Compositional effects of sea-level rise in a patchy landscape:the dynamics of tree islands in the southeastern coastal everglades [M]. Wetlands,2013, pp.1-10.
    Schigf J, Schonfeld J. Theoretical consideration on the motion of salt and fresh water [C]. Proceedings Minnesota International Hydraulic Convention, Minnesota,1953,321-333.
    Simmons H B, Brown F R. Salinity effects on estuarine hydraulics and sedimentation [C]. International Association for Hydraulics Research Proceedings of the 13th,1969, 311-325.
    Sinha P C, Rao Y R, Dube S K, et al. Effect of sea level rise on tidal circulation in the Hooghly Estuary, Bay of Bengal [J]. Marine Geodesy,1997,20(4),341-366.
    Smagorinsky J. General circulation experiments with the primitive equations. I. The basic experiments [J]. Monthly Weather Review,1963,91:99-164.
    Sterr H, Klein R J T, Reese S. Climate change and coastal zones:an overview of the state-of-the-art on regional and local vulnerability assessment [J]. Climate Change and the Mediterranean:Socio-economic Perspectives of Impacts, Vulnerability and Adaptation,2003:245.
    Uncles R J, Jordan M B. Residual fluxes of water and salt at two stations in the Severn Estuary [J]. Estuarine and Coastal Marine Science,1979,9(3):287-302.
    Wassmann R, Hien N X, Hoanh C T, et al. Sea level rise affecting the Vietnamese Mekong Delta:water elevation in the flood season and implications for rice production [J]. Climatic Change,2004,66(1-2):89-107.
    Wang J, Gao W, Xu S Y, et al. Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China [J]. Climatic Change,2012,115:537-558.
    Wang Y G, Huang H M, Li X. Critical discharge at Datong for controlling operation of South-to-North Water Transfer Project in dry seasons [J]. Water Science and Engineering, 2008,1(2):47-58.
    Wu H, Zhu J R, Chen B R, et al. Quantitative relationship of runoff and tide to saltwater spilling over from the North Branch in the Changjiang Estuary:A numerical study [J]. Estuarine, Coastal and Shelf Science,2006,69:125-132.
    Wu H, Zhu J R. Advection scheme with 3rd high-order spatial interpolation at the middle temporal level and its application to saltwater intrusion in the Changjiang Estuary [J]. Ocean Modelling,2010,33:33-51.
    Wu H, Zhu J R, Choi B H. Links between saltwater intrusion and subtidal circulation in the Changjiang Estuary:A model-guided study [J]. Continental Shelf Research,2010,30: 1891-1905.
    Xu K, Zhu J R, Gu Y L. Impact of the eastern Water Diversion from the South to the North Project on the saltwater intrusion in the Changjiang Estuary [J]. Acta Oceanol. Sin.,2012, 31(3),47-58.
    Yang S C, Shih S S, Hwang G W, et al. The salinity gradient influences on the inundation tolerance thresholds of mangrove forests [J]. Ecological Engineering,2013,51:59-65.
    Yang S L, Liu Z, Dai S B, et al. Temporal variations in water resources in the Yangtze River (Changjiang) over the Industrial Period based on reconstruction of missing monthly discharges [J]. Water Resources Research,2010,46, W10516, doi:10.1029/2009WR008589.
    Zander K K, Petheram L, Garnett S T. Stay or leave? Potential climate change adaptation strategies among Aboriginal people in coastal communities in northern Australia [J]. Natural Hazards,2013,67(2):591-609.
    Zhang E F, Savenije H H G, Chen S L, et al. Water abstraction along the lower Yangtze River, China, and its impact on water discharge into the estuary [J]. Physics and Chemistry of the Earth,2012,47-48:76-85.
    Zhu J R, Chen C S, Ralph E, et al. Prognostic Modeling Studies of the Keweenaw Current in Lake Superior. Part II Simulation [J]. Journal of Physical Oceanography.2001,31: 396-410.
    Zhu J R, Ding P X, Zhang L Q, et al. Influence of the deep waterway project on the Changjiang Estuary [C]. In:Wolanski, E. (Ed.), the Environment in Asia Pacific Harbours. Springer, Netherlands,2006, pp.79-92.
    陈吉余,何青.2006年长江特枯水情对上海淡水资源安全的影响[M].北京:海洋出版社,2009.
    陈吉余,沈焕庭,恽才兴,等.长江河口动力过程和地貌演变[M].上海:上海科学技术出版社,1988.
    陈进.三峡水库抗旱调度问题的探讨[J].长江科学院院报,2010,27(5),19-23.
    陈沈良,张二凤,谷国传,等.特枯水文年长江口南槽盐水入侵分析[J].海洋通报,2009,28(3):29-36.
    陈宗镛,黄蕴和,周天华,等.长江口平均海面的初步研究[J].海洋与湖沼,1991,22(4):315-320.
    丁一汇.中国气候变化-科学、影响、适应及对策研[M].北京:中国环境科学出版社,2009.
    国家海洋局.中国海平面公报.2013.
    海洋图集编委会.渤海黄海东海海洋图集(水文)[Z].北京:海洋出版社,1992,13-168.
    姜彤,苏布达,王艳君,等.四十年来长江流域气温、降水与径流变化趋势[J].气候变化研究进展,2005,1(2):65-68.
    金元欢,孙志林.中国河口盐淡水混合特征研究[J].地理学报,1992,(02).
    鞠琴,郝振纯,余钟波,等.IPCC AR4气候情景下长江流域径流预测[J].水科学进展,2011,22(4):462-469.
    康玲玲,王昌高,张永兰,等.近50年黄河中游降水变化及其对径流的影响[J].人民黄河,2004,26(8):26-29.
    匡翠萍.长江口盐水入侵三维数值模拟[J].河海大学学报,1997,25(4):54-60.
    李路.长江河口盐水入侵时空变化特征和机理[D].华东师范大学,2011.
    李燕.南水北调东线工程对长江口咸水入侵的影响分析[J].治淮,2002,(5):13-15.
    李永平,秦曾灏,端义宏.上海地区海平面上升趋势的预测和研究[J].地理学报,1998,53(5):393-403.
    刘桦,吴卫,何友声,等.长江口水环境数值模拟研究-水动力数值模拟[J].水动力 学研究与进展A辑,2000,15(1):17-30.
    刘毅,龚士良.上海市地面沉降泊松旋回长期预测[J].中国地质灾害与防治学报,1998,9(2):75-80.
    罗锋,李瑞杰,廖光洪,等.水文气象条件变化对长江口盐水入侵影响研究[J].海洋学研究,2011,29(3):8-17.
    马钢峰,刘曙光,戚定满.长江口盐水入侵数值模型研究[J].水动力学研究与进展A辑,2006,21(1):53-60.
    茅志昌,沈焕庭,姚运达.长江口南支南岸水域盐水入侵来源分析[J].海洋通报,1993,12(1):17-25.
    茅志昌,沈焕庭,肖成献.长江口北支盐水倒灌南支对青草沙水源地的影响[J].海洋与湖沼,2001,32(1):58-66.
    秦曾灏,李永平.上海海平面变化规律及其长期预测方法的初探[J].海洋学报,1997,19(1):1-7.
    秦年秀,姜彤,许崇育.长江流域径流趋势变化及突变分析[J].长江流域资源与环境,2005,14(5):589-594.
    沈焕庭,茅志昌,谷国传,等.长江口盐水入侵的初步研究-兼谈南水北调[J].人民长江,1980,3:20-26.
    沈焕庭.长江河口最大浑浊带的变化规律及其成因探讨[C].海岸河口区动力、地貌、沉积过程论文集.科学出版社,1985:76-89.
    沈焕庭,等.长江河口物质通量[M].北京:海洋出版社,2001.
    沈焕庭,茅志昌,朱建荣.长江河口盐水入侵[M].北京:海洋出版社,2003.
    施雅风,姜彤,苏布达,等.1840年以来长江大洪水演变与气候变化关系初探[J].湖泊科学,2004,16(4):289-297.
    宋永港,朱建荣,吴辉.长江河口北支潮位与潮差的时空变化和机理[J].华东师范大学学报(自然科学版),2011,(6):10-19.
    宋元平,胡方西,谷国传,等.长江口口外海滨盐度扩散的分层数学模型[J].华东师范大学学报(自然科学版),1990,4:74-84.
    宋志尧,茅丽华.长江口盐水入侵研究[J].水资源保护,2002,3:27-30,60.
    田向平.珠江河口伶仃洋最大浑浊带研究[J].热带海洋,1986,(5):27-35.
    王纲胜,夏军,万东晖,等.气候变化及人类活动影响下的潮白河月水量平衡模拟[J].自然资源学报,2006,21(1):86-91.
    王浩,贾仰文,王建华,等.人类活动影响下的黄河流域水资源演化规律初探[J].自然资源学报,2005,20(2):157-162.
    文康.人类活动对水文的挑战[J].中国水文科学与技术研究进展学术讨论会论文集.南京:河海大学出版社,2004:38-41.
    吴辉.长江河口盐水入侵研究[D].华东师范大学,2006.
    吴辉,朱建荣.长江河口北支倒灌盐水输送机制分析[J].海洋学报,2007,29(1):17-25.
    项印玉,朱建荣,吴辉.冬季陆架环流对长江河口盐水入侵的影响[J].自然科学进展,2009,19(2):192-202.
    肖成猷,沈焕庭.长江河口盐水入侵影响因子分析[J].华东师范大学学报(自然科学版),1998,3:74-80.
    许继军,杨大文,雷志栋,等.长江流域降水量和径流量长期变化趋势检验[J].人民长江,2006,37(9):63-67.
    徐君亮.伶仃洋的盐水入侵及盐水楔的活动规律[J].热带地理,1981,(3):36-44.
    杨桂山,朱季文.全球海平面上升对长江口盐水入侵的影响研究[J].中国科学(B辑),1993,23(1):69-76.
    叶叔华.运动的地球:现代地壳运动和地球动力学研究及应用[M].湖南:科学技术出版社,1996.
    应铁甫.珠江口伶仃洋咸淡水混合特征[J].海洋学报,1983,(5):1-10.
    张利平,陈小凤,赵志鹏,等.气候变化对水文水资源影响的研究进展[J].地理科学进展,2008,27(3):61-67.
    郑金海,诸裕良.长江河口盐淡水混合的数值模拟计算[J].海洋通报,2001,20(4):1-10.
    政府间气候变化专门委员会.IPCC第二次评估:气候变化,1995,联合国环境规划署和世界气象组织.
    朱留正.长江口盐度入侵问题[Z].华东水利学院海工所,1980.
    朱季文,季子修,蒋自巽,等.海平面上升对长江三角洲及邻近地区的影响[J].地理科学,1994,14(2):109-117.
    朱建荣,杨陇慧,朱首贤.预估修正法对河口海岸海洋模式稳定性的提高[J].海洋与湖沼,2002,33(1):15-22.
    朱建荣.海洋数值计算方法和数值模式[M].北京:海洋出版社,2003.
    朱建荣,朱首贤.ECOM模式的改进及在长江河口杭州湾及邻近海区的应用[J].海洋与 湖沼,2003,34(4):364-388.
    朱建荣,吴辉,李路,等.极端干旱水文年(2006)中长江河口的盐水入侵[J].华东师范大学学报(自然科学版),2010,(4):1-6.
    朱建荣,吴辉,顾玉亮.长江河口北支倒灌盐通量数值分析[J].海洋学研究,2011,29(3):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700