用户名: 密码: 验证码:
铜绿假单胞菌dsbM基因相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜绿假单胞菌(Pseudomonas aeruginosa,PA),又称绿脓杆菌,广泛分布于自然界、人体的皮肤、肠道和上呼吸道中。铜绿假单胞菌是一种重要的条件致病菌,也是引起严重的医院内获得性感染的常见病原菌之一。该菌也常引发慢性支气管炎及囊性纤维化继发感染等疾病,是严重烧伤、创伤感染病人,囊性纤维化病人及晚期肿瘤患者死亡的重要原因之一,严重危害着人类的健康和生命。随着临床抗生素药物应用的日益广泛,多耐药铜绿假单胞菌的出现,给医院有效的抗感染治疗带来极大的困扰。因此,对其耐药机理的研究对于预防和治疗由铜绿假单胞菌引起的感染有重要的意义。
     本文以一株卡那霉素敏感的临床分离株P. aeruginosa PA68为出发菌株,应用人工Mu转座复合物技术建立突变子库,从中筛选出一株对链霉素耐药性明显增强的菌株,命名为M122,通过基因克隆、核苷酸序列测定及分析,确定基因组上的Mu插入失活位点为PA0058基因的第214bp处,在Pseudomonasaeruginosa基因组数据库(www. pseudomonas.com)中,PA0058基因被定义为一个功能未知的,和已报道的基因没有同源性的新基因。本文以这个新基因为研究对象,通过大量的实验数据对PA0058基因的功能进行了系统、深入的探讨,并首次将其命名为dsbM基因。
     对dsbM突变株M122的表型进行检测,发现其对多种氨基糖苷类抗生素的耐药性都得到增强。通过同源重组实验,在模式菌株P. aeruginosa PAK中敲除dsbM基因,得到的基因敲除株具有链霉素耐药性增高的表型,与Mu插入突变株M122一致,证实了dsbM基因在模式菌株中同样能够影响氨基糖苷类抗生素的耐药性。通过导入携带完整dsbM基因的表达载体可以使突变株M122对链霉素和庆大霉素的耐药性有所降低,表型部分回复至野生型水平。
     本文中在大肠杆菌中诱导表达了dsbM基因,并对其表达产物DsbM蛋白进行了酶学活性的分析。发现DsbM蛋白能够催化二硫键的氧化、还原和异构,是一种新型的二硫键氧化还原酶。通过DNA微阵列技术得到了突变株M122的基因表达谱,与相同背景的野生型PA68菌株对比分析发现,dsbM基因的失活能够影响全基因组的表达,其表达产物DsbM可能是一个作用范围广泛的,具有重要功能的蛋白质。在表达量发生变化的基因中,参与主动运输、能量代谢功能的基因最多,并发现突变株中由于dsbM基因的失活,促使多种抗氧化酶的基因转录表达增高,其中包括oxyR调控系统调控的katB, ahpB和ahpCF。酵母双杂交实验证实DsbM蛋白与OxyR蛋白之间存在相互作用。
     本文推测,二硫键氧化还原酶DsbM是通过OxyR抗氧化调节系统影响氨基糖苷类抗生素耐药性的。通过对铜绿假单胞菌耐药性相关基因的研究,能够更深入的认识细菌产生耐药性的机理和代谢途径,为新药物的设计和研发提供理论依据,最终能针对性地设计药物用以治疗和抑制铜绿假单胞菌所引发的感染。
Pseudomonas aeruginosa is a main opportunistic human pathogen in nosocomialinfections and its intrinsical resistance to antibiotics limits the disinfection efficacy.Its pathogenesis and antibiotic resistance are due to the presence of serials virulencefactors. As antibiotics have been used extensively and constantly, P. aeruginosareflects higher multidrug resistance, and the trend is keeping ascending.
     In this study, a clinical isolated strain PA68was adopted to construct a mutantlibrary from which a drug resistant screen was carried out. One mutant strain withhigh streptomycin resistance was isolated and named M122. Gene cloning andsequencing indicated that the alteration of M122phenotype was due to the insertionalinactivation of the gene PA0058, which is a new gene in P. aeruginosa.
     In this study, the bacteriostatic experiment in vitro indicates that M122hasabnormally high aminoglycoside resistance. After transforming a plasmid containingthe PA0058into M122, the resistance phenotype restored partially. To exclude thestrain specific, PA0058gene was knocked-out in P. aeruginosia PAK. It is the firsttime that gene PA0058was identified to be involved in upward aminoglycosideresistance in P. aeruginosa.
     The gene PA0058encodes a234residues conserved protein of unknownfunction. We cloned and expressed this gene in Escherichia coli. The primarystructure analysis of PA0058demonstrates that it contains a CXXC motif, which isconserved in thiol:disulfide oxidoreductases. The tertiary structure prediction showsthis protein has a thioredoxin-like fold. The studies on biochemical characters ofpurified PA0058suggest that it has thiol:disulfide oxidising, reducing andisomerisation activities. The biochemical characterization suggests that PA0058is anovel disulfide oxidoreductase. Hence, the protein was designated as DsbM.
     DNA microarray was used to analyze the genomic expression in M122. Theresults indicated that the mutation of gene PA0058causes multiple gene expressionchange in P. aeruginosa, especially the significantly up-regulated antioxidant enzymegenes. Microarray analysis of the M122mutant showed its unusual phenotype might be related to the bacterial antioxidant defense system mediated by the oxyR regulon.
     The study on the functions of dsbM gene has important implications forunderstanding the mechanisms underlying aminoglycoside resistance in P. aeruginosa.It will helpful to prevent and cure the infection caused by P. aeruginosa.
引文
[1]宋玉兰,赵丽,申子路等.铜绿假单胞菌耐药机制研究现状.中华医院感染学志,2010,20(6):898~890
    [2] Hatano K,Parkinson Pier G B. Complex serology and immune response of mice to varianthigh-molecular-weight O polysaccharides isolated from Pseudomonas aeruginosa serogroupO2strains. Infect Immun,1998,66(8):3719~3726
    [3] Sadikot R T,Blackwell T S,Christman J W,et al. Pathogen-host interactions in Pseudomonasaeruginosa pneumoni. Am J Respir Crit Care Med,2005,171(11):1209~1223
    [4] Bodey G P,Bolivar R, Fainstein V,et al. Infections caused by Pseudomonas aeruginosa.Rev Infect Dis,1983,5(2):279~313
    [5] Rotschafer J C,Shikuma L R. Pseudomonas aeruginosa susceptibility in a university hospital:recognition and treatment. Ann Pharmacother,1986,20(7~8):575~581
    [6] Chang W,Small D A,Toghrol F,et al. Microarrary analysis of toxicogenomic effects ofperacetic acid on Pseudomonas aeruginosa. Environ Sci Technol,2005,39,5893~5899
    [7] Salunkhe P,Topfer T,Buer J,et al. Genome-wide transcriptional profiling of the steady-stateresponse of Pseudomanas aeruginosa to hydrogen peroxide. J Bacteriol,2005,187(8):2565~2572
    [8] Wilson R,Dowling R B. Pseudomonas aeruginosa and other related species. Thorax,1998,53(3):213~219
    [9] Choi J Y,Sifri C D, Goumnerov B C,et al. Identification of virulence genes in a pathogenicstrain of Pseudomonas aeruginosa by representational difference analysis. J Bacteriol,2002,184(4):952~961
    [10]叶贺佳,叶万树,黄东璋.细菌耐药性的产生机理及控制对策.广东畜牧兽医科技,2005,30(6):15~19
    [11] Bush K.Characterization of beta-lactamases. Antimicrob Agents Ch,1989,33(3):259~263
    [12] Bush K,Jacoby G. beta-lactamase nomenclature. J Clin Microbiol,2005,,4(12):6220~6220
    [13] Mingeot-Leclercq M P,Glupczynski Y,Tulkens P M. Aminoglycosides: activity andresistance. Antimicrob Agents Chemother,1999,43(4):727~737
    [14] Costerton J W. Introduction to biofilm. Int J Anti microb Agents,1999,11(3~4):217~221
    [15]杨帆,王红宁.细菌耐药机理及控制对策研究进展.四川畜牧兽医,2003(1):32~34
    [16]代自英,刘裕昆,江复.实用抗菌药物学.第二版.上海:上海科学技术出版社,1999
    [17]张珍珍,吴俊伟,杨卫军.细菌耐药性产生的分子生物学机理及控制措施.动物医学进展,2008,29(2):106~109
    [18] Young ML,Bains M,Bell A,et a1. Role of Pseudomonas aeruginosa outer membraneprotein OprH in polymyxin and gentamicin resistance:Isolation of an OprH-Deficient mutant by gene replacement techniques.Antimicrob Agents Chemother,1992,36(11):2566~2568
    [19] Kwon D H,Lu C D.Polyamines induce resistance to cationic peptide,aminoglycoside,and quinolone antibiotics in Pseudomonas aeruginosa PAO1.Antimicrob Agents Chemother,2006,50(5):1615~1622
    [20] Farra A,Islam S,Stralfors A,et a1. Role of outer membrane protein OprD and penicillin-binding proteins in resistance of Pseudomonas aeruginosa to imipenem and meropenem. Int JAntimicrob Agents,2008,31(5):427~433
    [21] Giske C G,Buaro L,Sundsfjord A,et a1. Alterations of porin,pumps,and penicillin-bindingproteins in carbapenem resistant clinical isolates of Pseudomonas aeruginosa. Microb DrugResist,2008,14(1):23~30
    [22] Epp S F,Kohler T,Plesiat P,et a1. C-Terminal Region of Pseudomonas aeruginosa OuterMembrane Porin OprD Modulates Susceptibility to Meropenem. Antimicrob AgentsChemother,2001,45(6):1780~1787
    [23] Walsh F,Amyes S G. Carbapenem resistance in clinical isolates of Pseudomonas aeruginosa.J Chemother,2007,19(4):376~381
    [24] Tamber S,Ochs M M,Hancock REW. Role of the novel OprD family of porins in nutrientuptake in Pseudomonas aeruginosa. J Bacteriol,2006,188(1):45~54
    [25] Poole K. Multidrug resistance in Gram negative bacteria. Curr Opin Microbiol,20014(5):500~508
    [26] Adwan K,Abu-Hasan N. Gentamicin resistance in clinical strains of Enterobacteriaceaeassociated with reduced gentamicin uptake. Folia Microbiol,1998,4(4):438~440
    [27] Levy S B. Active efflux mechanisms for antimicrobial resistance. Antimicrob AgentsChemother,1992,36(4):695~703
    [28] Paulsen I T,Brown M H,Skurray R A. Proton-dependent multi drug efflux systems.Microbiol Rev,1996,60(4):575~608
    [29] Higgins C F. ABC transporters: From microorganisms to man. Ann Rev Cell Biol,1992,8:67~113
    [30]田睿.铜绿假单孢菌多药外排系统研究进展.国外医药(抗生素分册),2003,24(4):168~171
    [31] Kohler T,Michea-Hamzehpour M,Henze U,et al. Characterization of MexE-MexF-OprN,a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol,1997,23(2):345~354
    [32] Bonomo R A,Szabo D. Mechanisms of muhidrug resistance in Acinetobactcr species andPseudomonas aeruginosa. Clin Infect Dis,2006,43(l2):49~56
    [33] Hocquet D,Roussel-Delvallez M,Cavallo J D,et a1. MexAB-OprM and MexXY-overproducing mutants are very prevalent among clinical strains of Pseudomonas aeruginosawith reduced susceptibility to ticarcillin. Antimicrob Agents Chemother,2007,51(4):1582~1583
    [34] Lomovskaya O,Lee A,Hoshino K,et al. Use of a genetic approach to evaluate theconsequences ofinhibition of efflux pumps in Pseudomonas aeruginosa. Antimicrob AgentsChemother,1999,43(6):1340~1346
    [35]丁云芳,张建华.肺炎链球菌青霉素耐药相关基因研究.中华微生物学和免疫学杂志,2004,24(5):377~380
    [36] Tran J H,Jacoby G A. Mechanism of plasmid mediated quinolone resistance. Proc Natl AcadSci USA,2002,99(8):5638~5642
    [37]聂署萍,陆学东.大环内酯类药物细菌耐药机制的研究进展.国际检验医学志,2007,28(4):370~372
    [38]李继安,陈代杰.细菌耐药性机制的研究与新药的开发II.国外医药-合成药、生化药、制剂分册,2001,22(3):132~133
    [39] Bauman R W. Microbiology.Pearson Education,Inc,2004:289~296
    [40]张璐.铜绿假单胞菌PA547-PA5472间隔区的研究:[硕士学位论文].天津:南开大学2007
    [41] Kohanski M A,Dwyer D J,Collins J J. How antibiotics kill bacteria:from targets tonetworks. Nature reviews Microbiology,2010,8(6):423~435
    [42] Dwyer D J,Kohanski M A,Hayete B. Gyrase inhibitors induce an oxidative damage cellulardeath pathway in Escherichia coli. Mol Syst Biol,2007,3:91
    [43]朱本占.一种新型羟基自由基产生分子机理的研究.科学通报,2009,54(12):1673~1680
    [44] Kohanski M A,Dwyer D J,Hayete B,et al. A common mechanism of cellular death inducedby bactericidal antibiotics. Cell,2007,130(5):797~810
    [45] Stover C K,Pham X Q,Erwin A L,et al. Complete genome sequence of Pseudomonasaeruginosa PAO1,an opportunistic pathogen. Nature,2000,406(6799):959~964
    [46] Lamberg A,Niemenen S,Qiao M Q,et al. Efficient insertion mutagenesis strategy forbacterial genomes involving electroporation of bacteriophage Mu. Appl Environ Microb,2002,27(13):705~712
    [47] Hoshino K,Eda A,Kurokawa Y,et al. Production of brain-derived neurotrophic factor inEscherichia coli by coexpression of Dsb proteins. Biosci Biotech Bioch,2002,66(2):344~350
    [48] Kurukawa Y,Yanagi H,Yura T. Overexpression of protein disulfide isomerase DsbCstabilizes multiple-disulfide-bonded recombinant protein produced and transported to theperiplasm in Escherichia coli. Appl Environ Microb,2000,66(9):3960~3965
    [49] Lee D G,Urbach J M,Wu G,et al. Genomic analysis reveals that Pseudomonas aeruginosavirulence is combinatorial. Genome Biol,2006,7(10):90
    [50] Mathee K,Narasimhan G,Valdes C,et al. Dynamics of Pseudomonas aeruginosa genomeevolution. Proc Natl Acad Sci USA,2002,105(8):3100~3105
    [51] Winsor G L,Van Rossume T,Lo R,et al. Pseudomonas Genome Database: facilitatinguser-friendly,comprehensive comparisons of microbial genomes. Nucleic Acids Res,2009,37:483~488
    [52] Martin J L. Thioredoxin——a fold for all reasons. Structure,1995,3(3):245~250
    [53] Watarai M,Tobe T,Yoshikawa M,et al. Disulfide oxidoreductase activity of Shigella flexneriis required for release of Ipa proteins and invasion of epithelial cells. Proc Natl Acad SciUSA,1995,92(11):4927~4931
    [54] Jackson M W,Plano G V. DsbA is required for stable expression of outer membrane proteinYscC and for efficient Yop secretion in Yersinia pestis. J Bacteriol,1999,181(16):5126~5130
    [55] Ha U H,Wang Y P,Jin S G,et al. DsbA of Pseudomonas aeruginosa is essential for multiplevirulence factors. Infect Immun,2003,71(3):1590~1595.
    [56] Mild T,Okada N,Danbara H,et al. Two periplasmic disulfide oxidoreductases, DsbA andSrgA,target outer membrane protein SpiA,a component of the Salmonella pathogenicityisland2type III secretion system. J Biol Chem,2004,279(33):34631~34642
    [57] Ha U H,Kim J,Badrane H,et al. An in vivo inducible gene of Pseudomonas aeruginosaencodes an anti-ExsA to suppress the type III secretion system. Mol Microbiol,2004,5(42):307~320
    [58] Urban A,Leipelt M,Eggert T,et al. DsbA and DsbC affect extracellular emyme formationin Pseudomonas aeruginosa. J Bacteriol,2001,183(2):587~596
    [59] Grauschopf U,Winther J R,Korber P et al. Why is DsbA such an oxidizing disulfide catalyst?Cell,83(6):947~955
    [60] Missiakas D,Georgopoulos C,Raina S. Identification and characterization of the Escherichiacoli gene dsbB,whose product is involved in theformation of disulfide bonds in vivo. ProcNatl Acad Sci USA,1993,90(15):7084~7088
    [61] Kihara A, Akiyama Y, Ito K.1999,Dislocation of membrane proteins in FtsH-mediatedproteolysis. EMBO J,1999,18(11):2970~2981
    [62] Missialcas D,Georgopoulos C,Raina S. The Escherichia coli dsbC(xprA) gene encodesa periplasmic protein involved in disulfide bond formation. EMBO journal,1995,14(14):3415~3424
    [63] Missiakas D,Schwager F,Raina S. Identification and characterization of a new disulfideisomerase-like protein (DsbD) in Escherichia coli. EMBO journal,1994,13(8):2013~2020
    [64] Throne-Holst M,Thony-Meyer L,Hederstedt L,et al. Escherichia coli ccm in-frame deletionmutants can produce periplasmic cytochrome b but not cytochrome c. FEBS Lett,1997,410(2~3):351~355
    [65] Setterdahl A T,Goldman B S,Hirasawa M,et al. Oxidation-reduction properties of disulfide-containing proteins of the Rhodobacter capsulotus cytochrome c biogenesis system.Biochemistry,2000,39(33):10172~10176
    [66] Bessette P H,Cotto J J,Gilbert H F,et a1. In vivo and in vitro function of the Escherichiacoli periplasmic cysteine oxidoreductase DsbG. J Biol Chem,1999,274(12):7784~7792
    [67] Seib K L,Wu H J,Srikhanta Y N,et al. Characterization of the OxyR regulon of Neisseriagonorrhoeae. Mol Microbiol,2007,63(1):54~68
    [68] Mongkolsuk S, Helmann J D. Regulation of inducible peroxide stress responses. MolMicrobiol,2002,45(1):9~15
    [69] Zheng M,Storz G. Redox sensing by prokaryotic transcription factors. Biochem Pharmacol,2000,59(1):1~6
    [70] Ochsner U A,Vasil M L,Alsabbagh E,et a1. Role of the Pseudomonas aeruginosaoxyR-recG operon in oxidative stress defense and DNA repair:OxyR-dependent regulationof katB-ankB,ahpB,and ahpC-ahpF. J Bacteriol,2000,182(16):4533~4544
    [71] Ma J F,Ochsner U A,Klotz M G,et a1. Bacterioferritin A modulates catalase A(KatA)activity and resistance to hydrogen peroxide in Pseudomonas aeruginosa. J Bacteriol,1999,181(12):3730~3742
    [72] Lau G W,Britigan B E,Hassett D J. Pseudomonas aeruginosa OxyR is required for fullvirulence in rodent and insect models of infection and for resistance to human neutrophils.Infect Immun,2005,73(4):2550~2553
    [73] Zheng M,Doan B,Schneider T D,et a1. OxyR and SoxRS regulation of fur. J Bacteriol,1999,181(15):4639~4643
    [74] Storz G,Tartaglia L A,Ames B N. Transcriptional regulator of oxidative stress-induciblegenes:direct activation by oxidation. Science,1990,248(4952):189~194
    [75] Zheng M,Aslund F,Storz G. Activation of the OxyR transcription factor by reversibledisulfide bond formation. Science,1998,279(5357):1718~1721
    [76] Aslund F,Zheng M,Beckwith J,et a1. Regulation of the OxyR transcription factor byhydrogen peroxide and the cellular thiol-disulfide status. Proc. Natl. Acad. Sci. USA,1999,96(11):6161~6165
    [77] Tao K. In vivo oxidation-reduction kinetics of OxyR,the transcriptional activator for anoxidative stress-inducible regulon in Escherichia coli. FEBS Lett,1999,457(1):90~92
    [78] Kim S O,Merchant K,Nudelman R,et al. OxyR:a molecular code for redox-relatedsignaling. Cell,2002,109(3):383~396
    [79] Chen H,Xu G,Zhao Y,et al. A novel OxyR sensor and regulator of hydrogen peroxide stresswith one Cysteine residue in Deinococcus radiodurans. PLOS ONE,2008,3(2):e1602
    [80] Sreevatsan S,Pan X,ZhangY,et al. Analysis of the oxyR-ahpC region in isoniazid-resistantand susceptible Mycobacterium tuberculosis complex organisms recovered from diseasedhumans and animals in diverse localities. Antimicrob Agents Chemother,1997,41(3):600~606
    [81]陈曦,马王与,金奇等.耐异烟肼结核分枝杆菌临床分离株耐药相关基因突变研究.中华结核和呼吸杂志,2005,28(4):250~253
    [82] Mongkolsuk S,Helmann J D. Regulation of inducible peroxide stress responses. Mol Biol,2002,45(1):9~15
    [83]李迎丽.铜绿假单胞菌运动能力相关新基因的筛选和功能研究:[博士学位论文].天津:南开大学,2007
    [84]王雪涵,刘力伟,李明轩等.铜绿假单胞菌新基因PA0058的失活对氨基糖苷类抗生素耐药性的影响.微生物学通报,2012,39(9):1290~1298
    [85]李迎丽,白芳,乔明强等.铜绿假单胞菌泳动能力相关新基因的筛选及鉴定.微生物学报,2006,46(1):18~22
    [86] Woodcock D M,Crowther P J,Doherty J,et al. Quantitative evaluation of Escherichia colihost strains for tolerance to cytosine methylation in plasmid and phage recombinants.Nucleic Acids Res,1989,17(9):3469~3478
    [87] Hoffmann A,Thimm T,Droge M,et al. Intergeneric Transfer of Conjugative andMobilizable Plasmids Harbored by Escherichia coli in the Gut of the Soil MicroarthropodFolsomia candida (Collembola). Appl Environ Microb,1998,64(7):2652~2659
    [88] Nunn D, Bergman S,Lory S. Products of three accessory genes,pilB,pilC,and pilD arerequired for biogenesis of Pseudomonas aeruginosa pili. J Bacteriol,1990,172(6):2911~2919
    [89] Hoang T T, Karkhoff-Schweizer R R,Schweizer H P,et al. A broad-host-range Flp-FRTrecombination system for site-specific excision of chromosomally-located DNA sequences:application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene,1998,21(1):77~86
    [90] Nunn D N,Lory S. Components of the protein-excretion apparatus of Pseudomonasaeruginosa are processed by the Type IV prepilin peptidase. Proc Nati Acad Sci USA,1992,89(1):47~51
    [91] Choi K H,Kumar A,Herbert P,et al. A10-min method for preparation of highlyelectrocompetent Pseudomonas aeruginosa cells: Application for DNA fragment transferbetween chromosomes and plasmid transformation. J Microbiol Meth,2006,64(3):391~397
    [92] Sambrook J,Russell D W,Irwin N. Molecular Cloning:a Laboratory Manual.3rd edn. NewYork:Cold Spring Harbor Laboratory,2000
    [93] Rashid M H,Kornberg A. Inorganic polyphosphate is needed for swimming, swarming andtwitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci USA,2000,97(9):4885~4890
    [94] Delden C V,Iglewski B H. Cell-to-cell signaling and Pseudomonas aeruginosa infections.Emerg Infect Dis,1998,4(4):551~560
    [95] Firsov A A,Vgstrov S N,Shevchenko A A,et al. MIC-Based interspecies prediction of theantimicrobial effects of ciprofloxacin on bacteria of different susceptibilities in an in vitrodynamic model. Antimicrob Agents Chemother,1998,42(11):2848~2852
    [96]单志英.铜绿假单胞菌生物被膜形成早期相关基因的研究:[博士学位论文].天津:南开大学,2004
    [97] Gutierrez C,Devedjian J C. Osmotic induction of gene osmC expression in Escherichia coliK12. Mol Biol,1991,220(4):959~973
    [98] Wunderlich M,Otto A,Maskos K,et al. Efficient catalysis of disulfide formation duringprotein folding with a single active-sitecysteine. Mol Biol,247(1):28~33
    [99] Holmgren C. Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol anddihydrolipoamide. J Biol Chem,1979,254(19):9627~9632
    [100] Xu C,Fu Y,Liang A. Characterization of Escherichia coli disulfide isomerase DsbC.Journal of Shanxi University (Nat Sci Ed),2008,31(2):258~261
    [101] Ames G F,Prody C,Kustu S. Simple,rapid,and quantitative release of periplasmic proteinsby chloroform. J Bacteriol,1984,160(3):1181~1183
    [102] Becker D M,Guarente L. High-efficiency transformation of yeast by electroporation.Methods Enzymol,1991,194:182~187
    [103] Ausubel F M,Brent R,Kingston R E,et al. Current Protocols in Molecular Biology,JohnWiley&Sons,NY,1987
    [104] Breeden L,Nasmyth K. Regulation of the Yeast HO Gene. Cold Spring Harbor SymposiumQuant Biol,1985,50:643~650
    [105] Brown S M,Howell M L,Vasil M L,et a1. Cloning and characterization of the katB geneof Pseudomonas aeruginosa encoding a hydrogen peroxide-inducible catalase:purificationof KatB,cellular localization, and demonstration that it is essential for optimal resistance tohydrogen peroxide. J Bacteriol,1995,177(22):6536~6544
    [106] Mavrodi D V,Bonsall R F,Delaney S M,et al. Functional analysis of genes forbiosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosaPAO1. J Bacteriol,2001,183(21):6454~6465
    [107] Mavrodi D V,Ksenzenko V N,Bonsall R F,et al. A Seven-Gene locus for synthesis ofphenazine-1-carboxylic acid by Pseudomonas fluorescens2-79. J Bacteriol,1998,180(9):2541~2548
    [108] Pierson LS3rd,Gaffney T,Lam S,et al. Molecular analysis of genes encoding phenazinebiosynthesis in the biological control bacterium Pseudomonas aureofaciens30-84. FEMSMicrobiol Lett,1995,134(2~3):299~307
    [109] Cuypers H,Viebrock-Sambale A,Zumft W G. NosR,a membrane-bound regulatorycomponent necessary for expression of nitrous oxide reductase in denitrifyingPseudomonas stutzeri. J Bacteriol,1992,174(16):5332~5339
    [110] Zumft W G,Viebrock-Sambale A,Braun C. Nitrous oxide reductase from denitrifyingPseudomonas stutzeri. Genes for copper-processing and properties of the deducedproducts,including a new member of the family of ATP/GTP-binding proteins. Eur JBiochcm,1990,192(3):591~599
    [111] Schweizer H P,Jump R,Po C. Structure and gene-polypeptide relationships of the regionencoding glycerol diffusion facilitator (g/pF) and glycerol kinase (glpK) of Pseudornonasaeruginosa. Microbiology,1997,143(4):1287~1297
    [112] Schweizer H P,Po C. Regulation of glycerol metabolism in Pseudomonas aeruginosa:characterization of the glpR repressor gene. J Bacteriol,1996,178(17):5215~5221
    [113] Schweizer H P,Po C. Cloning and nucleotide sequence of the glpD gene encodingsn-glycerol-3-phosphate dehydrogenase of Pseudomonas aeruginosa. J Bacteriol,1994,176(8):2184~2193
    [114] Schweizer H P,Po C,Bacic M K. Identification of Pseudomonas aeruginosa glpM,whosegene product is required for efficient alginate biosynthesis from various carbon sources. JBacteriol,1995,177(16):4801~4804
    [115] Arora S K,Ritchings B W,Almira E C,et al. Cloning and Characterization of Pseudomonasaeruginosa fliF,necessary for flagellar assembly and bacterial adherence to mucin. InfectImmun,1996,64(6):2130~2136
    [116] Missiakas D,Georgopoulos C,Raina S. Identification and characterization of theEscherichia coli gene dsbB, whose product is involved in the formation of disulfide bondsin vivo. Proc Natl Acad Sci USA,1993,90(15):7084~7088
    [117] Hassett D J,Alsabbagh E,Parvatiyar K,et al. A protease-resistant catalase, KatA, releasedupon cell lysis during stationary phase is essential for aerobic survival of a PA oxyR mutantat low cell densities. J Bacteriol,2000,182(16):4557~4563
    [118] Carmel-Harel O,Storz G. Roles of the glutathione-and thioredoxin-dependent reductionsystems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress.Annu Rev Microbiol,2000,54,439~461

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700