用户名: 密码: 验证码:
偏振外差法光纤光栅激光传感器技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着当今信息社会的快速发展,对环境监测、过程控制以及基础设施安全性要求的不断提高,人们对监测需要的传感器的要求越来越高。现代传感器技术正在向着小型化、网络化、多参量化和集成化方向发展。光纤传感器作为传感器家族中的生力军,以其在抗电磁干扰、灵巧和组网能力等方面的优势而日益受到人们的重视,并已在军事和民用领域被广泛应用,发挥着越来越主要的作用。光纤光栅传感器更是以其可靠性高、稳定性强、制作技术成熟和利用波分复用技术可以实现大面积多点测量的优点,被广泛应用于大型建筑物内部,对其结构的完整性、安全性、载荷疲劳、损伤程度等状态进行连续实时监测。近年来,有源光纤光栅激光传感器更是以其带宽窄,信噪比高,从而可以实现更高的准确度和分辨率而备受关注。传统的光纤光栅激光传感器大多采用波长编码,与光纤光栅传感器具有相似的工作原理类似,需要昂贵的波长解调设备来分辨微小的波长变化,极大地增加了系统的成本。由于波长编码灵敏度较低,干涉技术被用来分辨其微小的波长变化,进而提高其传感器的灵敏度和分辨率,但是大大增加了解调系统的复杂程度,并且很大程度上增加了系统的成本。
     本论文正是在此基础上,提出并实现了一系列新颖的基于偏振外差法的光纤激光传感器,并对偏振外差法光纤激光传感技术及其频分复用能力进行了深入的理论和实验的研究。为未来基于偏振外差法光纤激光传感器及其频分复用传感网络技术与应用打下了坚实的基础。本论文的主要研究工作和取得的成果如下:
     1.提出了一种新型的光纤激光水听器——偏振外差法光纤激光水听器,其以单纵模双偏振DBR光纤激光器为传感核心单元,以偏振拍频信号为传感信号,具有频率编码、易于解调,并能在同一根光纤上利用频分复用技术复用多个传感器组成传感阵列的特点。该水听器最小可测声压为0.03Pa,对应的声音信号频率为400Hz。其频响曲线的上下浮动为±7dB。
     2.结合本水听器的结构和实际应用的需求,提出了一种对水声、液压和温度同时测量的传感器。我们利用光纤激光器的波长首先将温度标定出来,然后将拍频静态漂移量中温度项引起的变化量去除掉,进而获得静压力的具体数值。最后利用拍频中的动态漂移量来探测环境中的声音信号。从而实现了对液压、温度和水声的同时测量。
     3.我们采用内部开发型结构,设计并实现了一种液体静压力不敏感DBR光纤激光水听器,可以不受液压的影响在深海进行工作。弹性膜片只将声压转化为侧压力而不将液压转化为侧压力,因此拍频信号只对声压灵敏。此水听器最小可探测声压为0.15Pa,对应的声音信号频率为400Hz。
     4.设计并实现了一种新颖的温度和应变同时测量的光纤激光传感器。其传感探头由两个串联的超短DBR光纤激光器组成。总长仅为1.8cm。两个激光器都完全单纵模双偏振态运转。每个激光器将在射频领域产生一个偏振拍频信号,且由于两个拍频信号具有不同的应变和温度响应,因此可以实现对应变和温度的同时测量。
     5.实现了一种应变不敏感温度传感器。其传感单元为一单纵模双偏振态运转的DBR光纤激光器。通过对其偏振拍频温度响应进行测量我们得到了一个温度传感器,其温度灵敏度为-78.46kHz/℃。然而,这个传感器却对应变完全不敏感。对此,我们进行了理论分析,给出了合理的理论解释。
     6.为了实现并提高DBR光纤激光器的的频分复用能力。我们提出了旋转熔接拍频主动控制技术。其原理为:将光纤激光器分成两个部分,然后旋转一定角度后再对准在一起,由于每个偏振态光程的变化,拍频可以连续的进行调节,当到达需要的拍频再将两部分熔接在一起,从而获得目标拍频的光纤激光器。我们实现了2.05GHz到289MHz的调谐范围。此种方法可以实现大范围的拍频调制,进一步提高了DBR光纤激光器的复用能力。由于可以实现拍频的连续调节,这种方法还可以作为一种光生微波的方法,用来制作射频信号发生器。
With the rapid development of the information society, and the continuous improvement of the requirements for environmental monitoring, process control and infrastructure safety, people need higher performance sensor. Mordern sensor technology is developing to small size, network, multiple parameters and integrated. Fiber optical sensors as one of the most important sensors have been interested in and applied in military and cilvil fields, because of their advantage such as anti-electromagnetic interference, dexterity and multiplexing. Because of high reliability, strong stability, mature production technology and multiplexing ability by using of wavelength division multiplex, fiber grating sensors have been widely applied in the large structure for their integrity, security, load fatigue, injury severity and the state of real-time monitoring. Recently, fiber grating laser sensors as active optical fiber device have attracted much consideration, because of their narrow bandwidth and high signal to noise ratio, which permit more accuraty and resolution. Traditional fiber grating laser sensors is wavelength encoding. Like the principle of the fiber grating sensors, the equipments for wavelength demodulation are required, which is very expensive. Because of the small sensitivity of the wavelength encoding, the interferometric detection is required to read out the small wavelength shift. This greatly complicates the sensor multiplexing and increases the cost.
     In this paper, we propose and demonstrate a series of novel polarimetric heterodyning fbier grating laser sensors theoretically and experimentally. The multiplexing ability of the sensors based on frequency division multiplex is also investigated. The investigation has laid a solid foundation for the polarization heterodyne fiber laser sensor and its frequency division multiplexing sensor network to apply in future. The main research work and achievements are as follows:
     1. A novel fiber optic hydrophone based on polarization fiber grating laser is proposed and experimentally demonstrated. The principle of the proposed hydrophone is different in nature from the reported wavelength encoded fiber laser hydrophones. It uses dual polarization fiber grating laser as sensing element and converts acoustic signal into a change in the beat frequency between the two polarization modes from the laser. The proposed hydrophone has advantages of ease of interrogation, absolute frequency encoding, and capability to multiplex a number of sensors on a single fiber by use of frequency division multiplexing technique. The minimum detectable signal is0.03Pa at 400Hz. The frequency response exhibits a±7dB variation across the measurement bandwidth.
     2. Based on the structure of hydrophone, we propose and experimentally demonstrate a simultaneous measurement of temperature, hydrostatic pressure and acoustic signal sensor using a single DBR fiber laser. The acoustic wave induces a frequency modulation (FM) of the carrier in radio frequency (RF) range generated by the fiber laser and can be easily extracted by using the FM demodulation technique. The temperature can be determined by the laser wavelength. The hydrostatic pressure can be determined by monitoring the static shift of the carrier frequency and deducting the effect of the temperature.
     3. A hydrostatic pressure insensitive fiber optic hydrophone based on the integration of a dual polarization fiber grating laser and an elastic diaphragm is proposed and experimentally demonstrated. The diaphragm converts acoustic pressure into transversal force onto the fiber laser but shows no response to the hydrostatic pressure. Therefore, the beat frequency is sensitive to acoustic signal but insensitive to the hydrostatic pressure. It can be used in deep water.
     4. A novel simultaneous strain and temperature fiber optic sensor is proposed and experimentally demonstrated. The sensing head is formed by two concatenated ultra-short distributed Bragg reflector lasers that operate in single longitude mode with two polarization modes. The total length of the sensing head is only18mm. The two lasers generate two polarization mode beat notes in the radio-frequency range which show different frequency response to strain and temperature. Simultaneous strain and temperature measurement can be achieved by radio-frequency measurement.
     5. A strain-insensitive temperature sensor based on a dual polarization fiber grating laser is demonstrated. The measured temperature sensitivity is-78.46kHz/℃. In contrast, the sensor is almost insensitive to applied axial strain. The theoretical analysis is conducted, which give a reasonable explanation.
     6. To improve the frequency division multiplex ability of DBR fiber laser, we demonstrate a rotary-welding method to tune the beat frequency. By slicing the laser cavity into two sections and then aligning them with a rotated angle, the output beat frequency can be continuously tuned in a multi-octave frequency range as shown in the experiment from2.05GHz down to289MHz, as a result of the induced change in optical length for each polarization mode. Because the beat frequency can be continuously tuned in a multi-octave frequency range, this method can be used for a tunable RF signal generation.
引文
[1]董永贵,传感技术与系统,北京:清华大学出版社,2006.
    [2]李科杰,新编传感技术手册,北京:国防工业出版社,2002.
    [3]B. Culshaw, J. Dakin,李少慧,宁雅农等译,光纤传感器.武汉:华中理工大学出版社,1997.
    [4]靳伟,廖延彪,张志鹏等著,导波光学传感器:原理与技术,北京:科学出版社,1998.
    [5]廖延彪,光纤光学,北京:清华大学出版社,2010.
    [6]Lee B., Review of the Present status of optical fiber sensors. Optical Fiber Technology.2003, vol.9(2):57-79.
    [7]戎华北.光纤传感器的现状和应用,厦门科技,2005,4:34-36.
    [8]Giallorenzi T G, Bucaro J A, Dandridge A, et al., Optical Fiber Sensor Technology, Quantum Electron,1982, vol.82(4):39.
    [9]Culshaw B, Optical Fiber Sensor Technologies, Opportunities and-Perhaps-Pitfalls, Journal of Lightwave Technology,2004, vol.22(1):39.
    [10]Culshaw B, Kersey A, Fiber-Optic Sensiong, A Historical Perspective, Journal of Lightwave Technology,2008, vol.26 (9):1064-1078.
    [11]B. S. Kawasaki, K.0. Hill, D. C. Johnson, et al., Narrow-band Bragg reflectors in optical fibers, Optics Letters,1978, vol.3(2):66-68.
    [12]K.0. Hill, Y. Fujii, D. C. Johnson, et al. Photosensitivity in optical fiber waveguides:Application to reflection filter fabrication, Appl. Phys. Lett.,1978, vol.32(3):647-649.
    [13]G. Meltz, W. W. Morey, W. H. Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method, Optics Letters,1989, vol.14(15):823-825.
    [14]P. J. Lemaire, R. M. Atkins, V. Mizrahi, et al., High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in Ge02 doped optical fibers, Electron. Lett.,1993, vol.29(13):1191-1193.
    [15]K.0. Hill, B. Malo, F. Bilodeau, et al., Bragg Gratings Fabricated In Monomode Photosensitive Optical Fiber By UV Exposure Through A Phase Mask, Applied Physics Letters,1993, vol.62(10):1035-1037.
    [16]W. W. Morey, G. Meltz, and W. H. Glenn, Fiber Bragg grating sensors Proc. SPIE Fiber Optic & Laser Sensors VII,1989, vol.1169:98-107.
    [17]W. W. Morey, J. R. Dunphy, and G. Meltz, Multiplexing fiber Bragg grating sensors, Proc. SPIE Distributed and Multiplexed Fiber Optic Sensors, Boston, MA, Sept.1991, vol.1586:216.
    [18]Alan D. Kersey, Michael A. Davis, et al., Fiber Grating Sensors, Journal of Lightwave Technology,1997, vol.15(8):1442-1463.
    [19]M. LeBlanc, S.Y.Huang, M. Ohn, et al., Distributed strain measurement based on a fiber Bragg grating and its reflection spectrum analysis. Opt. Lett.,1996,21(17): 1405-1407.
    [20]Y. J. Rao. In-fibre Bragg grating sensors, Measurement Science & Technology,1997, vol.8(4):355-375.
    [21]童峥嵘,黄勇林,蒙红云等.一种新颖的光纤光栅位移传感的研究.传感技术学报,2002,vol.15(1):10-13.
    [22]黄勇林,童峥嵘,项阳等.用光纤光栅的啁啾效应实现温度不敏感的位移测量.中国激光,2002,vol.29(11):1015-1018.
    [23]T. A. Berkoff, A. D. Kersey. Experimental demonstration of a fiber Bragg grating accelerometer. IEEE Photonics Technology Lett.,1996, vol.8(12):1677-1679.
    [24]E. J. Friebele, C.G.Atkins, M.A.Putnam, et al., Disatributed strain sensing with fiber Bragg grating array embedded in CRTM composites. Electron. Lett.,1994, vol.30(21):1783-1784.
    [25]Zhang Wei-Gang, Huang Yong-Lin, Xiang Yang, et al., Temperature-independent stress and displacement bi-directional sensing tuned by applying bilateral cantilever beam. Chinese Physical Lett.,2002, vol.19(1):76-78.
    [26]W.G.Zhang, X.Y.Dong, D.J.Feng, et al., Linear fibre-grating-type sensing tuned by applying torsion stress. Electron, Lett.,2000, vol.36(20):1686-1688.
    [27]J. L. Arce-Diego, R. Lopez-Ruisanchez, J. M. Lopez-Higuera, et al. Fiber Bragg grating as an optical filter tuned by a magnetic field, Opt. Lett.,1997, vol.22(9): 603-605.
    [28]P.M. Cavaleiro, F. M. Araujo, A. B. Lobo Ribeiro. Metal-coated fiber Bragg grating sensor for electric current metering, Electron. Lett.,1998, vol.34(11): 1133-1135.
    [29]Xinyong Dong, Hongyun Meng, Guiyun Kai, et al., Bend measurement with chirp of fiber Bragg grating, Smart Materials and Structures,2001, vol.10(5):1-3.
    [30]Xinyong Dong, Yunqi Liu, Zhiguo Liu,et al. Simultaneous displacement and temperature measurment with cantilever-based fiber Bragg grating sensor, Opt. Comm.,2001, vol.192(3):213-217.
    [31]Weigang Zhang, Zhaowen Xu, Xiaopeng Yang, et al. Study of fiber-type sensor of refractive indices and concentration of liquids, Proc. of SPIE.,2001,4595: 209-212.
    [32]许兆文,盛秋琴,施可彬等.光纤光栅振动传感实验研究,南开大学学报(自然科学),2001,vol.34(2):79-81.
    [33]A. T. Alavie, R. Maaskant et al., Bragg grating structural sensing system for bridge monitoring, Proc. SPIE,1994, vol.2294:53-59.
    [34]A. D.Kersey, T. A. Bekroff and W. W. Morye, Multiplexed fiber Brgag grating sreain-sensor system with a fiber Fabry-Perot wavelength filter, Opt. Lett.1993, vol.18(16):1370-1372.
    [35]T. H. T. Chan, L. Yu, H. Y. Tam, et al., Fiber Bragg grating sensors for structuralhealth monitoring of Tsing Ma bridge:Background and experimental observation, Engineering Structures,2006,vol.28:648-659.
    [36]S. H. Yun, D. J. Richardson, B. Y. Kim. Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser, Optics Letters,1998, vol.23(11):843-845.
    [37]T. H. Maiman, Stimulated optical radiation in ruby masers. Nature,1960,187:439-440.
    [38]周炳坤,高以智,陈倜嵘,陈家骅,激光原理,北京:国防工业出版社,2009。
    [39]E. Snitzer, Phys. Rev. Letters,1961, vol.7:444.
    [40]E. SnitZer, Neodymium glass laser. Proceedings of Third International Conference on Solid State Lasers,1963, Paris, France:21.
    [41]E. Plppen and A. Friesem, R.G. Waarts, et al., Stimulated Brillouin scattering excited by two pump waves in single-mode fibers, J. opt. Soc. Am. B,1987, vol.7 (1): 1397-1403.
    [42]P. J. Thomas, N.L. Rowell, H. M. Vandriel, et al., Normal acoustic modes and Brillouin scattering in single-mode optical fibers, Physical Review B,1979, vol.19(10):4986-4998.
    [43]K.C. Kao, and G. A. Kockham, Dielectric fiber surface waveguide for optical frequencies, Proc. IEEE 1966, vol.113:1151-1554.
    [44]S.B. Poole, D.N. Payne, and M. E. Fermann, Fabrication of low-loss optical fibres containing rare-earth ions. IEE Electronics Letters,1985,21 (17):730-732.
    [45]I. P. Alcock, et al., Q-switched operation of a Neodymium-doped monomode fibre laser, IEE Electronics Letters,1986,22(2):84-85.
    [46]R.J. Mears, L.Reekie, S. B. Poole and D. N. Payne, Neodymium-doped silica single-mode fibre lasers, Electron. Letters,1985,21(17):738-740.
    [47]E. Snitzer, et al., Double clad, offset core Nd fiber laser, in Optical Fiber Sensors, 1988, vol.2:PD5.
    [48]J.D.Kafka, T. Baer, and D.W.Hall, Mode-locked erbium-doped fiber laser with soliton pulse shaping. Optics Letters,1989,14(22):1269-1271.
    [49]Velchev and W. U bachs, Higher-order stimulated Brillouin scattering with nondiffracting beams, Opt Letters,2001, vol.26(8):530-532.
    [50]V Leeoeuche, S. Randoux, et al. Dynamics of stimulated Brillouin scattering with feedback, Quanrum Semiclass. Opt,1996, vol.8(6):1109-1145.
    [51]V. Pashinin, V. Sturmb, et al., Stimulated Brillouin scattering of Q-switched laser pulses in large-core optical fibres, Optics & Laser Tec,2001, vol.33(8):617-622.
    [52]J. D. Kafka, T. Baer, and D. W. Hall, Mode-locked erbium-doped fiber laser with soliton pulse shaping. Optics Letters,1989,14(22):1269-1271.
    [53]R. J. Mears, L.Reekie, S. B. Poole, and D.N.Payne, Neodymium-doped silica single-mode fibre lasers, Electron. Lett.1985, Vol.21 (17):738-740.
    [54]M. C. Brierley, P.W.France, and C. A. Miller, Lasing at 2.08 μ m and 1.38 μm in a holmium doped fluoro-zirconate fibre laser, Eleetron. Lett.1988, vol.24(9): 539-540.
    [55]M. C. Farries, P. R. Morkel, and J. E. Townsend, Samarium3+-doped glass laser operating at 651nm, Electron. Lett.1988, vol.24(11):709-711.
    [56]L. Esterowitz, R.Allen, and I.Aggarwal, Electron. Pulsed laser emission at 2.3 μm in a thulium-doped fluorozirconate fibre, Lett.1988, vol.24(17):1104.
    [57]D. C. Hanna, R. M. Percival, I. R. Perry, R. GSmart, P. J. Suni, J. E. Townsend, and A. C. Tropper, Continuous-wave oscillation of a monomode ytterbium-doped fibre laser, Electron. Lett.1988, vol.24(17):1111-1113.
    [58]R.P. Kashyap, et al., All fiber narrowband reflection gratings at 1500nm. IEE Electronics Letters,1990,26(11):730-732.
    [59]G. A. Ball, W. W. Morey, and W. H. Glenn, Standing-wave monomode erbium fiber laser, IEE Electronics Letters,1991, vol.3(7):613-615.
    [60]G. A. Ball and W. W. Morey, Continuously tunable single-mode erbium fiber laser, Optics Letters,1992, vol.17(6):420-422.
    [61]]J. T. Kringlebotn, P. R. Morkel, L. Reekie, et al, Effieient diode-pumped single-frequency Erbium:Yterblum fiber laser, IEEE Photonies Teehnology Leters, 1993,5:1162.
    [62]W. H. Loh, R.I. Laming,1.55μm phase-shifted distributed feedback fiber laser, Eleetronics Letters,1995,31:1440.
    [63]楼棋洪,et al.,百瓦级掺镱双包层光纤激光器,中国激光,2003,30(12):1064-1064.
    [64]宁鼎,et al.,掺Yb3+双包层石英光纤的研制及其激光特性,中国激光,2000,7(11):987-991.
    [65]楼棋洪,et al.,国产双包层掺镱光纤实现440W的连续高功率激光输出,中国激光,2005,vol.32(11):20.
    [66]S.Pan, C.Lou, and Y.Gao, Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly noulinear fiber and a Fabry-Perot filter, Optics Express,2006, vol.14(3):1113-1118.
    [67]Z.Li, et al. Theoretical and experimental study of pulse-amplitude-equalizationin a rational harmonic mode-locked fiber ring laser, IEEE Journal of Quanium Electronics,2001, vol.37(1):33-37.
    [68]Z.Li, et al., A dual-wavelength and dual-repetition-rate actively mode-locked fiber ring laser, Optics communications,2000, vol.185(5):381-385.
    [69]G. A. Ball, W. W. Morey, and W. H. Glenn, Standing-wave monomode erbium fiber laser, IEE Electronics Letters,1991, vol.3 (7):613-615.
    [70]G. A. Ball and W. W. Morey, Continuously tunable single-mode erbium fiber laser, Optics Letters,1992, vol.17(6):420-422.
    [71]D. J. Hill, B. Hodder, J. D. Freitas, et al... DFB fibre-laser development [J].17th international conference on optical fibre sensors, Proceeding of SPIE, vol.5855, 2005, Bellingham:904-907.
    [72]G. A. Cranch, G. Flockhart, and C. K. Kirkendall, Distributed feedback fiber laser strain sensors, IEEE Sensors Journal,2008, vol.8(7):1161-1172.
    [73]N. Beverini, E. Maccioni, M. Morganti, F. Stefani, R. Falciai, and C. Trono, Fiber laser strain sensor device, Journal of Optics A:Pure and Applied Optics,2007, vol.9(10):958-962.
    [74]L. Dong, W. H. Loh, J. E. Caplen, J. D. Minelly, K. Hsu, and L. Reekie, Efficient single-frequency fiber lasers with novel photosensitive Er/Yb optical fibers, Opt. Lett.,1997, vol.22 (10):694-696.
    [75]D. J. Hill, B. Hodder, J. De Freitas, S. D. Thomas and L. Hickey, DFB fibre-laser sensor developments,17th International Conference on Optical Fibre Sensors,2005, Proc. SPIE, vol.5855:904-907.
    [76]J. He, F. Li, T. Xu, Y. Wang, and Y. Liu, High Performance Distributed Feedback Fiber Laser Sensor Array System, in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America), Article Number: ThH3,2009.
    [77]A. T. Alavie et al., A multiplexed Bragg grating fiber laser system, IEEE Photon. Technol. Lett.,1993, vol.5 (9):1112-1114.
    [78]K. P. Koo and A. D. Kersey, Bragg Grating-Based Laser Sensors Systems with Interferometric Interrogation and Wavelength Division Multiplexing, Journal of Lightwave Technology,1995,13(7):1243-1249.
    [79]K. P. Koo and A. D. Kersey, Noise and cross talk of a 4-element serial fiber laser sensor array, OFC 96 Technical Digest.
    [80]Scott Foster, Alexei Tikhomirov, Mark Mi lines, et al., A Fibre Laser Hydrophone, 17th international conference on optical fibre sensors, Proceeding of SPIE, vol.5855,2005, Bellingham,627-630.
    [81]S. B. Foster, A. Tikhomirov, M. Englund, H. Inglis, G. Edvell, and M. Milnes, A 16 Channel Fibre Laser Sensor Array,18th Int. Conf Optical Fiber Sensors, Cancun, Mexico, FA4 2006:40-42.
    [82]Ba-iOu Guan, HwaYaw Tam, SienTing Lau, and Helen L. W. Chan, Ultrasonic Hydrophone Based on Distributed Bragg Reflector Fiber Laser, IEEE Photonics Technology Letters, 2005, vol.16(1):169-171.
    [83]H. K. Kim, S. K. Kim, H. G. Park, and B. Y. Kim, Polarimetric fiber laser sensors, Opt. Lett.,1993, vol.18(4):317-319.
    [84]H. K. Kim, S. K. Kim, and B. Y. Kim, Polarization control of polarimetric fiber-laser sensors, Opt. Lett.,1993, vol.18(17):1465-1467.
    [85]Y. Zhang, B.O. Guan, and H. Y. Tam, Ultra-short distributed Bragg reflector fiber laser for sensing applications, Opt. Express,2009, vol.17(12):10050-10055.
    [86]G. A. Ball, G. Meltz, and W. W. Morey, Polarimetric heterodyning Bragg-grating fiber-laser sensor, Optics Letters,1993, Vol.18(22):1976-1978.
    [87]J. T. Kringlebotn, J. L. Arehambault, L.Reekie, and D. N. Payne, Er3-:Yb3--codoped fiber distributed-feedback laser, Optics Letters,1994, vol.19(24):2101-2103.
    [88]JC Yong, SH Yun, ML Lee, B.O.Kim, Frequency-division-multiplexed polarimetric fiber laser current-sensor array, Optics Letters,1999, vol.24(16):1097-1099.
    [89]A. Frank, K. Bohnert, K. Haroud, H. Brandle, C. V. Poulsen, J. E. Pedersen, and J. Patscheider, Distributed feedback fiber laser sensor for hydrostatic pressure, IEEE Photon. Technol. Lett.,2003,15(12):1758-1760.
    [90]Ba-iOu Guan, HwaYaw Tam, SienTing Lau, and Helen L. W. Chan, Ultrasonic Hydrophone Based on Distributed Bragg Reflector Fiber Laser, IEEE Photonics Technology Letters, 2005, vol.16(1):169-171.
    [91]L. Y. Shao, S. T. Lau, X. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser, IEEE Photon. Technol. Lett.,2008, vol.20(8):548-550.
    [92]Y. Zhang and B.0. Guan, High-sensitivity distributed Bragg reflector fiber laser displacement sensor, IEEE Photon. Technol. Lett.,2009, vol.21(5):280-282.
    [93]B.0. Guan, X. S. Sun, Y. N. Tan, Dual Polarization fiber grating laser accelerometer, Fourth European Workshop on Optical Fibre Sensors, Proc. SPIE, vol.7653, Article Number:76530Z,2010.
    [94]B.0. Guan and S. N. Wang, "Fiber grating laser current sensor based on magnetic force," IEEE Photon. Technol. Lett.,2010, vol.22(4):230-232.
    [95]W. Liu, T. Guo, A. C. L. Wong, H. Y. Tam, and S. He, Highly sensitive bending sensor based on Er3+-doped DBR fiber laser, Opt. Express,2010, vol.18(17):17834-17840,.
    [96]A. Yariv and P. Yeh, Photonics:Optical electronics in modern communications.6th Edition, Oxford University Press, USA,2006.
    [97]R. Kashyap, Fiber Bragg gratings. San Diego, CA:Academic,1999.
    [98]J. Canning, Fibre lasers and related technologies, Optics and Lasers in Engineering, 2006, vol.44(7):647-676.
    [99]G. A. Ball and W. H. Glenn, "Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors," J. Lightwave Technol.,1992, vol.10(10): 1338-1343.
    [100]Y.0. Barmenkov, D. Zalvidea, S. T. Peiro, J. L. Cruz, and M. V. Andres, "Effective length of short Fabry-Port cavity formed by uniform fiber Bragg gratings, " Opt. Lett.,2006, vol.14(14):6394-6399.
    [101]X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, "Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating, " IEEE Photon. Technol. Lett.,2004, vol.16(3):762-764.
    [102]N. Li, F. Luo, S. Unlu, T. F. Morse, J. Hernandez-Cordero, J. Battiato, and D. Wang, "Intra-cavity fiber laser technique for high accuracy birefringence measurement," Opt. Express,2006, vol.14(17):7594-7603.
    [103]H. Zhang, J. Luo, B. Liu, S. Wang, C. Jia, and X. Ma, "Polarimetric multilongitudinal-mode distributed Bragg reflector fiber laser sensor for strain measurement," Microwave and Optical Technology Letters,2009, vol.51(11): 2559-2563.
    [104]S. Liu, Z. Yin, L. Zhang, L. Gao, X. Chen, and J. Cheng, "Multilongitudinal mode fiber laser for strain measurement," Opt. Lett.,2010, vol.35(6):835-837.
    [105]J. Hernandez-Cordero, V. A. Kozlov, and T. F. Morse, "Highly accurate method for single-mode fiber laser wavelength measurement, " IEEE Photon. Technol. Lett. 2002, vol.14(1):83-85.
    [106]A. Rosales-Garcia, T. F. Morse, J. Hernandez-Cordero, and M. S. Unlu, "Single polarization-mode-beating frequency fiber laser, " IEEE Photon. Technol. Lett. 2009, vol.21(8):537-539.
    [107]D. N Nikogosyan, "Multi-photon high-excitation-energy approach to fibre grating inscription," Meas. Sci. Technol.,2007,18:R1-R29.
    [108]J. A. Bucaro, H. D. Dardy, and E. F. Carome, "Fiber optic hydrophone, " J. Acoust. Soc. Amer.,1977, vol.62(5):1302-1304.
    [109]P. Nash, "Review of interferometric optical fibre hydrophone technology, " IEE Proc., Radar Sonar Navig.,1996, vol.143(3):204-209.
    [110]C. K. Kirkendall, and A. Dandridge, "Overview of high performance fibre-optic sensing," J. Phys. D Appl. Phys.,2004, vol.37(18), R197-R216.
    [111]张仁和,倪明,光纤水听器的原理与应用,前沿进展,2004,vol.33(7):503-50.
    [112]N. Lagakos, W. J. Trott, T. R. Hichkman, J. H. Cole, and J. A. Bucaro, "Microbend fiber-optic sensor as extended hydrophone, " IEEE J. Quantum Electron,1982, vol. 18(10):1633-1638.
    [113]W. B. Spillman, Jr., and R. L. Gravel, "Moving fiber-optic hydrophone, " Opt. Lett,1980, vol.5(1),30-31.
    [114]R. Chen, G. F. Fernando, T. Butler, and R. A. Badcock, "A novel ultrasound fiber optic sensor based on a fused-tapered optical fiber coupler, " Meas. Sci. Technol., 2004, vol.15(8),1490-1495.
    [115]N. Takahashi, S., Takahashi, and K. Tetsumura, "Fiber-Bragg-grating underwater acoustic sensor, " in Proc.13th Int. Conf. Optical Fiber Sensors, Kyongju, Korea, 1999,565-568.
    [116]N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, "Characteristics of fiber Bragg grating hydrophone, " IEICE Trans. Electron,2000, E 83-C,275-281.
    [117]M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, "Optical in-fibre grating high pressure sensor, " Electron. Lett.1993, vol.29(4),398-399.
    [118]J. H. Cole, C. Sunderman, A. B. Tveten, C. Kirkendall, and A. Dandridge, "Preliminary investigation of air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors, " In Proc.15th Int. Conf. Optical Fiber Sensors, Portland, Oregon,2002,317-320.
    [119]L. Flax, J. H. Cole, R. P. De Paula, and J. A. Bucaro, "Acoustically induced birefringence in optical fibers, " J. Opt. Soc.,1982, Am.72,1159-1162.
    [120]Zhang, B.O. Guan, and H. Y. Tam, "Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement, " Opt. Comm.,2008, 281,4619-4622.
    [121]S. W. James, M. L. Dockney, and R. P. Tatam, "Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors, " Electronics Letters, 1996, vol.32(12),1133-1134.
    [122]P. M. Cavaleiro, F. M. Araiijo, L. A. Ferreira, J. L. Santos, and F. Farahi, "Simultaneous measurement of strain and temperature using Bragg gratings written in germanosilicate and boron-codoped germanosilicate fibers, " IEEE Photonics Technology Letters,1999, vol.11(12),1635-1637.
    [123]H. B. Liu, H. Y. Liu, G. D. Peng, P. L. Chu, "Strain and temperature sensor using a combination of polymer and silica fibre Bragg gratings, " Optics Communications, 2003, vol.219(1-6),139-142.
    [124]M. G. Xu, J. L. Archambault, L. Reekie, J. P. Dakin, "Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors, " Electronics Letters,1994, vol.30(13),1085-1087.
    [125]M. Sudo, M. Nakai, K. Himeno, S. Suzaki, A. Wada, R. Yamauchi, "Simultaneous measurement of temperature and strain using PANDA fiber grating, " in Proc.12th International Conference Optical Fibre Sensors, Williamsburg, Virginia, USA, October 28-31,1997,170-173.
    [126]B.O. Guan, H. Y. Tam, X. M. Tao and X. Y. Dong, "Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating, " IEEE Photonics Technology Letters,2000, vol.12(6),675-677.
    [127]H. F. Lima, P. F. Antunes, J. D. L. Pinto, R. N. Nogueira, "Simultaneous Measurement of Strain and Temperature With a Single Fiber Bragg Grating Written in a Tapered Optical Fiber, " IEEE Sensors Journal,2010, vol.10(2),269-273.
    [128]B.0. Guan, H. Y. Tam, S. L. Ho, W. H. Chung, X. Y. Dong, "Simultaneous strain and temperature measurement using a single fibre Bragg grating, " Electronics Letters,2000, vol.36(12),1018-1019.
    [129]H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, "Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination, " IEEE Photonics Technology Letters,1996, vol. 8(9),1223-1224.
    [130]T. Lui, G. F. Fernando, L. Zhang, I. Bennion, Y. J. Rao, and D. A. Jackson, "Simultaneous strain and temperature measurement using a combined fibre Bragg grating/extrinsic Fabry-Perot sensor, " in Proc.12th International Conference Optical Fibre Sensors, pp.40-43, Williamsburg, Virginia, USA, October 28-31,1997.
    [131]D. P. Zhou, L. Wei, W. K. Liu, Y. Liu, and J. W. Y. Lit, "Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers, " Applied Optics,2008, vol.47(10),1668-1672.
    [132]B. Dong, J. Z. Hao, C. Y. Liaw, B. Lin, S. C. Tjin, "Simultaneous strain and temperature measurement using a compact photonic crystal fiber inter-modal interferometer and a fiber Bragg grating," Applied Optics,2010, vol.49(32), 6232-6235.
    [133]L. Y. Shao, X. Y. Dong, A. P. Zhang, H. Y. Tam, and S. L. He, "High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser, " IEEE Photonics Technology Letters,2007, vol.19(20),1598-1600.
    [134]K. T. V. Grattan and T. Sun, "Fiber optic sensor technology:an overview, " Sensors and Actuators A:Physical,2000,82,40-61.
    [135]J. D. C. Jones, "Review of fibre sensor techniques for temperature-strain discrimination, " in Proc.12th International Conference Optical Fibre Sensors, Williamsburg, Virginia, USA,1997,36-39.
    [136]P. Lu, L. Men, and Q. Chen, "Resolving cross sensitivity of fiber Bragg gratings with different polymeric coatings, " Appl. Phys. Lett.2008,92,171112.
    [137]H. Chi, X. M. Tao, D. X. Yang, and K. S. Chen, "Simultaneous measurement of axial strain, temperature, and transverse load by a superstructure fiber grating, " Opt. Lett.2001,26,1949-1951.
    [138]T. Chen, R. Chen, C. Jewart, B. Zhang, K. Cook, J. Canning, and K. P. Chen, "Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing, " Opt. Lett.2011,36,3542-3544.
    [139]L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, "An embedded FBG sensor for simultaneous measurement of stress and temperature, " IEEE Photon. Technol. Lett.2006,18,154-156.
    [140]C. R. Liao, D. N. Wang, and M. W. Yang, "Fiber in-line Mach-Zehnder interferometer embedded in FBG for simultaneous refractive index and temperature measurement, " IEEE Photon. Technol. Lett.2010,22,1686-1688.
    [14l]C. Gouveia, P. A. S. Jorge, J. M. Baptista, Member, and 0. Frazao, "Fabry-Perot cavity based on a high-birefringent fiber Bragg grating for refractive index and temperature measurement, " IEEE Sens. J.2012,12,17-21.
    [142]A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors, " J. Lightwave Technol. 1997,15,1442-1463.
    [143]G. W. Yoffe, Peter A. Krug, F. Ouellette, and D. A. Thorncraft, "Passive temperature-compensating package for optical fiber gratings, " Appl. Opt.1995,34, 6859-6861.
    [144]S. A. Wade, S. F. Collins, K. T. V. Grattan, and G. W. Baxter, "Strain-independent temperature measurement by use of a fluorescence intensity ratio technique in optical fiber, " Appl. Opt.2000,39,3050-3052.
    [145]Polarimetric heterodyning fiber grating laser sensors, J. Lightwave Technol. in press.
    [146]B.0. Guan, Y. N. Tan, and H. Y. Tam, "Dual polarization fiber grating laser hydrophone, " Opt. Express,2009,17,19544-19550.
    [147]S. C. Rashleigh, "Origins and control of polarization effects in single-mode fibers," J. Lightwave Technol.,1983, LT-1,312-331.
    [148]S. Y. Huang, J. N. Blake, and B. Y. Kim, "Perturbation effects on mode propagation in highly elliptical core two-mode fibers, " J. Lightwave Technol.1990,8,23-33.
    [149]S. B. Foster, A. Tikhomirov, M. Englund, H. Inglis, G. Edvell, and M. Milnes, A 16 Channel Fibre Laser Sensor Array,18th Int. Conf Optical Fiber Sensors, Cancun, Mexico,2006:FA4
    [150]J. P. Yao, "Microwave photonics, " J. Lightwave Technol.,2009,27(3),314-335.
    [151]Y.0. Barmenkov, D. Zalvidea, S. T. Peiro, J. L. Cruz, and M. V. Andres, "Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings, " Opt. Express,2006, vol.14(14),6394-6399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700