用户名: 密码: 验证码:
车辆复合行星传动系统动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对车辆性能要求的提高,复合行星传动系统已经在车辆中得到应用。与简单行星齿轮传动系统相比,它可以实现更多的档位,承受更大的载荷与传动比。但复合行星传动系统的结构更加复杂,影响其动力学特性的因素很多,具有更为严重的振动与噪声问题。国内外对于复合行星传动系统的研究尚处于起步阶段,目前缺乏完整的设计准则。大多数工程师在设计复合行星传动系统时仍沿用传统的静态设计方法,而对于系统的动力学特性和参数对其的影响往往通过经验和估计来获得。这种设计方法不仅效率低,而且会对实际应用造成影响。随着对齿轮传动系统的性能要求的提高,实现动态设计已经成为当今齿轮传动系统设计的发展趋势,而了解系统的动态特性是实现动态设计的基础。因此,建立复合行星传动系统的动力学模型,深入研究其动力学特性具有重要的意义。
     本文在国家自然科学基金项目“车辆复合行星传动系统动态设计理论研究(项目号:50875189)”与中国北方车辆研究所国防项目“XXX特种传动系统扭转振动特性研究(项目号:9140C340101101)”的资助下,在建立了复合行星传动系统动力学模型的基础上,立足于非线性动力学和混沌理论,结合实验测试和信号分析,对车辆复合行星传动系统动力学特性进行了较为系统和深入的研究,主要研究内容与结论如下:
     1.论文以Ravigneaux式复合行星传动系统为研究对象,在相关合理假设的前提下,应用集中质量法建立了系统的“纯扭转”和“平移-扭转”耦合动力学模型。考虑了齿侧间隙、时变啮合刚度与综合啮合误差等非线性因素,并对其进行了相应的数学描述。在推导了构件相对位移的基础上,运用Lagrange方程分别建立了与两种动力学模型对应的运动微分方程。此两组运动微分方程均适用于反复迭代求解的场合,并对任意的行星轮组数、间距和相对位置均适用。
     2.基于系统的“纯扭转”动力学模型,运用谐波平衡法(Harmonic Balance Method,HBM)研究了复合行星传动系统的非线性频响特性。首先,为消除系统的刚体位移,同时便于求解,对模型进行了坐标变换和无量纲化处理。进而通过实际算例详细研究了利用谐波平衡法求解系统动态响应的具体过程。该方法将系统的稳态响应展开为平均分量与基频分量叠加的形式,间隙非线性函数利用描述函数(Describing Function)展开为相同的形式,从而将系统运动微分方程转化为非线性代数方程组。为进一步求解此方程组,采用逆Broyden秩1拟Newton法进行迭代求解,获得了系统的基频稳态响应。研究发现,齿侧间隙的存在使得系统的频响曲线出现了跳跃与多值解等典型非线性特征。这种特征受到齿侧间隙、时变啮合刚度和综合啮合误差等参数的影响,文中通过改变以上参数进行了详细计算和说明。
     3.基于系统的“平移-扭转”耦合动力学模型,运用数值法研究了系统分别在不同激励频率、啮合阻尼比和齿侧间隙作用下的各种非线性动态响应,运用定性分析方法对系统的不同运动形式进行了研究。首先利用线性变换将Ravigneaux式复合行星传动系统“平移-扭转”耦合运动微分方程写成了矩阵形式,解决了原始方程中复杂的多元非线性函数与线性变量共存而难以求解的困难。在分析了变步长Gill积分法求解原理的基础上,利用该方法,通过改变系统的激励频率、齿侧间隙和阻尼比,获得了系统动态响应的全局分岔图,得到了系统在上述参数影响下所呈现的不同运动状态。综合运用时间历程曲线、相空间轨线、Poincáre截面和功率谱分析了系统的周期运动、拟周期运动和混沌运动。结果表明,由于齿侧间隙、时变啮合刚度和综合啮合误差等非线性因素的存在使复合行星传动系统表现出明显的非线性动力学特性。
     4.推导了动态响应灵敏度分析的直接法并给出了计算流程图。以Ravigneaux式复合行星传动系统的“平移-扭转”动力学模型为基础,利用直接法结合Runge-Kutta数值积分法计算了系统的动态响应对构件质量、中心件支承刚度、啮合刚度与啮合阻尼的灵敏度。研究结果表明,复合行星传动系统的动态响应对上述参数的灵敏度均不为零。不仅同一参数对不同啮合副的响应贡献程度有所不同,而且不同参数对同一啮合副的的影响程度也有所不同。在四类参数中,中心件的支承刚度对动态响应的影响相对较小,而啮合阻尼对动态响应的影响相对较大。
     5.建造了复合行星传动系统的实验平台,对系统的动态特性进行了实验测试,验证了理论分析的正确性与合理性。通过实验模态分析获得了系统的频响函数。系统的第1阶扭振固有频率得到验证,从而证明了利用集中质量法建立的系统“纯扭转”动力学模型较为合理。随后测试了复合行星传动系统在三种不同输入转速下的动态响应。通过频谱分析可知,在远离系统共振频率的低频区域中,在响应信号中包含基频及其倍频成分,并以基频为主,系统没有出现超谐波或次谐波等非线性振动。通过实验证明了本文理论研究所进行的相关方法与结论是比较合理的。
     通过本文的研究揭示了复合行星传动系统的非线性动态特性,掌握了设计参数对系统动态特性的影响,为实现复合行星传动系统的动态设计提供了理论依据。
With the promotion of the vehicles performance requirements, compound planetarygear train sets (CPGT) have been used in vehicle. Compared to simple planet gear train sets,more range shift, larger loads and transmission ratios can be achieved by CPGT. However,there are many factors affecting its dynamic characteristics because of its complexstructures. Thus, more serious problems of vibration and noise are avaliable. The researchesat home and abroad on CPGT are in initial states with the lack of complete design criteria.Most engineers only continue to use conventional static method when they design theCPGT. The dynamic characteristics and the impact of parameters are usually obtained byexperience and estimation. It will exert harmful effect in practice as well as its inefficiency.With higher performance requirements of gear transmission system, dynamic design hasbecome a development trend of transmission system design, which knowledge of thedynamic characteristics of the system is the foundation of dynamic design. Therefore, Ithave great significance on building the dynamic model and researching the dynamiccharacteristics of CPGT.
     This dissertation is supported by the National Natural Science Foundation of China(Project name:Research on Dynamic Design Theory of Vehicle Compound Planetary GearTransmission System.Grant No.:50875189) and national defense project of China NorthVehicle Research Institute (Project name:Research on torsional vibration characteristics ofXXX special type of transmission system. Grant No.:9140C340101101). Based onbuilding the dynamic model of CPGT, by means of nonlinear dynamic and chaos theory, aswell as experimental observations and signal analysis, the dynamic characteristics ofvehicle CPGT are studied in this dissertation systematically and penetratingly. The maincontents and conclusions are as follows:
     1. A Ravigneaux CPGT in practical vehicle automatic gearbox is used for the researchsubject in this dissertation. In case of some reasonable assumptions, the system purelytosional and translational-torsional coupled dynamic models are established by lumpedmass method. Considering the gear backlashes, time-varying meshing stiffness andsynthetical meshing errors, the mathematical description is applied. Based on deducing therelative displacements between the components, the corresponding kinematic differentialequations of the two kinds of models are established by means of Lagrange equation. The differential equations are adequate for iterative solving instance, any group number, spacelength and relative position of the planet gears.
     2. Based on the pure torsional model of CPGT, Harmonic Balance Method (HBM) isapplied for studying the nonlinear frequency response characteristics. In the first place,coordinate transformation and nondimensional treatment are operated on the model toeliminate rigid body displacement and solve conveniently. The pocess of solving CPGT’sdynamic response by Harmonic Balance Method (HBM) is studied in detail. The steadystate response of the system is expanded as a form of average component together withfundamental frequency component. The backlash nonlinear function is expanded as thesame form by using Describing Function, which convert the differential equations intononlinear algebraic equations. To solve the algebraic equations, single rank inverseBroyden quasi Newton method is applied iteratively for obtaining the fundamentalfrequency steady state response of the CPGT. It shows from the study that the typicalnonlinear feature of jumping and multivalue in the frequency response curves has arisen forthe existence of gear backlashes. This feature is affected by gear backlashes, time-varyingmeshing stiffness and synthetical mesh errors, which the detail calculation and explanationare processed by changing the above parameters in this dissertation.
     3. Based on the translational-torsonal coupled model of CPGT, numerical method isused for studying the nonlinear dynamic responses of the system under different excitationfrequency, meshing damping ratio and backlashes, which the qualitative methods areapplied to discuss the different movment forms. The translational-torsonal coupleddifferential equation of Ravigneaux CPGT, which the complex nonlinear multi-variablefunction and linear variable are coextensive, is written as matrix form through lineartransform to overcome the difficulty of solving inconvenience. Based on analyzing theprinciple of steplength-varying Gill integral method, the global bifurcation diagrams of theCPGT’s dynamic response are obtained by changing the excitation frequency, gearbacklashes and damping ratio, which the different motion states impacted by aboveparameters are achieved. The CPGT’s periodic, quasi-periodic and chaotic motions areanalyzed through using time history curve, phase-plane diagram, Poincáre section andpower spectrum synthetically. The analysis shows that rich and varied dynamic behavioursare included in CPGT because of the existence of nonlinear factors as gear backlashes,time-varying meshing stiffness and synthetical mesh errors.
     4. Direct method of dynamic response sensitivity analysis is derived and the calculation flow graph is given. Based on the Ravigneaux CPGT’s translational-torsionaldynamic model, the dynamic response sensitivities on mass, supporting stiffness of centercomponents, meshing stiffness and meshing damping are calculated by direct methodtogether with Runge-Kutta numerical methods of integration. It shows that the dynamicresponse sensitivities on the parameters above are non-zero totally. The same parameter hasdifferent contribution on different engagement pairs and different parameters have differentcontribution on the same engagement pairs. Among the four kinds of parameters, thesupporting stiffness of center component has minimal influence on the CPGT’s dynamicresponse and the meshing damping has the maximum.
     5. Experimental platform of CPGT is built to test the dynamic characteristic and therationality of the theoretical analysis is affirmed. Frequency response function is achievedby means of hammer blow. The primary natural frequency of torsional vibration is proved,which certify the rationality of purely torsional model built by mass lumped method. Thenthe CPGT’s dynamic responses under three different input rotationl speeds are measured. Itshows from spectrum analysis that the response signals include fundamental frequency andits octave parts in the section of low frequency away from CPGT’s resonance frequency.The fundamental frequency is predominant in the signals and nonlinear vibrations likesubharmonic or ultraharmonic vibration are not appeared. The rationality of the method andconlusion made by the theoretical study in the dissertation is proved by physical test.
     The dynamic characteristics of compound planetary gear train sets are came out andthe influences of design parameters on dynamic characteristics are possessed, whichprovide theoretical foundation on dynamic design of compound planetary gear train sets.
引文
[1] Gott, P. G. Changing Gears: The Development of the Automatic Transmission [J], Society ofAutomotive Engineers,1991.
    [2] J. R. Deniels, New Generation Drivetrains. The Economist Intelligence Unit,1995.
    [3]李巍.自动变速器行星齿轮系统传动原理[J].汽车维修,2004(6),53-55.
    [4]李巍.自动变速器行星齿轮系统传动原理[J].汽车维修,2004(10),58-60.
    [5]曹利民.自动变速器动力传递路线分析(八)——大众公司01M、01N型自动变速器[J].汽车维修与保养,2006(3):35-37.
    [6] Kahraman A. Free torsional vbration characteristics of compound planetary gear sets[J]. Mechanism and Machine Theory,2001,36(8):953-971.
    [7]李润方,王建军.齿轮系统动力学-振动、冲击、噪声[M].北京:科学出版社,1997.
    [8] Kahraman A. Natural Modes of Planetary Gear Trains [J]. Journal of Sound and Vibration.1994,73(1):125-130.
    [9] Hidaka T, Terauchi Y, Fujii M. Analysis of Dynamic Tooth Load on Planetary Gear [J]. Bull.JSME,1980,23(176):315-323.
    [10]孙智民,季林红,沈允文.2K-H行星齿轮传动非线性动力学[J].清华大学学报(自然科学版),2003,43(5):636-639.
    [11]陈亮,秦大同,肖正明.土压平衡盾构减速器三级行星齿轮传动系统动力学特性研究[J].机械设计,2011,28(12):38-43.
    [12]宋轶民,许伟东.2K-H行星传动的修正扭转模型建立与固有特性分析[J].机械工程学报,2006,42(5):16-21.
    [13] Tao Sun, HaiYan Hu. Nonlinear dynamics of a planetary gear systemwith multiple clearances[J],Mechanism and Machine Theory.2003,38:1371-1390.
    [14] Lin J, Parker R G. Analytical Characterization of the Unique Properties of Planetary Gear FreeVibration [J]. Journal of Vibration and Acoustics. Transaction of the ASME,1999,16:316-322.
    [15] Kahraman A. Load sharing characteristics of planetary transmissions[J]. ASME, Mechanism andMachine Theory,1994,29(8):1151-1165.
    [16] Dama Rajiv, Streit Donald A, Chang L. Modeling and Analysis of a High-Speed Transmissionwith Multi-Path Elastomeric Load-Share Gears [J]. Mech. Mach. Theory,1997,32(3):295-312.
    [17] Chiang T, Badgley R H. Reduction of Vibration and Noise Generated by Planetary Ring Gears inHelicopter Aircraft Transmissions [J]. Soviet Atomic Energy (English translation of AtomnayaEnergiya),1972,72:1149-1158.
    [18] Cunliffe F, Smith J D, Welboum D B. Dynamic Tooth Loads in Epicyclic Gears [J]. Journal ofEngineering for Industry,1974,94:578-584.
    [19] Botman, M. Epicycilc Gear Vibration [J]. Journal of Engineering for Industry,1976,96:811-815.
    [20] Prater J L, August R, Oswald F B, Vibration in Planetary Gear Systems With Unequal PlanetStiffnesses[R]. NASA Technical Memorandum,1983.83428.
    [21] Lin J, Parker R G. Analytical characterization of the unique properties of planetary gear freevibration [J]. Journal of Vibration and Acoustics.1999,16:316-322.
    [22] Lin J, Parker R. Sensitivity of planetary gear natural frequencies and vibration modes to modelparameters[J]. Journal of Sound and Vibration,1999,228(1):109-128.
    [23] Lin J, Parker R. Structured vibration characteristics of planetary gears with unequally spacedplanets [J]. Journal of Sound and Vibration,2000,233(5):921-928.
    [24]杨建明,张策.行星齿轮传动的固有频率对设计参数的灵敏度分析[J].机械设计,2001,4(4):40-43.
    [25]王世宇,宋轶民,沈兆光.行星传动系统的固有特性及模态跃迁研究[J].振动工程学报,2005,18(4):412-417.
    [26]段福海.相位对行星齿轮传动系统固有特性的影响[J].中国机械工程,2009,20(17):2035-2040.
    [27]卜忠红,刘更,吴立言.行星齿轮传动动力学研究进展[J].振动与冲击,2010,29(9):161-166.
    [28] Parker R G, Agashe V, Vijayakar S M. Dynamic response of a planetary gear system using a finiteelement/contact mechanics model [J]. Journal of Sound and Vibration,2000,122(3):305-311.
    [29]孙智民,沈允文,李素有.封闭行星齿轮传动系统的扭振特性研究[J].航空动力学报,2001,16(2):163-166.
    [30]孙智民,沈允文,李素有.封闭行星齿轮传动系统的动态特性研究[J].机械工程学报,2002,38(2):44-48,52.
    [31]孙涛,沈允文,孙智民,等.行星齿轮传动非线性动力学方程求解与动态特性分析[J].机械工程学报,2002,38(3):11-15.
    [32]孙涛,沈允文,孙智民,等.行星齿轮传动非线性动力学模型与方程[J].机械工程学报,2002,38(3):6-10.
    [33]孙智民,季林红,沈允文.2K-H行星齿轮传动非线性动力学[J].清华大学学报(自然科学版),2003,43(5):636-639.
    [34] Chaari F, Fakhfakh T. Mohamed influence of manufacturing errors on the dynamic behavior ofplanetary gears [J]. International Journal of Advanced Manufacturing Technology,2006,27:738-746.
    [35] Al-Shyyab A, Kahraman A. A non linear dynamic model for planetary gear sets[J]. Proceedings ofthe Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics,2007,221:567-576.
    [36]朱恩涌,巫世晶,王晓笋,等.含摩擦力的行星齿轮传动非线性动力学模型[J].振动与冲击,2010,29(8):217-220,236.
    [37]李同杰,朱如鹏,鲍何云,等.行星齿轮系扭转非线性振动建模与运动分岔特性研究[J].机械工程学报,2011,47(21):76-83.
    [38]秦大同,肖正明,王建宏.基于啮合相位分析的盾构机减速器多级行星齿轮传动动力学特性[J].机械工程学报,2011,47(23):20-29.
    [39]秦大同,周志刚,杨军,等.随机风载作用下风力发电机齿轮传动系统动态可靠性分析[J].机械工程学报,2012,48(3):1-8.
    [40]刘文吉,宋朝省,洪英. NN型少齿差行星齿轮传动啮合冲击分析及修形设计[J].中国机械工程,2012,23(4):425-429.
    [41] Hidaka T, Terauchi Y, Naganum K. Dynamic Behavior of Planetary Gear-1stReport: LoadDistribution [J]. Bull. JSME.1976,19(132):690-698.
    [42] Hidaka T, Terauchi Y, Dohi K. On the Relation between the Run Out Errors and the Motion of theCenter of Sun Gear in a Stoeckicht Planetary Gear [J]. Bull. JSME.1979,22:748-754.
    [43] Hidaka T, Terauchi Y, Nagamura K. Dynamic Behavior of Planetary Gear-7th Report, Influence ofthe Thickness of Ring Gear [J]. Bull. JSME.1979,22:1142-1149.
    [44] Ma P, Botman M. Load Sharing in a Planetary Gear Stage in the Presence of Gear Errors andMisalignment [J]. Journal of Mechanisms. Transmissions and Automation in Design.1984,104:1-7.
    [45] Velex P, Flamand L. Dynamic Response of Planetary Trains to Mesh Parametric Excitations [J].Journal of Mechanical Design, Transaction of the ASME,1996,118(3):7-14.
    [46] Kahraman A. Static Load Sharing Characterisitcs of Transmission Planetary Gear Sets: Model andExperiment [J]. Transmission and Driveline System Symposium SAE,1999:1999-01-1050.
    [47] Kahraman A, Vijayakar S. Effect of Internal Gear Flexibility on the Quasi-Static Behavior of aPlanetary Gear Set [J]. ASME J. Mech. Des.,2001,123:408-415.
    [48] Bodas, A., A. Kahraman. Influence of Carrier and Gear Manufacturing Errors on the Static LoadSharing Behavior of Planetary Gear Sets [J]. JSME Int. J.. Ser. C.2004,47:908-915.
    [49] Singh, A. Application of a System Level Model to Study the Planetary Load Sharing Behavior [J].ASME J. Mech. Des.2005,127:469-476.
    [50] Hidaka, T. Analysis of Dynamic Tooth Load on Planetary Gear[R]. Bulletin of the JSME,1950,23(176):315-313.
    [51] Kubo, A., K. Yamada, T. Aida and S. Sato. Research on Ultra High Speed Gear Devices(Reportsl-3)[R]. Transactions of the Japan Society of Mechanical Engineers,1972,38:2692-2715.
    [52] Botman, M. Vibration Measurements on Planetary Gears of Aircraft Turbine Engines [J]. Journalof Aircraft,1980,17(5):351-357.
    [53] Ligata, H., Kahraman, A. Singh. An Experimental Study of the Influence of Manufacturing Errorson the Planetary Gear Stresses and Planet Load Sharing [J]. Journal of Mechanical Design APRIL,2008,130:041701.1-9.
    [54]袁茹,王三民,沈允文.行星齿轮传动的功率分流动态均衡优化设计[J].航空动力学报,2000,15(4):410-412.
    [55]陆俊华,朱如鹏,靳广虎.基于分流均衡要求的行星传动基本构件浮动量分析[J].中南大学学报(自然科学版),2008,39(1):143-148.
    [56]陆俊华,朱如鹏,靳广虎.行星传动动态均载特性分析[J].机械工程学报,2009,45(5),85-90.
    [57] Schlegel R G, Mard K C. Transmission noise control-approaches in helicopter design[C]//ASME.Design Engineering Conference, New York,1967.
    [58] Hidaka T, Terauchi Y. Dynamic behavior of planetary gear[J].(1st-7thReport), Bulletin of theJSME,1976-1979.
    [59] Hayashi T, Li Y, Hayashi I, et al. Measurement and some discussions on dynamic load sharing inplanetary gears[J]. Bulletin of the JSME,1986,29:2290-2297.
    [60] Ambarisha V K, Parker R G. Nonlinear dynamics of planetary gears using analytical and finiteelement models[J]. Journal of Sound and Vibration,2007,302:577-595.
    [61] Velex P, Pichon V, Wittman R. Dynamic behavior of epicyclic trains-experiment andanalyses[C]//Proceedings of the International Gear Conference, New castle:265-270,1994.
    [62] Parker R G, Ericson T M. OSU planetary gear vibration experiments[EB/OL] http:/www.mecheng. osu. edu/vibrations/dynamicsfiles,2009.
    [63] Inalpolat M, Kahraman A. A theoretical and experimental investigation of modulation sidebandsof planetary gear sets[J]. Journal of Sound and Vibration.2009,323:677-696.
    [64]孙涛.行星齿轮系统非线性动力学研究[D].西安:西北工业大学,2001.
    [65]王世宇.基于相位调谐的直齿行星传动动力学理论与实验研究[D].天津:天津大学,2005.
    [66] Narayanaswamy R, Glynn C D. Vibro-acoustic prediction of low-range planetary gear noise of aautomotive transfer case[J]. Journal of the Acoustical Society of America,2005,118(3):1952-1952.
    [67] White R J. Exploration of a strategy for reducing gear noise in planetary transmission andevaluation of laser vibrometry as a means for measuring transmission error[D]. Case WesternReserve University,2006.
    [68] Singh A, Kahraman A, Ligata H. Internal gear strains and load sharing in planetary transmissions:model and experiments[J]. ASME, Journal of Mechanical Design,2008,130(7):072602.
    [69]赵雨肠,李涵武.拉维娜式自动变速器行星齿轮机构运动特性方程式的推导[J].机械工程师,2004(3):49-50.
    [70]李欣,过学迅.拉维娜式行星齿轮机构传动比的图解法计算[J].汽车科技,2005(6):30-33.
    [71] Kiracofe D R, Parker R G.. Structured vibration modes of general compound planetary gearsystems[J]. ASME Journal of Vibration and Acoustics,2007,129(1):1-16.
    [72] GUO Y, Parker R. A. Mesh phase relations of general compound planetary gears[C]//Proceedingsof the ASME International Design Engineering Technical Conferences and Computers andInformation in Engineering Conference. New York, N. Y.: American Society of MechanicalEngineering,2007(7):631-646.
    [73] Dhouib S, Hbaieb R, Chaari F, et al. Free vibration characteristics of compound planetary geartrain sets[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of MechanicalEngineering Science,2008,222(8):1389-1401.
    [74] GUO Y, Parker R G. Purely rotational model and vibration modes of compound planetary gears[J].Mechanism and Machine Theory,2010,45(3):365-377.
    [75]焦安源,鲍力.拉维娜行星齿轮机构精确建模及运动分析[J].机械工程师,2009(2):36-37.
    [76] Al-shyyab A, Kahraman A. Non-linear dynamic behavior of compound planetary gear trains:model formulation and semi-analytical solution[J]. Proceedings of the Institution of MechanicalEngineers Part K-Journal of Multi-body Dynamics,2009,223(3):199-210.
    [77] GUO Y, Parker R G. Sensitivity of general compound planetary gear natural frequencies andvibration modes to model parameters[J]. Journal of Vibration and Acoustics,2010,132(1):011006(1)-011006(13).
    [78]公彦军,赵韩,黄康,等.拉维娜行星齿轮机构的运动分析和传动效率计算[J].组合机床与自动化加工技术,2010(9):9-11.
    [79]巫世晶,刘振皓,王晓笋,等.基于谐波平衡法的复合行星传动系统非线性动态特性[J].机械工程学报,2011,47(1):55-61.
    [80]刘振皓,巫世晶,潜波,等.基于增量谐波平衡法的复合行星传动系统非线性动力学[J].振动与冲击,2012,31(3):117-122.
    [81]巫世晶,刘振皓,潜波,等.复合行星传动系统分岔与混沌特性研究[J].华中科技大学学报(自然科学版),2012,40(2):9-13.
    [82]孙桓,陈作模.机械原理(第六版)[M].北京:高等教育出版社,2001.
    [83] Kahraman A. Singh R. Non-linear dynamics of a geared rotor-bearing system with multipleclearances[J]. Journal of Sound and Vibration,1991,144(3):469-506.
    [84]张策.机械动力学(第二版)[M].北京:高等教育出版社,2008.
    [85]李润方,陶泽光,林腾蛟,等.齿轮啮合内部动态激励数值模拟[J].机械传动,2001,25(2):1-3.
    [86]陈润霖.1.5MW风电增速箱斜齿轮动力学分析及齿廓修形[D].西安:西安理工大学,2010.
    [87]李瑰贤,马亮,陶建国,等.舰船用齿轮传动啮合刚度及动态性能研究[J].船舶工程,2000(5):41-43.
    [88]李瑰贤,马亮,林少芬.宽斜齿轮副啮合刚度计算及扭振特性的研究[J].南京理工大学学报,2002,26(1):35-39.
    [89]张建云,丘大谋.一种求解直齿圆柱齿轮啮合刚度的方法[J].西安建筑科技大学学报,1996,28(2):134-137.
    [90]王立华,李润方,林腾蛟,等.齿轮系统时变刚度和间隙非线性振动特性研究[J].中国机械工程,2003,14(13):1143-1146.
    [91]朱恩涌.复合行星传动系统动力学特性研究[D].武汉:武汉大学,2010.
    [92]鲍和云.两级星型齿轮传动系统分流特性及动力学研究[D].南京:南京航空航天大学,2006.
    [93] Comparin R J, Singh R. Frequency response characteristics of a multi-degree-of-freedom Systemwith clearances[J]. Journal of Sound and Vibration,1990,142(1):101-124.
    [94] Kahraman A, Singh R. Non-linear dynamics of a spur gear pair[J]. Journal of Sound and Vibration,1990,142(1):49-75.
    [95] Kahraman A, Singh R. Non-linear dynamics of a geared rotor-bearing system with multipleclearances[J]. Journal of Sound and Vibration,1991,144(3):469-506.
    [96] Al-shyyab A, Kahraman A. Non-linear dynamic analysis of a multi-mesh gear train usingmulti-term harmonic balance method: period-one motions[J]. Journal of Sound and Vibration,284(2005):151-172.
    [97] Al-shyyab A, Kahraman A. Non-linear dynamic analysis of a multi-mesh gear train usingmulti-term harmonic balance method: sub-harmonic motions[J]. Journal of Sound and Vibration,279(2005):417-451.
    [98]杨绍普,申永军,刘献栋.基于增量谐波平衡法的齿轮系统非线性动力学[J].振动与冲击,2005,24(3):40-42,95.
    [99] Shen Y, Yang S, Liu X. Nonlinear dynamics of a spur pair with time-varying stiffness andbacklash based on incremental harmonic balance method[J]. International Journal of MechanicalSciences,48(2006):1256-1263.
    [100] Theodossiades S, Natsiavas S. Non-linear dynamics of gear-pair systems with periodic stiffnessand backlash[J]. Journal of Sound and Vibration,2000,229(2):287-310.
    [101]李庆扬等.非线性方程组的数值解法[M].北京:科学出版社,1987.
    [102]杜廷松,沈艳军,覃太贵.数值分析及实验[M].北京:科学出版社,2006.
    [103]刘耀宗.碰摩转子混沌运动识别与控制技术研究[D].长沙:国防科技大学,2001.
    [104]孙首群,赵玉香,徐伟,等.激励参数对2K-H行星轮系动态响应的影响[J].中国机械工程,2011,22(1):74-79.
    [105]王晓笋,巫世晶,周旭辉,等.含侧隙非线性齿轮传动系统的分岔与混沌分析[J].振动与冲击,2008,27(1):53-56.
    [106]崔亚辉,刘占生,叶建槐,等.内外激励作用下含侧隙的齿轮传动系统的分岔和混沌[J].机械工程学报,2010,46(11):129-136.
    [107]刘晓宁.齿轮系统的混沌控制及仿真[D].西安:西北工业大学,2007.
    [108]林腾蛟,冉雄涛.正交面齿轮传动非线性振动特性分析[J].振动与冲击,2012,31(2):25-31.
    [109]颜庆津.数值分析[M].北京:北京航空航天大学出版社,1999.
    [110]张辉,郁凯元.液压动态仿真软件积分算法的改进与应用[J].系统仿真学报,2005,17(2):479-482,487
    [111]王东生,曹磊.混沌、分形及其应用[M].合肥:中国科技大学出版社,1995.
    [112]陈士华,陆君安.混沌动力学初步[M].武汉:武汉水利电力大学出版社,1998.
    [113]李后强,汪富泉.分形理论及其在分子科学中的应用[M].北京:科学出版社,1993.
    [114]姜万录,张淑清,王益群.混沌运动特征的数值实验分析[J].机械工程学报,2000,36(10):13-17.
    [115]陈予恕.非线性振动系统的分叉和混沌理论[M].北京:高等教育出版社,1998.
    [116]冯奇,沈荣瀛.工程中的浑沌振动[M].上海:上海交通大学出版社,1998.
    [117]王晓笋.高速重载齿轮传动系统非线性动力学特性研究[D].武汉:武汉大学,2006.
    [118]徐培民,闻邦椿.多吸引子共存现象的数值研究方法及其实现[J].安徽工业大学学报(自然科学版),2005,22(2):99-103.
    [119]张义民,李鹤,闻邦椿.基于灵敏度的振动传递路径的参数贡献度分析[J].机械工程学报,2008,44(10):168-171.
    [120]郭兴昕,赵进全,白辽江,等.非均匀耦合传输线瞬态响应灵敏度的分析方法[J].西安交通大学学报,2009,43(8):72-75.
    [121]张军挪,王瑞林,李永建,等.基于灵敏度分析的机枪结构动力修改研究[J].中北大学学报:自然科学版,2007,28(2):112-116.
    [122]刘辉,蔡仲昌,曹华夏,等.车辆动力传动系统扭转强迫振动响应灵敏度研究[J].兵工学报,2011,32(8):939-944.
    [123]王世宇,宋轶民,张策,等.行星齿轮传动的基本参数对动态特性的影响[J].中国机械工程,2005,16(7):615-622.
    [124]李素有,孙智民,沈允文.含间隙的斜齿轮副扭振分析与试验研究[J].机械传动,2002,26(2):1-5.
    [125]樊智敏,张光辉.双渐开线齿轮振动特性的试验研究[J].机械科学与技术,2002,21(5):820-823.
    [126]戚厚军,刘继岩,李充宁,等.行星齿轮系统的频响特性测试试验研究[J].2000,10(4):4-6,14.
    [127]张晓玲,唐锡宽.转轴扭角及扭振测试技术研究[J].清华大学学报(自然科学版),1997,37(8):83-86.
    [128]杨晓宇.齿轮传动系统动力学特性的有限元分析及试验方法研究[D].长春:中国科学院长春光学精密机械与物理研究所,2005.
    [129]王斌.非线性方程组的逆Broyden秩1拟Newton方法及其在MATLAB中的实现[J].云南大学学报(自然科学版),2008,30(S2):144-148.
    [130]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [131]李德葆,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001.
    [132]卢文祥,杜润生.机械工程测试·信息·信号分析[M].武汉:华中理工大学出版社,1999.
    [133]陈树辉.强非线性振动系统的定量分析方法[M].北京:科学出版社,2006.
    [134]闻邦椿,武新华,丁千,等.故障旋转机械非线性动力学的理论与试验[M].北京:科学出版社,2004.
    [135]石端伟.机械动力学[M].北京:中国电力出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700