用户名: 密码: 验证码:
微生物技术治理煤层瓦斯理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着这些年我国采掘速度加快,采深加大,导致地应力不断增加,煤层透气性系数不断降低,瓦斯抽采、排放越来越困难,以至于更容易出现抽采“空白带”,在单位时间内瓦斯排放呈现更加不充分等问题,加之抽放时间长、效率低,浪费大量人力物力而效果并不明显,严重制约着煤矿的安全生产。尤其是重庆地区,近年来瓦斯含量和压力不断增加,突出事故的规模不断加大,原来以瓦斯为主的突出逐渐转变为煤与瓦斯共同、大规模突出,矿井现有以预抽为主要手段的措施到目前已出现抽放难。研究表明瓦斯突出呈现这些特征的根本原因是渗透率极低。通过对其煤体孔和裂隙的测试分析得知,重庆地区煤层小孔多,大孔少;总孔体积大,有效连通孔体积小,这有利于瓦斯储集而不利于其流动。传统对瓦斯主要采取避、驱、排等策略的瓦斯治理方法,希望通过瓦斯抽排实现安全采煤的目标,但对于上述情况其效果并不理想。同时,矿井低浓度瓦斯提纯技术成本也相当高昂,所需要耗费的能量及成本可能是提纯之后瓦斯所产生效益所无法补偿的,目前国内外大部分地区都将低浓度煤矿瓦斯直接排放进入大气中,对生态环境造成恶劣影响。
     在此背景下,本文从微生物的角度出发,跳出传统的瓦斯治理思路,研究微生物方法处理甲烷的作用机理及工程应用,利用甲烷氧化菌处理甲烷,解决煤矿瓦斯抽采难问题,消除煤矿预抽后的低浓度或残余瓦斯,力争避免矿井瓦斯爆炸、窒息等事故的发生,减少甲烷气体的直接排放,降低甲烷对臭氧层的破坏。
     本文研究了甲烷氧化菌的筛选、分离纯化、鉴定、基因解析及大规模培养的最适合生长条件,并对其氧化甲烷的性能进行了验证,最后用该菌进行了地面可行性实验及井下现场试验,结果表明微生物能够降解煤层瓦斯。主要结论如下:
     (1)分析了甲烷氧化菌的多样性及其氧化甲烷的机理,并分别阐述了其氧化过程中四个主要特征酶的特点及作用。
     (2)通过采集五种土样并在NMS培养基中培养观察,发现水稻田的淹水环境中甲烷氧化菌降解甲烷效率最高,氧化效果最好。经分离纯化后得到菌落M02-019。
     (3)通过革兰氏染色观察、16S rDNA的PCR扩增及其序列分析等实验,确定菌株M02-019与Methylophilus位于同一分支,相似度较高,故M02-019属于Methylophilus属,即嗜甲基菌属。
     (4)设计了阴性对照实验、物质守恒实验及小型放大实验,三个实验均显示了该菌具有降解甲烷的活性。
     (5)对M02-019菌株大规模培养的生长条件进行了研究,实验结果表明:该菌株的生长周期为12天,从接种的第三天开始进入对数生长期;甲烷和甲醇同时作为碳源时菌株生长最好,且不易染菌;菌株在硝基氮和少量的氨基氮同时存在时长势较好;最适生长温度为30℃,最适pH值为6.5;Fe~(2+)浓度为0.4mg/L,Cu~(2+)浓度为0.03mg/L。
     (6)对重庆地区煤层的特征进行具体分析,包括煤层突出的宏、微观特征及煤质与孔隙特征。在对其煤化学成分、煤体孔径结构、孔隙形状、煤体渗透性做数据测试后,分析认为煤体存在压敏效应和水敏效应,通过分析煤层孔和裂隙的“双敏效应”与低渗透的关系,提出微生物技术,即在水力扩孔的基础上,将注水改为注入甲烷氧化菌溶液,不断氧化甲烷、降低瓦斯浓度,既能有效卸除应力,又能缓解了水敏效应带来的孔道阻塞问题。为了解煤层注入微生物溶液的可行性,实施了煤层注液研究,结果表明注液量理论上随注液压力及时间的递增而增加,但考虑到煤层底板被压穿后底板泥岩遇水后泥浆化反而会造成孔道堵塞,故采用微生物技术注液时不宜选择太大的注液压力,而宜采用中低压长时间注液,以保证溶液较大程度的渗入煤体。
     (7)在井下工程试验前先用HCA-1型高压容量法瓦斯吸附成套装置等在地面做了注水和注微生物培养液对比可行性试验,证明了微生物培养液处理矿井瓦斯具有其可行性,可进一步在井下进行微生物处理瓦斯实验。通过井下实验观测与分析,甲烷氧化菌能够不同程度地降低两个实验地点的瓦斯动力现象、回风瓦斯浓度、吨煤瓦斯含量、煤层瓦斯压力和钻屑瓦斯解析指标K1值。两个实验地点喷孔距离明显减小,回风瓦斯浓度分别降低了22.54%和77.23%,吨煤瓦斯含量分别降低了39.67%和13.45%,平均瓦斯压力降幅约76%和18%,钻屑瓦斯解析指标K_1值平均降幅分别为62.8%和26.88%。
     (8)无论是地面可行性试验还是井下现场实验,其效果均较为明显,表明微生物方法处理煤层瓦斯是可行的,表明该方法具有应用于工业的潜在价值。
As the depth of mine excavation goes further, the ground stress is continuouslyincreasing but the permeability coefficient of coal seam reduce. It leads to the difficultyof gas extraction or emission. More time, manpower or resources are needed todischarge gas and the effect is not very obvious.Therefore, mining conditions are moreand more complicated and the coal and gas outburst accident become more and morefrequent. Especially Chongqing area, the gas content and pressure is on the increasethese years, the outburst scale continuously aggravate and coal and gas extensiveoutburst replace the former basically gas outburst. The major means of pre-draining ishard to meet the current state, the long-term drainage remains below standards. The rootof these phenomena is the low permeability.Though tests of coal hole and fracture, thereare mainly micropore compared with macropore in Chongqing area. Total volume of thepores is large while the volume of interconnected pores is small, and the coals wouldmanifest pressure and water sensibility, all these are positive for storage of gas butnegative for moving of gas.Traditional methods of gas control mainly which base onavoiding, driving, elimination are not very ideal for realizing the goal of safe mining.Meanwhile, the cost of gas purification for low concentration gas is so high that theproduce benefit after purification is far below the cost of energy and fund demanded. Somost of the mines at home and abroad discharge the low concentration coal mine gasinto the atmosphere directly, that would cause bad influence on the ecologicalenvironment.
     From the view of microorganisms, this paper jumps out of the traditional gasmanagement ideas and studys on making use of microbial technology to deal with coalseam gas. By the using of methane oxidation bacteria, the gas could be controlledsimplely and safely, and the coat will be low,too. This technology will reduce the directdischarging of gas and the amount of accidents of gas explosion or asphyxia.
     This paper studys the enrichment, isolation, identification, gene analysis andsuitable growth conditions of methanotrophs, and its property of the oxidation ofmethane are verified through laboratory experiences. Then the feasibility test on theground and field experiment underground were conducted. The results of theexperiments showed that degrading coal seam gas by methanotrophs was rational.
     (1) Analyzed the diversity and mechanism of methane oxidation of methanotrophs, and introduced the characteristics and functions of the four main enzymes.
     (2) Collected five soil samples and observed in NMS culture medium, and foundthat methanotrophs collected form the water environment of paddy field was of thehighest efficiency of methane degradation and enrichmen. The highestone kind ofmethanotrophs was named M02-019.
     (3) The gram observation,16S rDNA of PCR amplification and sequence analysisexperiments showed M02belonged to the fungus of degradation or decomposition ofmethane, and made sure that the strain M02-019is in the same branch ofMethylophilus.
     (4) Negative control experiment, experiment of conservation of mass and smallamplification experiment were conducted, and the results showed that M02was of havehigh activity of degrading methane.
     (5) Studied the growth conditions of mass culture. The experimental resultsshowed that the growth cycle for this bacterial strain was12days, and its growthentered the logarithmic phase from the third day after inoculation. Using methane andmethanol together as the carbon source of strain growth was best, and it was not easy todye bacteria. It would grow better when using nitrocellulose nitrogen and a smallamount of amino nitrogen together as the nitrogen source of strain. The optimumgrowth temperature for M02-019was30℃and optimum PH was6.5, Fe~(2+)concentration was0.4mg/L and Cu~(2+)concentration was0.03mg/L.
     (6) Analyzed the main reason for the gas outburst of the coal seam, and thechemical composition, aperture structure, pore configuration and the permeability of thecoal mass were tested. The results showed that both pressure-sensitive effect and watersensitivity effect exist in the coal seam. After analyzing the relationship between the lowpermeability and them, the methods were put forward in order to increase thepermeability. The study of injecting fluid into the coal seam indicated that the way ofinjection was feasible and the performance of injection depended on the pressure andtime of injection, as well as the wettability of coal seam.
     (7) Before field experiment underground, the feasibility test on the ground wasconducted through HCA-1type device of high pressure capacity method for gasadsorption. By the comparison of the effect of injecting water and microbial culturesolution, the feasibility of gas control by microbial culture solution was testified, andfurther experiment underground could be conducted. Through the observation andanalysis of underground experiment, the methanotrophs remarkably weakened the dynamic phenomenon of gas and reduced the gas concentration of return air, gas content,gas pressure and the index of K1of the two experimental sites in different degree. Thegas concentration of return air of the two experimental sites respectively reduced by22.54%and77.23%, the gas content reduced by39.67%and13.45%, the gas pressurereduced by76%and18%, and the index of K1reduced by62.8%and26.88%.
     (8) Whether the feasibility test on the ground or field experiment underground, theeffect were obvious. Meantime, this microbiological method is simple and practicablefor gas control; therefore this technique is of the great industrial value.
引文
[1]于不凡,白帆,刘明.煤矿瓦斯防治技术[M].中国经济出版社.1987.
    [2]杨生玉,王刚,沈永红.微生物生理学[M],化学工业出版社,北京,2007.
    [3]余能俊,王兆丰,罗继福,等.三汇三矿K4煤层6404机巷掘进区域防突技术研究工作报告[R].2010,01.
    [4]蔡峰.高瓦斯低透气性煤层深孔预裂爆破强化增透效应研究[D].安徽理工大学.2009.06.
    [5]梁战备,史奕,岳进.甲烷氧化菌研究进展[J].生态学杂志.2004.23(5):198-205.
    [6]冯虎元,程国栋,安黎哲.微生物介导的土壤甲烷循环及全球变化研究[J].冰川冻土.2004.6(4):411-418.
    [7] Ryle M J, Hausinger R P. Non-heme iron oxygenases [J]. Curr Opin Chem Biol,2002,6(2):193-201.
    [8] Merkx M, Kopp D A, Sazinsky M H, et al. Dioxygen activation and methane hydroxylation bysoluble methane monooxygenase: atale of two irons and three proteins [J]. Angew Chem IntEdit,2001,40(15):2782-2807.
    [9] Wallar B J, Lipscomb J D. Dioxygen activation by enzymes containing binuclear non-hemeiron clusters [J].Chem Rev,1996,96(7):2625-2657.
    [10]罗明芳,吴昊,王磊等.含有甲烷氧化菌的混合菌群特性研究[J].微生物学报,2007,47(1):103-109.
    [11] Feig A L, Lippard S J. Reactions of non-heme iron (II) centers with dioxygen in biology andchemistry [J].Chem Rev,1994,94(3):759-805.
    [12] Rosenweig A C, Frederick C A, Lippard S J, et al. Crystal structure of a bacterial non-haem ironhydroxylase [J]. Nature,1993,366(6455):537-543.
    [13] Rosenweig A C, Lippard S J, Frederick C A. Determining the structure of a hydroxylaseenzyme that catalyzes the conversion of methane to methanol in methanotrophic bacteria [J].Acc Chem Res,1994,27(8):229-236.
    [14] Liu K E, Valentine A M, Wang D, et al. Kinetic and spectroscopic characterization ofintermediates and component interactions in reactions of methane monooxygenase frommethylococcus capsulatus (bath)[J]. Jam Chem Soc,117(41):10174-10185.
    [15]马强,陶秀祥,侯彤等.油田土壤中甲烷氧化菌的筛选及鉴定[J].煤炭工程,2008,7(3):84-86.
    [16]向廷生,汪保卫等.油田土壤中甲烷氧化菌的筛选及鉴定[J].石油天然气学报,2005,27(2):324-326.
    [17]胡国全,张辉,邓宇等.微生物法在油气勘探中的应用研究[J].应用与环境生物学报,2006,12(6):824-827.
    [18]陈新斌,廖代正,孙咏芬等.Schiff碱双核配合物的磁性及模拟甲烷单加氧酶催化性能的研究[J].高等学校化学学报,2005,26(1):78-80.
    [19]沈润南,尉迟力,李树本等.甲烷单加氧酶的催化机理[J].催化学报,1997,18(4):330-314.
    [20]沈润南,李树本,尉迟力等.甲烷单加氧酶的催化性能[J].催化学报,1997,18(3):238-242.
    [21]沈润南,尉迟力,马清泉等.甲基单胞菌Metuliomonas SP.GYJ3中甲烷单加氧酶羟基化酶组份的纯化和性质[J].生物化学杂志,1997,13(3):337-343.
    [22]沈润南,马清泉,尉迟力等.甲基单胞菌Methylomonas sp GYJ3中甲烷单加氧酶还原酶组分的纯化和性质[J].生物化学杂志,1997,13(4):432-437.
    [23]沈润南,李树本.甲烷利用利用细菌降解三氯乙烯的研究[J].微生物学报,1998,38(1):63-69.
    [24]宁治中,易淑云.丙烯酶催化产生环氧丙烷的研究——甲烷氧化菌的筛选及其特性[J].微生物学通报,1990,17(5):283-286.
    [25]夏仕文,李树本,尉迟力等.甲烷利用菌催化烯烃环氧化的底物选择性,细胞失活原因及产物对映体组成[J].化学学报,1997,55:76-82.
    [26]夏仕文,尉迟力,李树本.固定化methylomonas Z201细胞:甲烷单加氧酶的活性和稳定性[J].分子催化,1996,4(10):251-256.
    [27]陈建波,夏春谷,辛嘉英等.甲烷单加氧酶的催化反应机理研究[J].化学进展,2001,13(5):376-381.
    [28]高灿柱,李树本,宁治中等.丙烯酶催化氧化制取环氧丙烷一活细胞包埋法制备、再生固定化生物催化剂[J].分子催化,1990,4(4):291-297.
    [29]颜望明.甲烷氧化菌的代谢[J].微生物杂志,1986,6(2):58-66.
    [30]张丹.大气甲烷的微生物产生与消耗[J].沈阳教育学院学报,2009,2(11):108-110.
    [31]向廷生,周俊初,袁志华.利用地表甲烷氧化菌异常勘探天然气藏[J].地质与勘探,2005,25(3):41-43.
    [32]王殳屹,韩琳,史奕等.4FACE对水稻土产甲烷菌和甲烷氧化菌种群及其活性的影响[J].土壤,2006,38(6):768-773.
    [33]韩琳,史奕,李建东,岳进,谢宝华,朱建国,王鸽.FACE环境下不同秸秆与氮肥管理对稻田土壤产甲烷菌的影响[J].农业环境科学学报,2006,25(2):322-325.
    [34]高灿柱,李树本,宁治中等.丙烯酶催化氧化制取环氧丙烷的研究——甲烷菌细胞的吸附固定化[J].分子催化,1991,5(8):227-232.
    [35]崔俊儒,辛嘉英,牛建中等.二氧化碳存在下甲烷氧化细菌催化甲烷生物合成甲醇[J].催化学报,2004,6(25):471-474.
    [36] Whalen S C, Reeburgh W S. Consumption of atmospheric methane by tundra soils [J]. NatureLondon,1990,346:160-162.
    [37] Chang S L, Wallar B J, lipscomb J D, et al. Solution structure of component from methanemonooxygenase derived through heteronuclear NMR and molecular modeling [J].Biochemistry,1999,38(18):5799-5812.
    [38] Whittington D A, Lippard S J. Crystal structures of the soluble methane monooxygenasehydroxylase from methylococcus capsulatus (bath) demonstrating geometrical variability atthe dinuclear iron active site [J]. J Am Chem Soc,123(5):827-838.
    [39] Tiedje J M, Asuming-Brempong S, Nusslein K, et al. Opening the black box of soil microbialdiversity [J]. Appl. Soil Ecol.,1999,13:109-122.
    [40] Murrell J.C, McDonald IR, Gilbert B. Regulation of expression of methane monooxygenasesby copper ions. Trends Microbiol,2000,8:221-225.
    [41] Jin Huijun, Cheng Guodong. Clathrate methane and global change: a review [J]. Journal ofGlaciology and Geocryology,1997,19(3):172-179.
    [42] Park S, HannaM L, Taylor R T, et al. Batch cultivation of methylosinus trichosporium OB3b: Iproduction of soluble methane monooxygenase[J]. Biotech Bioeng,1991,38(4):423.
    [43] Park S, Shah N N, Taylor R T, et al. Batch ultivation of methylosinus trichosporium OB3b: IIProduction of particulate methane monooxygenase [J]. Biotech Bioeng,1992,40(1):151-157.
    [44] Min H, Zhao Y H, Chen M C, et al. Methanogens in paddy rice soil[J]. Nutrient Cycling inAgroecosystems,1997,49:163-169.
    [45] Dalton H. Biological methane activation lessons for the chemists [J].Catal Today,1992,13:455-461.
    [46] Green J, Dalton H. Substrate Specificity of Soluble Methane Monooxygenase: MechanisticImplications [J]. Biologic Chem,1989,264(30):17698-17703.
    [47] Mayer H P, Conrad R. Factors influencing the population of methanogenic bacteria and theinitiation of methane production upon flooding of paddy soil [J]. FEMS Microbiol. Ecol.,1990,73:103-112.
    [48] Ramakrishnan B, Lueders T, Dunfield P F, et al. Archaeal community structures in rice soilsfrom different geographical regions before and after initiation of methane production [J].FEMS Microbiology Ecol.,2001,37:175-186.
    [49] Anthony C.Bacterial oxidation of methane and methanol. Adv Microb Physiol [J],1986,27:113-210.
    [50] Takeguchi M, Furuto T, Sugimori D, et al. Optimization of methanol miosynthesis bymethylosinus trichosporium OB3b: an approach to improve methanol accumulation[J].ApplBiochem Biotechnol,1997,68:143-152.
    [51] Burrows K J, Cornish A, Scott D, et al. Substrate specificities of the soluble and particulatemethane monooxygenases of Methylosinus trichosporium OB3b [J]. Gen Microbiol,1984,130:3327-3333.
    [52] Xin J Y, Cui J R, Zhu L M, et al. Epoxypropane Biosynthesis by Methylomonas sp. GYJ3:batch and continuous studies[J]. World Microbiol Biotechnol,2002,18:609-614.
    [53] Scheutz C, Mosbak H, Kjeldsen P. Attenuation of methane and volatile organic compounds inlandfill soil covers [J]. Environ Qual,2004,33:61-72.
    [54] Prieme A, Sitaula J, Klemedtsson A. et al. Extraction of methane-oxidizing bacteria from soilparticles [J]. FEMS Microbial Ecol,1996,21:59-68.
    [55] Murrell J C, McDonald I R, Bourne D G. Molecular methods for the study of methanotrophecology [J]. FEMS Microbiology Ecology,1998,27(2):103-114.
    [56] Hanson R S, Hanson T E. Methanotrophic bacteria [J]. Microbiol Rev.,1996,60(2):439-471.
    [57] Jarrell K F, Kalmokoff M L. Nutritional requirement s of the methanogenic archeabacteria [J].Can. J. Microbiol.,1988,34:557-576.
    [58] Trevors J T. Why on earth: self-assembly of the bacterial cell to abundant and diverse bacterialspecies [J]. World J. Microbiol Biotechnol.,1999,15:297-304.
    [59]吴炬,李永泉,冯建军等.甲基单胞菌Methylomonas sp. GYJ3的生长特性及产甲烷单加氧酶特性[J].兰州大学学报(自然科学版),2002,38(6):72-77.
    [60]袁志华,梅博文,佘跃惠等.天然气微生物勘探研究——以蠡县斜坡西柳构造为例[J].地质与勘探,2003,23(2):27-30.
    [61] Roy R, Conrad R. Effect of methanogenic precursors (acetate, hydrogen, propionate) on thesuppression of methane production by nitrate in anoxic rice field soil [J]. FEMS MicrobiologyEcol.,1999,28:49-61.
    [62] Achtnich C, Bak F, Conrad R. Competition for electron donors among nit rate reducers, ferriciron reducers, sulfate reducers, and methanogens in anoxic paddy soil [J]. Biol Fertil Soils,1995,19:65–72.
    [63] Whiting G J, Chanton J P. Primary production control of methane emission from wetlands [J].Nature,1993,364:794-795.
    [64] Topp E. Effects of selected agrochemicals on methane oxidation by an organic agricultural soil[J]. Can. J. Soil Sci.,1993,73:287-291
    [65] Dunfield P F, Knowles R, Dumont R, et al. Methane production and consumption in temperateand subarctic peat soils: response to temperature and pH [J]. Soil Biol. Biochem.,1993,25:321-326.
    [66] Arifs M A, Houwen F, Verstraete W. Agricultural factors affecting methane oxidation in arablesoil [J]. Biol. Fertil. Soils,1996,21:95-102.
    [67] Adamsen A P S, King GM. Methane consumption in temperate and subarctic forest soils: rates,vertical zonation, and responses on water and nitrogen [J]. Appl. Environ. Microbiol.,1993,59:485-490.
    [68] Mosier A, Schimel D, Valentine D, et al. M ethane and nitrous oxide fluxes in native, fertilizedandcultivated grasslands [J]. Nature,1991,350:330-332.
    [69]魏英杰.微裂缝发育储层压裂技术研究与应用[J].石油钻采工艺,2009,31(3):94-97.
    [70]张新民,庄军,张遂安.中国煤层气地质与资源评价[M].科学出版社,2002.
    [71]重庆市煤炭学会.重庆地区煤与瓦斯突出防治技术[M].煤炭工业出版社,2005.
    [72]姜永东,鲜学福,易俊,刘占芳,郭臣业.声震法促进煤中甲烷气解吸规律的实验及机理[J].煤炭学报,2008,33(6):675-680.
    [73]周军民.水力压裂增透技术在突出煤层中的试验[J].中国煤层气,2009,6(3):34-39.
    [74]梁绍权.震动爆破的防突机理及安全注意事项[J].中国煤炭,2009,6:86-88.
    [75]魏英杰.微裂缝发育储层压裂技术研究与应用[J].石油钻采工艺,2009,31(3):94-97.
    [76]刘让杰,张建涛,银本才,刘通义,陈小新.水力压裂支撑剂现状及展望[J].钻采工艺,2003,26(4):31-34.
    [77]裴景垚,刘成军,张英.水力挤出消突技术的研究与应用[J].煤炭工程,2008,11:38-40.
    [78]李俊,同小娟,于强.不饱和土壤CH4的吸收与氧化[J].生态学报,2005,1(25):141-147.
    [79] Garcia J L, Patel B K C, Ollivier B. Taxonomy, phylogenetic and ecological diversity ofmethanogenic Archaea [J]. Anaerobe,2000,6:205-226.
    [80] Striegl R G, McConnaughey T A, Thorstenson D C, et al. Consumption of atmospheric methaneby desert soils [J]. Nature,1992,357:145-147.
    [81] Hanson R S, Hanson T E. Methanotrophic bacteria [J]. Microbiol. Rev.,1996,60(2):439-471.
    [82] Keller M, M itre M E, Stallard R F. Consumption of atmospheric methane in soils of centralpanama: effects of agricultural development [J]. Global Biogeochem Cycles,1990,4:21-27.
    [83] Hansen S, Maehlum J E, Bakken L R. N2O fluxes in soil influenced by fertilization and tractortraffic [J]. Soil Biol. Biochem.,1993,25:621-630.
    [84] Ojima D S, Valentine D W, Mosier A R. Effect of land use change on methane oxidation intemperate forest and grassland soils [J]. Chemosphere,1993,26:675-685.
    [85] Hütsch B W, Webster C P, Powlson D S. Methane oxidation as affected by land use, soil pHand nitrogen fertilization [J]. Soil Biol. Biochem.,1994,26:1613-1622.
    [86] Willison T W, Webster C P, Goulding K W T, et al. Methane oxidation in temperate soileffective of land use and the chemical form of nitrogen fertilizer[J], Chemosphere,1995,30:539-546.
    [87] Dobbie K E, Smith K A. Comparison of CH4oxidation rates in woodland, arable soils [J]. SoilBiol. Biochem.,1996,28:1357-1365.
    [88] Bender M, Conrad R. Kinetics of CH4oxidation in oxic soils exposed to ambient air or highmixing ratios [J]. FEMS Microbiol Ecol,1992,101:687-696.
    [89] Henckel T, Jackel U, Schnell S, et al. Molecular analyses of novel methanotrophic communitiesin forest soil that oxidize atmosphere methane[J]. Appl Envirom Microbiol,2000,66:1801-1808.
    [90] Holmes A J, Roslev P, Medonald I R, et al. Characterization of methanotrophic bacterialpopulations is soils showing atmospheric methane uptake [J]. Appl Environ Microbiol,1999,65:3312-3318.
    [91] Trotsenko Y A, Khmelenina V N. Biology of extremophilic and extremotolerant methanotrophs[J]. Arch Microbiol.,2002,177:123-131.
    [92] Blaut M. Metabolism of methanogens [J]. Anton Leeuwenhoek,1994,66:187-208.
    [93] Reeve J N. Molecular biology of methanogens [J]. Ann. Rev. Microbiol.,1992,46:165-191.
    [94]陈中云,闵航,陈美慈,等.不同水稻土甲烷氧化菌和产甲烷菌数量与甲烷排放量之间相关性的研究[J].生态学报,2001,9(21):1498-1505.
    [95] Dedysh S N. Methanotrophic bacteria of acidic sphagnum peat bogs [J]. Microbiology,2002,71(6):638-650.
    [96] Hou C T, Patel R, Laskin A I, et al. Microbial oxidation of gaseous hydrocarbons: epoxidationof C2to C4nalkenes by methylotrophic bacteria[J]. Appl Environm Microb,1979,38(1):127-134.
    [97] Whiting G J, Chanton J P. Primary production control of methane emission from wetlands [J].Nature,1993,364:794-795.
    [98] Prichanont S, Leak D J, Stuckey D C. Alkene Monooxygenase-catalyzed whole cell epoxidation in a two-liquid phase system [J]. Enzyme Microb Technol,1998,22:471-479.
    [99] Gassner G T, Lippard S J. Component Interactions in the soluble methane monooxygenasesystem from methylococcus capsulatus (bath)[J].Biochem,1999,38(39):12768-12785.
    [100]林而达,李玉娥,饶敏杰等.稻田甲烷排放量估算和缓解技术选择[J].农村生态环境,1994,10(4):55-58.
    [101]蔡信之,黄君红.微生物学[M].高等教育出版社.2002.
    [102]徐志英.岩石力学[M].中国水利水电出版社.1993.
    [103]陈雄等.矿井灾害防治技术[M].重庆大学出版社.2009.
    [104]李志强.重庆沥鼻峡背斜煤层气富集成藏规律及有利区带预测研究[D].重庆:重庆大学,2009.
    [105]张慧.煤孔隙的成因类型及其研究[J].煤炭学报.2002,1,24-28.
    [106]李祥春,聂百胜等.煤层渗透性变化影响因素分析[J].中国矿业.2001,06,59-63.
    [107]重庆市煤炭学会.重庆地区煤与瓦斯突出防治技术[M].煤炭工业出版社2005.
    [108]林培滋,曾理.碱与岩石矿物组分(蒙脱石、石英)的相互作用及动力学研究[J].石油与天然气化工,2002,31(3):144-145.
    [109] MAO Fei,TANG Jian-xin,Peng Jiao-jiao, et al.Features of coal pore&fracture in Chuandongand their relationship with extra-low permeability[J].Advanced Materials Research,2012,594-597.
    [110]徐世举.浅论煤层注水抑尘的适应性[J].江苏煤炭,1988,3:8-11.
    [111]王惠宾.煤层注水中添加润湿剂的研究[J].煤炭学报,1994,11(4):35-38.
    [112]依苏科.对煤的吸水特性的研究和煤层有效润湿方式的确定[J].煤矿安全,1989,16:58-61.
    [113]国家安全生产监督总局,国家煤矿安全监察局.防治煤与瓦斯突出规定[M].煤炭工业出版社2009.
    [114]刘献君.油气微生物勘探的特点及发展趋向[J].国外油田工程,2003,19(6):18-19.
    [115]梅博文,袁志华.地质微生物技术在油气勘探开发中的应用[J].天然气地球科学,2004,15(2):156-161.
    [116]张光亚,方柏,闵航等.甲醇对土壤甲烷氧化的影响及其微生物学机理[J].生态环境,2003,12(4):469-472.
    [117] Kruger M, Frenzel P, Conard R. Microbial process influencing methane emission from ricefields [J]. Global Change Biology,2001,7:49-63.
    [118] Nesbit S P, Breitenbeck G A. Alaboratory study of factors influencing methane uptake bysoils[J]. Agric. Ecosyst. Environ.,1992,41:39-54.
    [119] vanden Pol-van Dasselaar A, van Beusichem M L, Oenema O. Effects of soil moisturecontent and temperature on methane uptake by grasslands on sandy soils [J]. Plant Soil,1998,204:213-222.
    [120]陆仕灿,陶坚铭,邱蔚然.固定化甲烷氧化菌Z201催化丙烯合成环氧丙烷[J].华东理工大学学报,1994,1(20):21-26.
    [121]辛嘉英,崔俊儒,陈建波等.甲基单胞菌GYJ3催化环氧丙烷的半连续合成[J].分子催化,2001,15(3):206-210.
    [122]高灿柱,李树本,宁治中,等.丙烯酶催化氧化制取环氧丙烷—活细胞包埋法制备[J].再生固定化生物催化剂,分子催化,1990,4(4):291-297.
    [123]辛嘉英,崔俊儒,陈建波等.甲基单胞菌整细胞催化环氧丙烷的连续生物合成[J].催化学报,2001,22(5):457-460.
    [124]刘婷婷,辛嘉英,徐毅等.甲基弯菌IMV3011整细胞催化甲烷氧化合成甲醇的研究[J].分子催化,2002,16(6):455-459.
    [125]李宏洋,施锋,彭孝军等.甲烷单加氧酶模型化合物的合成及性能测试[J].现代化工,2004,1(1):40-44.
    [126] Olomon E I, Brunold T C, Davis M I, et al. Geometric and electronic structure/functioncorrelations in non-heme iron enzymes [J]. Chem Rev,2000,100(1):235-350.
    [127] Nguyen H H H, Nakaganwa K H, Hedman B, et al. X-ray absorption and EPR studies on thecopper ions associated with the particulate methane monooxygenase from methylococcuscapsulatus (Bath). Cu (I) ions and their implications [J]. J Am Chem Soc,1996,118(11):12766-12776.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700