用户名: 密码: 验证码:
小型天线与金属腔体及人体头颅的耦合谐振分析及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要讨论小型天线和谐振腔,小型天线广泛应用于民用和军事领域,传统上通过增加介电常数、短路加载、延长电流路径或者采用新型的左手材料来减小天线的尺寸;而谐振腔用于滤波、频率检测、介质测量等等领域。本文力图从理论分析开始,对一些电磁现象给出理论的解释,然后通过仿真方法进行验证,最后进行实验验证,并基于上述理论与验证结果建立测试系统。本文涉及的理论方法包括:传输线腔理论、复相角理论、模式展开理论等等,采用的计算方法包括有限元法(FEM)、时域有限差分法(FDTD)以及电磁计算软件HFSS。
     本文的工作主要有以下三个内容:
     (1)研究加载天线的传输线腔性能的变化,包括谐振频率和品质因数。根据加载前后腔体参数的变化,可以得到加载天线的等效电路参数。理论分析表明在传输线腔中存在两类谐振模式,分别是传输模式下的谐振和截止模式的谐振。在传输模式下,腔体的谐振频率相对于空腔的谐振频率出现了偏移;而在截止模式下,由于天线受激辐射,腔体产生新的谐振点,本文称之为广义谐振。
     利用HFSS进行仿真分析,在其中建立天线模型和腔体模型,从理论计算的角度验证了上述理论。在此基础上,本文设计并加工了一套测试系统,验证了上述理论的正确性。由于加载天线受周围环境的影响,例如贴片高度、耦合探针等影响,谐振频率发生偏移,本文进一步进行了相关性验证的实验,证明腔体的谐振频率与天线自身工作时的频率是线性相关的。
     (2)研究天线置入金属腔体后,自身特性的变化。理论分析表明,由于天线与腔体之间的耦合从而导致天线的输入阻抗发生变化。如果腔体较大,在谐振频点,天线的输入阻抗变化非常剧烈,而在非谐振点则变化较小。如果腔体较小,腔体会影响天线的表面分布电流,进一步影响到天线的输入阻抗。
     本文首先利用模式展开的方法,得到了置入腔体的天线的输入阻抗的等效电路,并对该电路进行了分析。而天线置入金属腔体多用于天线效率的测量,但是由于天线与金属腔体之间的耦合,限制了惠勒法测量天线效率的使用范围,也就是仅适用于窄带的或者单频点的测量。基于以上分析,论文设计了一套可变谐振频率的谐振腔---滑动短路谐振腔,通过腔体一端发生位移,从而改变腔体的尺寸达到改变谐振频率的目的。本文将该滑动短路谐振腔结合运动控制部件、矢量网络分析仪等,建立了一套天线效率的测量系统。利用该系统对一系列的天线进行了测量,并与目前的标准的测量方法进行了比较,结果证明了本文方法的快速和有效性。
     (3)双频PIFA天线与人体头颅的耦合问题的研究。手机的辐射问题备受关注,并制定了相应的测试标准及测量方法,本文利用时域有限差分法(FDTD)进行研究。
     本文首先建立双频的PIFA天线模型,对其在自由空间的特性进行了研究,包括驻波特性,方向图,效率等;然后将其置于精度为1mm×1mm×1mm的人体头颅模型一侧,重新对其上述特性进行研究,并与自由空间的特性进行了比较,得出了人头颅对天线特性的影响。本部分的另外一个研究主题是天线对人体头颅的影响,也就是电磁波在人体头颅内的吸收问题,研究了在900MHz和1800MHz频率下,双频PIFA天线在人体头颅中的分布SAR,10g组织平均SAR,1g组织平均SAR,以及整体的平均值和最大值。最后将辐射功率根据实际手机的发射功率归一化得到相应的SAR值,并与相应的标准进行比较,论文最后给出了降低SAR的一些方法和建议。
This dissertation mainly focuses on small antenne and resonant cavities. Small antennas are widely used in civilian and military fields. The antennae can be miniaturized using high dielectric constant materials, shorted load, prolonged current path or new-style left hand materials. Resonant cavities are used in the design of filter, frequency measurement, medium measure and so on. Beginning with the theory analysis, some electromagnetic phenomena were explained. Secondly, simulations and experiments are executed to validate the efficiency of the theory. Finally, the test system was established. Theories and methods used in this dissertation includes transmission line cavity theory, complex phase angle theory, modal expansion theory and so on. In addition, numerical methods such as Finite Element Method(FEM), Finite Difference Time Domain Method(FDTD) and HFSS software are employed.
     The author's major contributions are as follows:
     (1) Performances variation of transmission line cavity was studied when which was loaded with antenna, including resonant frequency and quality factor. According to the parameters variation of cavity loaded pre and post, equivalent circuit parameters of loaded antenna can be obtained. Cavity performances were analyzed theoretically under the transmission and cut off mode based on equivalent circuit parameters of loaded antenna. It is proved that there were two resonant modes. The resonant frequency of cavity was changed under the transmission mode. New resonant frequency was generated under cut-off mode because the antenna was stimulated by cavity, which was called generalized resonance in this thesis.
     The antenna and cavity models were established in HFSS software, and the theory mentioned above was validated by simulation. A set of test system was designed and constructed, and the correctness of the theory was validated further. Because the loaded antenna was influenced by its loaded circumstance such as patch height, location of coupling probe, there would be an offset between the resonance frequencies in the cavity and frees space. A relativity validation experiment was designed and carried out, which proved that resonant frequency of cavity was linear correlation with the frequency of antenna.
     (2) Characteristics of antenna would be changed when it was put into metal cavity. Theory analysis shows that the input impedance varies because the coupling between antenna and cavity. If the cavity is big enough, the input impedance of antenna changes violently at the resonant point, but it changes little at the nonresonant point. If the cavity is small, it can influence the surface distribution current of antenna, which can lead to further effect on the input impedance.
     The modal expansion method was applied to get the equivalent circuit of input impedance of antenna which was put into the cavity, and the equivalent circuit was analyzed. This method was used to measure the antenna efficiency, but due to the coupling between antenna and cavity, the application range of wheeler method was restricted, in other words, it was only suitable for narrowband or single frequency point measurement. A set of cavity which had a variable resonance frequency was established based on the analysis mentioned above, which was called sliding shorted cavity. The size of the cavity can be changed by the movement of one end of the cavity, and resonant frequency varied consequently. The sliding shorted cavity combined with movement controller and vector network analyzer is used to construct measure system for antenna efficiency. A series of antennae were measured with the system. The comparison of the results between this method and standard method shows the method presented in this thesis is fast and valid.
     (3) The coupling between dual-band PIFA antenna and human head model was studied. The problem of mobile phone radiation has been widely concerned, and corresponding testing standards and testing methods were constituted. In this thesis numerical method (FDTD) was carried out to analyze this problem.
     Dual-band PIFA antenna model was established firstly. The characteristics in free space, such as standing wave characteristics, pattern and efficiency, were studied. Then it was placed at one side of human head phantom (Imm×1mm×1mm)and analyzed again. The characteristics measured in the free space and at one side of human phantom model were compared, and the effect of human head on antenna characteristics were obtained. Another study subject was the effect of antenna on human head, which was the problem of electromagnetic wave absorbed by human head. Distribution SAR in human head of dual-band PIFA antenna, including average SAR of lOg tissue, average SAR of 1g tissue, whole average and maximum was studied at the frequency of 900MHz and 1800MHz. Finally, the calculated SAR was compared with corresponding standard, and some methods and advices were given to reduce SAR.
引文
[1]冯冠平.谐振传感器理论与器件[M].2008年3月第一版.北京:清华大学出版社,2008.
    [2]李龙.广义电磁谐振与EBG电磁局域谐振研究及应用[D].西安:西安电子科技大学博士学位论文,2005.
    [3]牛中奇等.电磁场理论基础[M].2001年1月第一版.北京:电子工业出版社,2001.
    [4]杨锐.异向介质的电磁特性及应用研究[D].西安:西安电子科技大学博士学位论文,2008.
    [5]翁子彬.介电常数接近零的人工电磁材料研究及其应用[D].西安:西安电子科技大学博士学位论文,2008
    [6]崔万赵,马伟,邱乐德,张洪太.电磁超介质及其应用[M].2008年8月第一版.北京:国防工业出版社,2008.
    [7]金谋平.多导体散射中的广义谐振研究[D].西安:西安电子科技大学博士学位论文,2000.
    [8]李辑熙,牛中奇.生物电磁学概论[M].西安:西安电子科技大学出版社,1990.
    [9]Michael Bank and Boris Levin. The Development of cellular Phone antenna with small irradiation of Human-organism Tissues[J]. IEEE Antennas and Propagation Magazine,2007:49 (2):65-73.
    [10]Arkko A.T. and Lehtola E.A.. Simulated impedance bandwidths, gains, radiation patterns and SAR values of a helical and a PIFA antenna on top of different ground planes[J]. Antennas and Propagation,2001. Eleventh International Conference on (IEE Conf. Publ.) 2001:2 (480):651-654.
    [11]苏涛-多路耦合器及其相关理论和技术研究[D].西安:西安电子科技大学出版社博士论文,2004.
    [12]梁昌洪,谢拥军,官伯然.简明微波[M].2006年第1版.北京:高等教育出版社,2006.
    [13]王长清.现代计算电磁学基础[M].2005年3月第一版.北京:北京大学出版社,2005.
    [14]楼仁海.工程电磁理论[M].1983年6月第一版.北京:国防工业出版社,1983.
    [15]H. A. Wheeler.The radiansphere around a small antenna[C]. Proceedings of the.IRE,47(8):1325-1331,1959.
    [16]James C. Lin. INTERPHONE Study of Brain Tumors in Cell-Phone Users' Heads[J]. IEEE Antennas and Propagation Magazine,2009,51(1):182-184.
    [17]Steven R. Best,Drayton L. Hanna. Design of a Broadband Dipole in Close Proximity to an EBG Ground Plane[J]. IEEE Antennas and Propagation Magazine, 2008,50(6):52-64.
    [18]I.Chatterjee,M.J.Hagmann,O.P.Gandhi.Electromagnetic-Energy Deposition in an Inhomogeneous Block Model of Man for Near-Field Irradiation Conditions.IEEE Trans.on MTT, Vol.28,No.12,1980, pp 1452-1459.
    [1]林海立.移动通信微波电路与天线的小型化研究[D].上海:上海交通大学博士学位论文,2007.
    [2]周在杞,周克印,许会.微波检测技术[M].2008年1月第一版.北京:化学工业出版社,2008.
    [3]倪尔瑚.介质谐振器的微波测量[M].2006年3月第一版.北京:科学出版社,2006.
    [4]吴边.无线通信中微波滤波器的比较设计法与应用研究[D].西安:西安电子科技大学博士学位论文,2008.
    [5]Kin-Lu Wong. Planar Antennas for Wireless Communications[M]. Wiley-Interscience. 2003.
    [6]Zhi Ning Chen. Antennas for Portable decices[M]. John Wiley & Sons Ltd, Chichester,2007.
    [7]白同云,吴畏,陈志雨.天线系数的校准和使用[J].电波科学学报,2000:15(4):526-529.
    [8]梁昌洪,谢拥军,官伯然.简明微波[M].2006年第1版.北京:高等教育出版社,2006.
    [9]郑家骏.可调滤波器研究[D].西安:西安电子科技大学博士学位论文.1998.
    [10]谢拥军,梁昌洪.探针耦合谐振腔的谐振频率分析[J].西安电子科技大学学报,1996:23(2):263-265.
    [11]纪奕才.全向宽带小型化天线的研究[D].西安:西安电子科技大学博士学位论文,2004.
    [12]徐诚.电磁波基本方程组及其应用[D].北京:中国科学院研究生院博士学位论文,2002.
    [13]中华人民共和国信息产业部.YD/T1484-2-6,移动台空间辐射功率和接收机性能测试方法.北京:信息产业部电信研究院,2006.
    [14]Yun-Wen Chi, Kin-Lu Wong. Internal Compact Dual-Band Printed Loop Antenna forMobile Phone Application[J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,2007,55(5):1457-1462.
    [15]J. Jung, K. Seol, W. Choi and J. Choi. Wideband monopole antenna for various mobile communication applications [J]. ELECTRONICS LETTERS,2005,41(24).
    [16]Corbett R. Rowell, R. D. Murch, Member. A Capacitively Loaded PIFA for Compact Mobile Telephone Handsets[J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,1997,45(5):837:843.
    [17]A. Vasylchenko, Y. Schols, W. De Raedt, and G. A. E. Vandenbosch. Quality Assessment of Computational Techniques and Software Tools for Planar-Antenna Analysis[J]. IEEE Antennas and Propagation MagaZine,2009,51(1):23-39.
    [18]Ali Harmouch, Hiba A. AI Sheikh. Miniaturization of the Folded-Dipole Antenna[J].IEEE Antenna and Propagation Magazine,2009,51(1):117-124.
    [19]Arkko A.T. and Lehtola E.A..Simulated impedance bandwidths,gains, radiation patterns and SAR values of a helical and a PIFA antenna on top of different ground planes[J]. Antennas and Propagation,2001. Eleventh International Conference on (IEE Conf.Publ.)2001:2 (480):651-654.
    [20]倪尔瑚.介质谐振器的微波测量[M].2006年3月第一版.北京:科学出版社,2006.
    [21]汪红梅,倪尔瑚.用复合谐振腔法测量介质谐振器材料的介电特性[J].微波学报,1997,13(3):210-215.
    [22]董树荣,金&浩,王德苗.薄膜声体波谐振器的电磁场建模与仿真[J].浙江大学学报,2006,40(9):1477-1481.
    [23]倪尔瑚.用谐振腔-截止波导技术测量介质谐振器的复介电常数[J].微波学报,2000,16(5):554-560.
    [24]谢拥军,梁昌洪,雷振亚.矩形波导加载介质块的谐振模型[J].通信学报,1996,17(3):109-113.
    [25]谢拥军,梁昌洪.探针耦合谐振腔的谐振频率分析[J].西安电子科技大学学报,1996,23(2):263-276.
    [26]梁昌洪,曹祥玉.广义微扰法[J].电子学报,2003,31(12A):1994-1997.
    [27]倪尔瑚,罗萍,李涤徽.电介质测量中的谐振腔Q因子特性[J].空间科学学报,2009,29(1):73-77.
    [28]陈赐海,骆超艺,黄振宇,肖芬.微波开放型介质谐振器介电参数的测试[J].仪器仪表学报,2005,25(8):29-30.
    [29]苏涛,梁昌洪.微波谐振模型及其3dB2Q值[J].电子学报,2003,31(3).
    [30]张国俊,张弘,华伟,李茂,徐宝强.非完全填充谐振腔微扰法测量介电常数实部的改进研究[J].四川大学学报,44(3):539-541.
    [31]徐江峰,陈秋灵,倪尔瑚.截止波导介质腔介电常数测量理论与方法研究[J].仪器仪表学报,2006,27(10):1322-1325.
    [32]谢拥军,梁昌洪.矩形波导中椭圆形谐振窗的宽带设计[J].电子学报,1996,24(9):80-82.
    [33]李智慧,唐靖宇,朱昆,张,马钟仁.非均匀传输线型谐振腔的研究[J].强激光与粒子束,2001,13(6):773-776.
    [34]徐江峰,金永兴,邬良能,周东,倪尔瑚.理想导体金属谐振腔电磁场微扰理论研究[J].微波学报,2004,20(1):26-30.
    [35]韩中合,杨昆,田松峰,张淑娥.在线监测透平油中微水含量的谐振腔微扰测量法[J].汽轮机技术,2003,45(5):273-275.
    [36]曹斌照.傅立叶展开-差分法在波导与谐振腔问题中的应用研究[D].兰州:兰州大学博士学位论文,2006.
    [37]宋开新.低介电常数微波介质陶瓷[D].杭州:浙江大学博士学位论文,2007.
    [38]陈晓平.介质加载谐振腔的理论分析及其在微波介电测试中的应用研究.武汉:华中科技大学博士论文,2003
    [39]肖芬,董晓盈,陈赐海,熊兆贤.微波陶瓷介质谐振器优选组合检测法[J].仪器仪表学报,2008,29(2):295-298.
    [40]Dong Jianfeng, Xu Shanjia. MULTI-MODE NETWORK ANALYSIS FOR DISCONTINUITIES IN PARALLEL-PLATE WAVEGUIDES PARTIALLY FILLED WITH MULTI CHIRAL RODS[J]. JOURNAL OF ELECTRONICS (CHINA),2006,23(5):748-752.
    [41]梁昌洪,谢拥军,官伯然.简明微波[M].2006年第1版.北京:高等教育出版社,2006.
    [42]廖承恩.微波技术基础[M].1995年第一版.西安:西安电子科技大学出版社,1995.
    [1]梁昌洪,谢拥军,官伯然.简明微波[M].2006年第1版.北京:高等教育出版社,2006.
    [2]Robert E. Collin. Foundations for microwave engineering[M]. New york: McGraw-Hill Book Company,1992.
    [3]廖承恩.微波技术基础[M].1995年第一版.西安:西安电子科技大学出版社,1995.
    [4]Jin Au Kong著,吴季等译.电磁波理论[M].2003年3月第一版.北京:电子工业出版社,2003.
    [5]David M. Pazar. Microwave Engineering[M]. JOHN WILEY & sons, INC.1998.
    [6]苏涛-多路耦合器及其相关理论和技术研究[D].西安:西安电子科技大学出版社博士论文,2004.
    [7]苏涛,梁昌洪.微波谐振模型及其3dB2Q值[J].电子学报,2003,31(3).
    [8]林为干.微波网络[M].1978年6月第一版.北京:国防工业出版社,1978.
    [9]谢拥军等.HFSS原理与工程应用[M].2009年9月第一版.北京:科学出版社,2009.
    [10]R. E. Collin著,侯元庆译.导波场论[M].1966年六月第一版.上海:上海科学技术出版社,1966.
    [1]http://www.agilent.com/.
    [2]http://www2.rohde-schwarz.com/.
    [3]http://www.ni.com/china/.
    [4]郝黎仁.SPSS实用统计分析[M].2003年3月第一版.北京:水利水电出版社,2003.
    [5]凯克.博特,阿迪.博特.世界级质量管理工具[M].2004年第一版.北京:中国人民大学出版社,2004.
    [6]戴姆勒克莱斯勒等.测量系统(分析参考手册)[M].2002年3月第三版.北京:品士公司,2002.
    [1]Yeqin Huang. Efficiency characterization of small antenna[D]. Nebraska:University of Nebraska Doctor Degree Thesis,2003.
    [2]Yeqin Huang, Ram M. Narayanan, Govind R. Kadambi. Electromagnetic Coupling Effects on the Cavity Measurement of Antenna Efficiency [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,2003,51(11): 3064-3071.
    [3]Robert E. Collin. Foundations for microwave engineering[M]. New york McGraw-Hill Book Company,1992.
    [4]R. E. Collin著,侯元庆译.导波场论[M].1966年六月第一版.上海:上海科学技术出版社,1966.
    [5]David M.Pazar.Microwave Engineering[M]. JOHN WILEY & sons,INC.1998.
    [6]牛中奇等.电磁场理论基础[M].2001年1月第一版.北京:电子工业出版社,2001.
    [7]廖承恩.微波技术基础[M].1995年第一版.西安:西安电子科技大学出版社,1995.
    [8]IJ.鲍尔P.布哈蒂亚.微带天线[M].1985年第一版.北京:电子工业出版杜,1985.
    [9]张钧,刘克诚.微带天线理论与工程[M].1988年第一版.北京:国防工业出版社,1988.
    [10]Kin-Lu Wong.Compact and Broadband Microstrip Antennas [M].John Wiley&Sons,2002.
    [11]翟阳文,赵永久.矩形波导感性膜片复功率守恒法的分析[J].西安电子科技大 学学报,33(4),2006:630-634.
    [12]刘发林.模式匹配法及其应用新探[D].合肥:中国科技大学博士学位论文,2001.
    [14]张本全.微波无源器件设计中的模式匹配法研究[D].成都:电子科技大学博士学位论文,2004.
    [15]林为干.微波网络[M].1978年第一版,北京:国防工业出版社,1978.
    [16]袁伟良,梁昌洪.波导不连续性的时域分析[J].西安电子科技大学学报,1997,24(4):453-458.
    [17]张雪霞.导波原理与方法[M].2009年1月第一版.北京:清华大学二出版社,2009.
    [18]David M. Pazar Microwave Engineering[M]. JOHN WILEY & sons,INC.1998.
    [19]丁坚进.混响室的理论、设计和测试[D].北京:北京交通大学博士学位论文,2006
    [20]吕飞燕.并矢格林函数对电波暗室的场强分析应用[D].北京:北京交通大学博士学位论文,2007.
    [21]R.F.哈林登(R.F.Harrington)著,孟侃译.正弦电磁场[M].上海科学技术出版社,1964.
    [22]戴振铎,鲁述著.电磁理论中的并矢格林函数[M].2005年第一版.武汉:武汉大学出版社,2005.
    [1]Yeqin Huang. Efficiency characterization of small antenna[D].Nebraska:University of Nebraska Doctor Degree Thisis,2003.
    [2]Antenna Standards Committee. ANSI/IEEE Std 149-1979, IEEE Standard Test Procedures for Antennas[S]. American:American National Standards Institute,1980.
    [3]丁坚进.混响室的理论、设计和测试[D].北京:北京交通大学博士学位论文,2006
    [4]吕飞燕.并矢格林函数对电波暗室的场强分析应用[D].北京:北京交通大学博士学位论文,2007.
    [5]Paul Hallbjorner. REFLECTIVE ANTENNA EFFICIENCY MEASUREMENTS IN REVERBERATION CHAMBERS [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS,2001,30(5):332-335.
    [6]H. A. Wheeler.The radiansphere around a small antenna[C]. Proceedings of the.IRE, 47(8):1325-1331,1959.
    [7]Hans Gregory Schantz.Radiation Efficiency of UWB Antennas[C].2002 IEEE Conference on Ultra Wideband Systems and Technologies,2002:351-355.
    [8]Quiterio Garcia-Garcia. PATCH-ANTENNA EFFICIENCY BASED ON WHEELER CAP AND MEASURED Q FACTOR[M]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS,2004,40(2):132-142.
    [9]EDWARD H. NEWMAN,PETER BOHLEY,C. H. WALTER. Two Methods for the Measurement of Antenna Efficiency.IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,1975,23(4):457-461.
    [10]GLENN S. SMITH. An Analysis of the Wheeler Method for Measuring the Radiating Efficiency of Antennas[J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,1977,JULY:552-556.
    [11]I.lda, H.Yoshimura,K.lto. Reduction of drift error of a network analyser in small antenna measurement[J]. IEE Proc.-Micro. Antenna Propag.,2001,148(3):188-192.
    [12]Tareq Salim, Peter. S. Hall. EFFICIENCY MEASUREMENT OF ANTENNAS FOR ON-BODY COMMUNICATIONS [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS,2006,48(11):2256-2259.
    [13]DAVID M. POZAR,BARRY KAUFMAN. Comparison of Three Methods for the Measurement of Printed Antenna Efficiency[J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,1988,36(1):136-139.
    [14]S. F. Ooi, S. K. Lee, A. Sambell, E. Korolkiewicz,S. Scott. A NEW APPROACH TO THE DESIGN OF A COMPACT HIGH EFFICIENCY ACTIVE INTEGRATED ANTENNA[J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS,2008,50(3):585-589.
    [15]延晓荣,金元松,罗翠梅.阻容加载偶极天线的宽带性能及效率分析[J].电波科学学报,2000,15(2):169-174.
    [16]Neil J. McEwan, Raed A. Abd-Alhameed,M. Nasir Z. Abidin. A Modified Radiometric Method for Measuring Antenna Radiation Efficiency [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,2003,51(8):2099-2105.
    [17]Eiji Hankui, Osamu Hashimoto. Increasing the Radiation Efficiency of Cellular Telephones by Controlling the Nearby Electromagnetic Field Around a Human Model[J]..MICROWAVE AND OPTICAL TECHNOLOGY LETTERS,2001,29(2):104-107.
    [18]I. Ida, J. Takada,K. ItO. Surface-patch modelling of a Wheeler cap for radiation efficiency simulation of a smaloop antenna with NEC2[J]. ELECTRONICS LE7TERS,1994,30(4):278-280.
    [19]Ichirou Ida,Jin Sato, Takatoshi Sekizawa, Hiroyuki Yoshimura,Koichi Ito. Dependence of the Efficiency-Bandwidth Product on Electrical Volume of Small Dielectric Loaded Antennas[J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,2002,50(6):821-826.
    [20]Shawn D. Rogers,James T. Aberle, David T. Auckland. Two-Port Model of an Antenna for Use in Characterizing Wireless Communications Systems, Obtained Using Efficiency Measurements[J].IEEE Antennas and Propagation Magazine,2003,45(3):115-118.
    [21]WILLIAM D. EDEN. A Technique to Measure Accurately Antenna Efficiency[J]. IEEETRANSACTIONS ON MICROWAVETHEORYAND TECHNIQUES, 1972,JANUARY:82-83.
    [22]Ronald H Johnston,John G. McRory. An Improve Small Antenna Radiation-Efficiency Measuement Method[J]. IEEE Antennas and Propagation Magazine,1998,40(5):40-48.
    [23]R. Chair,K. M. Luk, K. F. Lee. RADIATION EFFICIENCY ANALYSIS ON SMALL ANTENNA BY WHEELER CAP METHOD[J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS,2002,33(2):112-113.
    [24]Kuo-Hua Tseng, Choon Sae Lee. ENHANCED RADIATION EFFICIENCY OF ELECTRICALLY SMALL MICROSTRIP ANTENNAS[J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS,2003,39(1):62-64.
    [25]Ichirou Ida,Koichi Ito,Yoshinobu Okano. Accurate Measurement of Small Input Resistances Using a Conventional Network Analyzer[J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,1999,47(2):389-391.
    [26]Yeqin Huang, Ram M. Narayanan, Govind R. Kadambi. Electromagnetic Coupling Effects on the Cavity Measurement of Antenna Efficiency [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,2003,51(11): 3064-3071.
    [26]Hosung Choo, RobertRogers, Hao Ling. On the Wheeler Cap Measurement of the Efficiency of Microstrip Antennas[J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,2005,53(7):2328-2332.
    [27]A.A.H. Azremi,H. Ghafouri Shiraz, Peter S. Hall. A Comparative Study of Small Antenna Efficiency Measurements[C].2005 ASIA-PACIFIC ON APPLIED ELECROMAGNETICS:74-78.
    [28]Whilte paper. Cellular Handset Antenna Efficiency Measurement Using the Wheeler Cap [OL]. http://www.rfglobalnet.com/download.mvc/. Cellular- Handset-Antenna-Efficiency-Measureme-0002.
    [29]Quiterio Garcia-Garcia. PATCH-ANTENNA EFFICIENCY BASED ON WHEELER CAP AND MEASUREDQ FACTOR[J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS,2004,40(2):132-142.
    [30]Jin Au Kong著,吴季等译.电磁波理论[M].2003年3月第一版.北京:电子工业出版社,2003.
    [1]http://news.xinhuanet.com/internet/2009-03/08/content_10968224.htm
    [2]刘文魁,庞东.电磁辐射的污染及防护与治理[M].2003年10月第一版.北京:科学出版社,2003.
    [3]李辑熙,牛中奇.生物电磁学概论[M].西安:西安电子科技大学出版社,1990.
    [4]侯建强.精细人体模型下的生物电磁剂量学研究[D].西安:西安电子科技大学硕士学位论文,2004.
    [5]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安电子科技大学出版社2002.
    [6]周晓明,赖声礼.人体模型建模及其对单极与螺旋天线手机辐射特性影响的比较[J].中国生物医学工程学报,2005,24(4):403-407.
    [7]窦维苹.人体模型下手持机场分布及屏蔽防护的研究[D].北京:北方交通大学博士学位论文,1999.
    [8]Zhi Ning Chen. Antennas for Portable decices[M]. John Wiley & Sons Ltd, Chichester,2007.
    [9]Michael Bank and Boris Levin. The Development of cellular Phone antenna with small irradiation of Human-organism Tissues[J]. IEEE Antennas and Propagation Magazine,2007:49 (2):65-73.
    [10]James C. Lin. INTERPHONE Study of Brain Tumors in Cell-Phone Users' Heads[J]. IEEE Antennas and Propagation Magazine,2009,51 (1):182-184.
    [11]Steven R. Best,Drayton L. Hanna. Design of a Broadband Dipole in Close Proximity to an EBG Ground Plane[J]. IEEE Antennas and Propagation Magazine, 2008,50(6):52-64.
    [12]I.Chatterjee,M.J.Hagmann,O.P.Gandhi, Electromagnetic-Energy Deposition in an Inhomogeneous Block Model of Man for Near-Field Irradiation Conditions, IEEE Trans.on MTT, Vol.28,No.12,1980, ppl452-1459.
    [13]M.Hussein, A.Sebak. Application of the Finite-Difference Time-Domain Method to the Analysis of Mobile Antennas[J]. IEEE Transactions on Vehicular Technology,1996,45(3):417-426.
    [14]Michal Okoniewski, Maria A. Stuchly. A Study of the Handset Antenna and Human Body Interaction[J]. IEEE Transactions on Microwave Theory and Technoques,1996,44(10),1855-1864.
    [15]Om P. Gandhi, Gianluca Lazzi, Cynthia M. Furse. Electromagnetic Absorption in the Human Head and Neck for Mobile Telephones at 835 and 1900 MHz[J], IEEE Transactions on Microwave Theory and Technoques,1996,44(10),1884-1897.
    [16]Huey-Ru Chuang, Wen-Tzu Chen. Computer Simulation of the Human-Body Effects on a Circular-Loop-Wire Antenna for Radio-Pager Communications at 152, 280, and 400 MHz[J]. IEEE Transactions on Vehicular Technology,1997,46(3), 544-559.
    [17]Klaus Meier. The Dependence of Electromagnetic Energy Absorption upon Human-Head Modeling at 1800 MHz[J]. IEEE Trans.on Microwave Theory and Technoques,1997,45(11),2058-2062.
    [18]Gianluca. Comparison of FDTD Computed and Measured Radiation Patterns of Commercial Mobile Telephones in Presence of the Human Head[J], IEEE Trans. On Antennas and Propagation,1998,46(6), pp943-944.
    [19]乐金电子(中国)研究开发中心有限公司.便携式终端的SAR降低装置[P]:中国,200410034745.6[P].2005-3-30.
    [20]Dasy4 system handbook. SPEAG, Schmid & Partner Engineering AQZurich, Switzerland,2010.
    [21]IEEE Standards Coordinating Committee 34. IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:Measurement Techniques[S], IEEE Std 1528-2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700