用户名: 密码: 验证码:
粘附性颗粒动理学及气固两相流体动力特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粘附性颗粒已经在制药、食品、化妆品、催化、生化、能源等领域取得了重要的应用。在不同工业应用领域中均会遇到粘附性颗粒的混合、表面处理、输送等过程,在此流态化是一种很有潜力的技术。目前科学家们对粘附性颗粒的流态化研究主要集中于实验研究,数值模拟研究做的比较少,特别是对传统的双流体模型,如何进一步改进完善,以适应粘附性颗粒的气固两相流动的研究,成为当务之急。
     基于Chapman和Cowling的稠密气体动理学方法,建立了粘附性颗粒动理学理论,提出了颗粒相本构方程。考虑气相和粘附性颗粒聚团间及聚团和聚团间的动量和能量的传递和耗散,推导了粘附性颗粒聚团固相粘度系数、粘附性颗粒聚团压力和热通流量等物性参数计算模型,完善了可应用于粘附性颗粒系统的粘附性颗粒的颗粒动理学模型以及气固两相双流体模型。
     假设流化床中聚团的碰撞以两个聚团之间的对碰为主要形式,根据受力平衡原理,考虑聚团碰撞之后是团聚还是分离,取决于聚团所受的曳力、碰撞力、粘性力和表观重力(重力-浮力)的平衡,从而得到聚团尺寸估算模型。
     在笛卡尔坐标系下应用粘附性颗粒气固两相双流体模型,并采用力平衡聚团尺寸估算模型,数值模拟循环流化床内流体动力特性,研究时均颗粒速度、聚团大小和浓度的分布特性以及颗粒聚团温度随颗粒聚团浓度的变化规律。研究发现,粘附性颗粒聚团在循环流化床提升管内流动呈现环核流动。聚团尺寸计算结果显示在床层底部和边壁高浓度区易出现大颗粒聚团。由于出口位置的影响,在出口附近出现了聚团堆积。研究还表明,颗粒碰撞弹性恢复系数和界面能的变化将直接影响流化聚团的生成。操作条件的变化将改变颗粒聚团间的碰撞受力及气体对聚团的作用力,进而直接影响粘附性颗粒的聚团形成,也将影响循环床的整体流动特性。瞬时颗粒聚团浓度的快速傅立叶变换显示浓度波动主频为0.03到1.26Hz。瞬时颗粒浓度波动的小波多尺度分析结果显示的浓度波动主频与快速傅立叶变换的结果基本吻合。
     建立了喷动床粘附性颗粒气固两相流流动模型,对喷动床内粘附性颗粒气固两相流场进行了数值模拟。模拟结果表明,喷动床内粘附性颗粒气固两相流场与一般的喷动床流场不同,仅有喷射区和环隙区,无喷泉区。倒锥体复杂壁面将影响喷动床内气固两相流动变化。采用傅立叶变换和小波多分辨分析对颗粒聚团瞬时浓度信号分析表明喷动床内气固两相流动具有非线性特性,小波多尺度预测了瞬时颗粒聚团浓度的脉动频率特性。采用Shannon信息熵理论分析了粘性颗粒在喷动床内流化的混沌特性,研究结果表明:Shannon信息熵值在1-3之间,随着气体速度和倒锥体倾角角度增加而下降。床层不同区域的Shannon信息熵具有较大的差异。
     应用粘附性气固两相颗粒动理学模型数值模拟了纳米尺寸颗粒在流化床内的流动。模拟结果表明,纳米颗粒在流化床内流化特性呈现散式流化,床层膨胀率较高,床内很难有气泡生成。模拟对比了Zhou & Li和Xu & Zhu两种粘附性颗粒聚团尺寸估算模型,对比发现Zhou & Li更加详细考虑了曳力和重力对颗粒聚团及破碎的影响。其模拟得出聚团尺寸更加吻合实验结果。同时,采用信息熵方法分析纳米颗粒聚团流化的混沌特性。分析得出,在床层上部聚团时间序列的信息熵值较大,在床层上部聚团与气体间,聚团与聚团间的脉动变化比较剧烈,这与颗粒脉动温度分析结果一致。表观气体速度的增加,其信息熵值变小,纳米颗粒在床内流化更加稳定。
Cohesive particles have been widely applied in the pharmaceutical, food, cosmetics, catalysis, biochemistry, energy and other areas. The fluidization of cohesive particles is a promising technology used in the particle mixing, surface treatment, transportation and so on. However, most studies focused on experimental aspects; only a few studies have been done on computational fluid dynamics (CFD). It is urgent to improve the simulation method on the flow with the cohesive particles.
     Based on the hydrodynamic theory of dense gas-solid flow and the kinetic theory of dense gases proposed by Chapman and Cowling, the kinetic theory of cohesive particles flow and constitutive equations of cohesive particles are established. The energy transfer and dissipation by the instantaneous collisions between the agglomerates of cohesive particles and gas phase or between agglomerates-agglomerates are considered. The shear viscosity, pressure and collisional granular heat flux of agglomerates are derived. Thus, the kinetic theory of cohesive particles flow is proposed.
     Under the principle of force balance, the collision of the agglomerates is considered as the collision interactions between two agglomerates. It is decided by the balance of the drag force, collision force, cohesive force, gravity and buoyancy force acting on the agglomerate whether the agglomerates will separate or not after collision. Thus the model of agglomerate size estimation is proposed, and used in the simulations.
     Hydrodynamics of gas-solid two-phase flow in a circulating fluidized bed (CFB) is simulated using the kinetic theory of cohesive particles flow on the Cartesian coordinate system. The distributions of time-averaged velocity of agglomerates, agglomerate size and concentration of agglomerates are studied. The variations of the granular temperature of agglomerates with the concentration of agglomerates are also investigated in this work. Simulated results show that no bubble is formed in the flow of cohesive particles in the riser, and the core-annular flow structure was observed. The calculated result of agglomerate size shows that the large agglomerates are favor to the bed bottom and walls. In the outlet regime, the exit factor leads to the accumulation of agglomerates. Present study also indicates that the restitution coefficient of particles and contacting bond energy can directly affect the form of agglomerates. Different operating conditions will directly influence on the form and breakage of agglomerates because of the change of the collision force and other external forces. This will also affect the overall flow in the CFB. Fast Fourier Transform (FFT) of instantaneous concentration shows that the dominant frequency of the particle fluctuation is 0.03-1.26Hz. Results of wavelet multi-scale analysis agree with the analysis from FFT.
     A gas-solid two-phase flow model of cohesive particles is presented to simulate the hydrodynamic characteristics in a spouted bed. The simulation results show that the flow field of cohesive particles in the spouted bed is different from the general flow field in spouted bed. There is no fountain at the surface of the bed. The complex wall of the invert cone will influence on flow behavior in the spouted bed. The analysis of instantaneous signal of concentration using FFT and multi-scale transfer shows that the properties of gas-solid two-phase flow are nonlinear in the spouted bed. The frequency of the fluctuation of agglomerates is predicted by the means of the wavelet multi-scale analysis. The chaotic behavior of solids flow in the spouted bed is analyzed by using the Shannon entropy theory. The results show that the Shannon entropy is in the range of 1 and 3, and the entropy decreases with the increase of gas velocity and the angle of invert cone. The Shannon entropy is quite difference in the different regimes in the spouted beds.
     The flow of cohesive nano-size particles is simulated in the fluidized bed by using the kinetic theory of cohesive particles flow. Numerical results show that the fluidization characteristic of cohesive nano-size particles in a fluidized bed is close to particulate fluidization. The bed expansion ratio is relatively high. Bubbles are very difficult to be generated. The agglomerates size was predicted and compared by Xu & Zhu and Zhou & Li equations. The results show that in Zhou & Li’s equation, the impact of drag and gravity forces on the agglomerates and the breakage of particles is considered more carefully. Numerical simulated agglomerate sizes agree with the experimental result. Meanwhile, the Shannon entropy method is used to analyze the chaotic behavior in the fluidized bed with nano-particle agglomerates. The analysis shows that the entropy of the time series of the agglomerates concentration in the upper bed is high since the fluctuation between the agglomerates and gas or between agglomerates and agglomerates is more intense. This is consistent with the result from FFT analysis. With the increase of the superficial gas velocity, there is no apparent variation of entropy. This means that the fluidization of cohesive particles is more stable in the bed.
引文
1 D. Geldart. Types of Gas Fluidization. Powder Technology. 1973, 7(5): 285-292
    2周勇,梁华琼,石炎福.超细粉流化机理和团聚现象的探讨.化学反应工程与工艺. 2003,19(4): 289-294
    3 D. Geldart, A. Wong. Fluidization of Powders Showing Degrees of Cohesiveness-I. Bed Expansion. Chemical Engineering Science. 1984, 39 (10): 1481-1488
    4 J. Chaouki, C. Chavarie, D. Klvana. Effect of Interparticle Forces on the Hydrodynamic Behavior of Fluidized Aerogels. Powder Technology. 1985, 43: 117-125
    5 S. Morooka, K. Kusakabe, A. Kobata, Y. Kato. Fluidization State of Ultrafine Powders. Journal of Chemical Engineering of Japan. 1988, 21(1): 41-46
    6王樟茂,陈伟,陈甘棠.细粉的流态化特性及其判别,化学反应工程与工艺,1988, 4(2):89-92
    7 S. Iyer, L. Drzal. Behavior of Cohesive Powders in Narrow-Diameter Fluidized Beds. Powder Technology. 1989, 57(2): 127-133
    8 K. Kusakabe, T. Kuriyama, S. Morooka. Fluidization of Fine Particles at Reduced Pressure. Powder Technology. 1989, 58(2): 125-138
    9 A. W. Pacek, A. W. Nienow. Fluidization of Fine and Very Dense Hard Mental Powders. Powder Technology. 1990, 60(2): 145-158
    10赵裙,刘辉,许贺卿.超细颗粒的流化及其膨胀特性研究.化工冶金, 1991, 12: 249-254.
    11 G. Zhao, C. Zhu, V. Hlavacek. Fluidization of Micro-size Ceramic Powders in a Small Diameter Fluidized Bed. Powder Technology. 1994, 79: 227-235
    12华彬,胡黎明,李春忠.超细颗粒流态化过程中床层的塌落与膨胀.华东理工大学学报. 1994, 20(3): 290-294
    13华彬,胡黎明,李春忠.超细颗粒流态化过程的研究.华东理工大学学报. 1994, 20(3): 294-299
    14王兆霖.细颗粒的流态化及添加颗粒的作用.中国科学院化工冶金研究所.博士论文,1995:15-20
    15洪若瑜.内循环和外循环流化床中超细粉流态化的研究.中国科学院化工冶金研究所.博士论文,1996:32-44
    16周涛.粘性颗粒聚团流态化实验与理论研究.中国科学院化工冶金研究所.博士论文,1998:55-60
    17刘勤.添加内构件对粘性颗粒流化质量的改善.中国科学院化工冶金研究所.硕士论文,2000:21-37
    18魏伟胜,陈恒志,徐健等.加压喷动床中细颗粒喷动特性.化工学报,2002,53(3):280-284
    19周勇,马兰,石炎福.超细粉在导向管喷动床中的固体循环速率.化工学报,2004, 55(9): 1532-1536
    20 Y. Mawatari, M. Tsunekawa, Y. Tatemoto, K. Noda. Favorable Vibrated Fluidization Conditions for Cohesive Fine Particles. Powder Technology, 2005, 154(1): 54-60
    21 Y. Tatemoto, Y. Mawatari, K. Noda. Numerical Simulation of Cohesive Particle Motion in Vibrated Fluidized Bed. Chemical Engineering Science, 2005, 60(18): 5010-5021
    22 Q. J. Guo, H. E. Liu, W. Z. Shen etc. Influence of Sound Wave Characteristics on Fluidization Behaviors of Ultrafine Particles. Chemical Engineering Journal, 2006, 119(1): 1-9
    23李爱蓉,周勇,石炎福等.原生纳米颗粒添加组分流态化研究.石化技术与应用,2004, 22(3): 165-169
    24李彦,陈爽,王铭华,郭庆杰.超细颗粒表面改性后床层塌落行为研究.化学工程与装备,2006, 13(1): 14-16
    25王铭华,郭庆杰,陈爽.超细颗粒声场流态化机理研究.中国石油大学学报(自然科学版),2006,30(6): 132-136
    26 M. V. Jose, C. Antonio. Effect of Vibration on Agglomerate Particulate Fluidization. AIChE, 2006, 52(5): 1705-1714
    27 H. Liu, Q. J. Guo. Fluidization in Combined Acoustic-magnetic Field for Mixtures of Ultrafine Particles. China Particuology, 2007, 5: 111-115
    28 P. Zeng, T. Zhou, G. Q. Chen, Q. S. Zhu. Behavior of Mixed ZnO andSiO2 Nano-particles in Magnetic Field Assisted Fluidization, China Particuology, 2007, 5: 169-173
    29 L. Sunun, R. Wanwarang, V. Terdthai. Lagrangian Modeling and Simulation of Effect of Vibration on Cohesive particle Movement in a Fluidized Bed. Chemical Engineering Science, 2007, 62(1-2): 232–245
    30 E. F. Brooks, T. J., Fitzgerald. Fluidization of Novel Tendrillar Carbonaceous Materials, in: Fstergarrd, K., Sfrensen, A. (Eds) ,Fluidization V, United Engineering Foundation, New York, 1986, pp. 2 17-224
    31 S. Matsuda, H. Hatanoa, A. Tsutsumib. Ultrafine Particle Fluidization and its Application to Photocatalytic NOx, Treatment. Chemical Engineering Journal, 2001, 82(1-3): 183-188
    32 J. Jung. Fluidization of Nano-Size Particles. Journal of Nanoparticle Research. 2002, 4(5): 483-497
    33 Y. Wang, G. Gu, F. Wei, J. Wu. Fluidization and Agglomerates Structure of Si02 Nano Particles. Powder Technology. 2002, 124(1-2): 152-159
    34 C. Zhu, Q. Yu, R. Pfefer, R. N. Dave. Gas Fluidization Characteristics of Nanoparticle Agglomerates. AIChE Journal. 2005,51(2):426-439
    35 F. H. Luis, L. P. Julie, D. C. Michelle, Aggregation Behavior of Nanoparticles in Fluidized Beds. Powder Technology. 2005, 160(3): 149-160
    36 M. J. Paul, G. Ozcan. In Situ x-Ray Imaging of Nanoparticle Agglomeration in Fluidized Beds. Applied Physics Letters. 2006, 88(3): 034103/3
    37 X. S. Wang, F. Rahman, M. J. Rhodes. Nanoparticle Fluidization and Geldart’s Classification. Chemical Engineering Science. 2007, 62(13): 3455- 3461
    38黄昕,刘义伦.粘性糊料颗粒间的作用力及其机理分析.炭素技术. 2006, 25(5): 28-32
    39 J. Visser. Vander Waals and Other Cohesive Force Affecting Powder Fluidization. Powder Technology. 1989, 58(1): 1-10
    40 J. P. K. Seville, C. D. Willett, P. C. Knight. Interparticle Forces in Fluidisation: A Review. Powder Technology. 2000, 113: 261-268
    41张文斌,祁海鹰,由长福等.碰撞诱发颗粒团聚及破碎的力学分析.清华大学学报(自然科学版).2002, 4(12): 1639-1643
    42 S. M. Iveson, J. A. Beathe, N. W. Pace. The Dynamic Strength of Partially Saturated Powder Compacts: The Effect of Liquid Properties. Powder Technology. 2002, 127(2): 149-161
    43 L. J. McLaughlin, M. J. Rhodes. Prediction of Fluidized Bed Behavior in the Presence of Liquid Bridgeds. Powder Technology. 2001, 114: 213-223
    44 H. C. Hamaker. The London-van der Waals Attraction Between Spherica Particles. Physica IV 1937, 10: 1058-1072
    45 E. M. Lifshitz. The Theory of Molecular Attractive Force between Solids. Sov Phys. 1956, 2 (1): 73-92
    46 J. N. Israelachvili. Intermolecular and Surface Forces. Academic Press. London, 1991: 123-125
    47 C. Lauga, K. Chaouki, D. Klvana, C. Chavarie. Improvement of the Fluidizability of Ni/SiO2 Aerogels by Reducing Interparticle Forces. Powder Technology. 1991, 65: 461-468
    48 O. Molerus. Interpretation of Geidart's Type A, B, C and D Powders by Taking into Account Interparticle Cohesion Force. Powder Technology. 1982, 33: 81-87
    49 J. Visser. Van der Waals and Other Cohesive Force Affecting Powder Fluidization. Powder Technology. 1989, 58(1): 1-10
    50 A. B. Yu, C. L. Feng, R. P. Zou, R. Y. Yang. On the Relationship between Porosity and Interparticle Forces. Powder Technology. 2003, 130: 70=76
    51 A. L. G. Trindade, M. L. Passos, E. F. Costa Jr., E.C. Biscaia Jr. The Effect of Interparticle Cohesive Forces on the Simulation of Fluid Flow in Spout-fluid Beds. Braz. J. Chem. Eng. 2004, 21: 113=125
    52 G. Bruni, P. Lettieri, D. Newton, et al. An Investigation of the Effect of the Interparticle Forces on the Fluidization Behavior of Fine Powders Linked with Rheological Studies. Chemical Engineering Science. 2007, 62(1-2): 387-396
    53 L. F. Hakim, J. L. Portman, J. R. Wank, K. J. Buechler, et al. High Speed Laser Imaging Processing for Investigating Fluidized Nanoparticles. AIChE Annual Meeting, San Francisco, CA, November, 2003, 16-21.
    54 X. L. Wang, V. Palero, J. Soria, M. Rhodes, et al. Laser-based Planar Imaging of Nano-particle Fluidization: Part I--Determination of Aggregate Size and Shape. Chemical Engineering Science. 2006, 61: 8040-8049
    55 Y. Iwadate, M. Horio. Prediction of Agglomerate Sizes in Bubbling Fluidized Beds of Group C Powders. Powder Technology. 1998, 100(2-3): 223-236
    56唐洪波,赵珺.微细粉振动流化床的团聚模型.高校化学工程学报.1998,12(1):76-80
    57唐洪波,赵珺.微细粉体在振动流化床中团聚行为的研究.化学工业与工程.1996,13(3):6-10
    58 S. Froeschke, S. Kohler, A.P. Weber, et al. Impact Fragmentation of Nanoparticle Agglomerates. Journal of Aerosol Science. 2003, 34(3): 275-287
    59 S. Weber, C. Briens, F. Berruti, et al. Agglomerate Stability in Fluidized Beds of Glass Beads and Silica Sand, Powder Technology, 2006, 165(3): 115-127
    60 Y. Yang. Experiments and Theory on Gas and Cohesive Particles Flow Behavior and Agglomeration in the Fluidized Bed System. Illinois Institute of Technology. PhD Dissertation. 1991: 109-114
    61 M. Horio, Y. Iwadatc. The Prediction of Sizes of Agglomerates Formed in Fluidized Beds. in: Proceeding 5th World Congress of Chemical Engineering, 2nd Int. Particle Technology Forum, Vol. V(C), California: San Diego, 1996, pp. 722-731
    62李爱蓉.采用添加组分改善超细颗粒流态化性能的研究.四川大学硕士论文. 2005:8-11
    63 S. P. Timoshenko, J. N. Goodier. Theory of Elasticity. McGraw-Hill. New York. 1970, 345-356
    64 T. Zhou, H. Z. Li. Force Balance Modelling for Agglomerating Fluidization of Cohesive Particles. Powder Technology. 2000, 111: 60-65
    65 S. Mori, C. Y. Wen. Estimation of Bubble Diameter in Gaseous Fluidized Beds. AIChE Journal. 1975, 21: 109-115
    66 M. Leva. Fluidization. McGraw-Hill. New York. 1959, 268-270
    67 S. Matsuda, H. Hatano. T. Muramoto, et al. Modeling for Size Reductionof Agglomerates in Nanoparticle Fluidization. AIChE Journal. 2004, 50(11): 2763-2771
    68 C. B. Xu, J. Zhu. Experimental and Theoretical Study on the Agglomeration Arising from Fluidization of Cohesive Particles-Effects of Mechanical Vibration. Chemical Engineering Science. 2005, 60: 6529-6541
    69 H. L. Lu, D. Gidaspow, J. Bouillard, W. T. Liu. Hydrodynamic Simulation of Gas–solid Flow in a Riser Using Kinetic Theory of Granular Flow. Chemical Engineering Journal. 2003, 95: 1-13
    70 A. Srivastava, S. Sundaresan. Analysis of a Frictional-kinetic Model for Gas–particle Flow. Powder Technology. 2003, 129(1-3): 72-85
    71 V. Jiradilok, D. Gidaspow, J. Kalra. Explosive Dissemination and Flow of Nanoparticles. Powder Technology. 2006, 164(1): 33-49
    72 W. Q. Zhong, M. Y. Zhong, B. S. Jin, etc, Three-dimensional Simulation of Gad/Solid Flow in Spout-fluid Beds with Kinetic Theory of Granular Flow, Chinese J. Chern. Eng., 2006, 14(5): 611-617
    73 V. Jiradilok, D. Gidaspow, S. Damronglerd. Kinetic Theory Based CFD Simulation of Turbulent Fluidization of FCC Particles in a Riser, Chemical Engineering Science, 2006, 61(17): 5544-5559
    74 Y. P. Tsuo, D. Gidaspow. Computer Simulation of Flow Patterns in Circulating Fluidized Beds. J. AICHE. 1990, 36(6): 885-896
    75 K. Anderson, S. Sundaresan, R. Jackson. Instabilities and the Formation of Bubbles in Fluidized Beds, Journal of Fluid Mechanics. 1995, 303(25): 327-366
    76 D. Wiemann, D. Mewes,Calculation of Flow Fields in Two and Three-phase Bubble Columns Considering Mass Transfer, Chemical Engineering Science, 2005, 60(22): 6085-6093
    77万晓涛,郑雨,魏飞,金涌.循环流化床提升管气固湍流的计算流体力学模拟k-ε-kp-εp-Θ5参数双流体型.化工学报. 2002, 53(5): 461~466
    78高鹍,赵涛,吴晋沪,王洋.简单射流流化床的数值模拟.燃烧科学与技术. 2004, 10(5): 444-450
    79 H. S. Tan, M. J. V. Goldschmidt, R. Boerefijn. Building Population Balance Model for Fluidized Bed Melt Granulation: Lessons from KineticTheory of Granular Flow, Powder Technology, 2004, 142(2-3): 103-109
    80 Z. Shang. CFD of Turbulent Transport of Particles behind a Backward-facing Step Using a New Model-k-ε-Sp. Applied Mathematical Modelling. 2005, 29: 885-901
    81 J. D. Wilde, G. V. Engelandt, G. J. Heynderickx, et al. Gas–solids Mixing in the Inlet Zone of a Dilute Circulating Fluidized Bed. Powder Technology. 2005, 151(1-3): 96-116
    82 L. Yu, J. Lu, X. P. Zhang et al. Numerical Simulation of the Bubbling Fluidized Bed Coal Gasification by the Kinetic Theory of Granular Flow (KTGF). Fuel. 2007, 86(5-6): 722-734
    83 W. Q. Zhong, M. Y., Zhang, B. S. Jin. Flow Behaviors of a Large Spout-fluid Bed at High Pressure and Temperature by 3D Simulation with Kinetic Theory of Granular Flow. Powder Technology. 2007, 175(2): 90-103
    84 S. Chapman, T. G. Cowling. The Mathematical Theory of Non-Uniform Gases. 3rd edition, Cambridge Univ. Press, 1970
    85 J. Smagorinsky. General Circulation Experiments with the Primitive Equation. J. Chem. Phys. 1963, 91: 99-164
    86 J. Ding, D. Gidaspow. A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow. AICHE. 1990, 36(4): 523-538
    87 H. Z. Li, R. Legros, C. M. H. Brereton, et al,. Hydrodynamic Behavior of Aerogel Powders in High-velocity Fluidized Beds. Powder Technology. 1990, 60: 121-129
    88童华,李洪钟.在具有锥形料腿的循环流化床中流化CaCO3超细颗粒.过程工程学报. 2004, 4(3): 204-209
    89 E. A. Mahmoud, T. Nakazato, N. Nakagawa et al. Solid Circulation Rate in a Circulating Fluidized Bed in the Presence of Fine Powders. Chemical Engineering Science. 2006, 61(2): 766-774
    90 S.V.帕坦卡.传热与流体流动的数值计算.科学出版社. 1980: 132-139
    91 A. F. Fortes, P. Caldas, J. V. Gallo, Particle Aggregation and the Van der Waals Forces in Gas-solid Fluidization. Powder Technology. 1998, 98: 201-208.
    92 J. L. Sinclair, R. Jackson. Gas-particle Flow in a Vertical Pipe with Particle-particle Interactions. AIChE, 1989, 35: 1473-1485
    93 H. Z. Li, H. Tong. Multi-scale Fluidization of Ultrafine Powders in a Fast-bed-riser/conical-dipleg CFB Loop. Chemical Engineering Science. 2004, 59: 1897-1904
    94 H. Kim, H. Arastoopour. Extension of Kinetic Theory to Cohesive Particle Flow. Powder Technology, 2002, 122: 83-94
    95郑水林.粉体表面改性.中国建材工业出版社, 2003: 9-10
    96 M. Benz, K. J. Rosenberg, E. J. Kramer, etc. The Deformation and Adhesion of Randomly Rough and Patterned Surfaces. J. Phys. Chem. B 2006, 110(24): 11884-11893
    97 D. Gidaspow, H. L. Lu. Equation of State and Radial Distribution Function of FCC Particles in a CFB. AIChE J. 1998, 44: 279-284
    98 A. Neri, D. Gidaspow, Riser Hydrodynamics: Simulation Using Kinetic Theory, AIChE Journal, 2000, 46: 52-67
    99 H. Li. Application of Wavelet Multi-resolution Analysis to Pressure Fluctuations of Gas-solid Two-phase Flow in a Horizontal Pipe. Powder technology. 2002,125: 61-73
    100 J. Q. Ren, Q. M. Mao, J. H. Li, W. G. Lin. Wavelet Analysis of Dynamic Behavior in Fluidized Beds. Chemical Engineering Science. 2001, 56: 981-988
    101 N. Ellis, L. A. Briens, J. R. Grace, H. T. Bi, Characterization of Dynamic Behaviour in Gas-solid Turbulent Fluidized Bed Using Chaos and Wavelet Analyses. Chemical Engineering Journal. 2003, 96(1-3): 105-116
    102 Y. G. Chen, Z. P. Tian, Z. Q. Miao. Detection of Singularities in the Pressure Fluctuations of Circulating Fluidized Beds Based on Wavelet Modulus Maximum Method. Chemical Engineering Science. 2004, 59(17): 3569-3575
    103 L. A. Briens, N. Ellis. Hydrodynamics of Three-phase Fluidized bed Systems Examined by Statistical, Fractal, Chaos and Wavelet Analysis Methods. Chemical Engineering Science, 2005, 66(22): 6094-6106
    104 S. Sasic, B. Leckner, F. Johnsson, Time-frequency Investigation of Different Modes of Bubble Flow in a Gas-solid Fluidized Bed. ChemicalEngineering Journal. 2006, 121(1): 27-35
    105冀海峰,黄志尧,吴贤国,李海青.基于小波变换的气固流化床压力波动信号的分析.高校化学工程学报. 2000, 14(6): 553-557
    106 G. B. Zhao, Y. R. Yang. Multiscale Resolution of Fluidized-bed Pressure Fluctuations. AIChEJ, 2003, 49(2): 869-688
    107陆继东,周浩生,钱诗智.循环流化床颗粒相湍流结构研究.工程热物理学报. 2001, 22(1): 119-122
    108王嘉骏,张文峰,冯连芳等.气固搅拌流化床压力脉动的小波分析.化工学报. 2006,52(12): 2854-2859
    109李宇龙,陈德钊.声波多尺度分析方法在流化床平均粒径检测上的应用.化工自动化及仪表. 2007, 34(4): 53-56
    110 I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics. 1992
    111 L. Zhang, Y. Y. Liu, K. Kunio. Removal of SO2 by Limestone and Some Salt Mixture in a Semidry Process with Powder Particle Spouted Bed. Journal of Shenyang Institute of Chemical Technology. 2002, 16(3): 177-183
    112林诚,朱涛,朱跃姿等.惰性粒子喷动床中反应干燥集成化制备超细碳酸钙.高校化学工程学报. 2004, 18(4): 519-523
    113 C. Brigitte, L. J. Fernando, V. Constantin. Hydrodynamic Study of Fine Metallic Powders in an Original Spouted Bed Contactor in View of Chemical Vapor Deposition Treatments. Powder Technology, 2006, 165(2): 65-72
    114徐健,鲍晓军,王诗凝等.细颗粒喷动床的流体力学特性.化工学报. 2003, 54(5): 590-595
    115何玉荣.流化床内高浓度气固两相流动特性数值模拟研究.哈尔滨工业大学博士论文. 2004: 44-50
    116 B. V. Derjaguin, V. M. Muller, Y. P. Toporov. Effect of Contact Deformations on the Adhesion of Particles, Journal of Colloid and Interface Science, 1975, 53(2): 314-326
    117黄海,黄轶伦.气固流化床压力脉动信号的Hilbert-Huang谱分析.化工学报. 2004, 55(9): 1141-1147
    118王轶,王亭杰.金涌.振动流化床中流动结构的混沌分析.化工学报.2003, 54(12): 1696-1701
    119 Y. J. Cho, S. J. Kim, S. H. Nam, Y. Kang, S. D. Kim. Heat Transfer and Bubble Properties in Three-phase Circulating Fluidized Beds. Chemical Engineering Science. 2001, 56(21/22): 6107-6115
    120李宋,吴文权.瞬态浓度场的熵与混沌特征实验研究.流体力学实验与测量. 2004,18(4): 93-98,104
    121黄轶伦,黄海,陈伯川.复杂性在气固流化床流型识别中的应用.高校化学工程学报. 2004, 18(4): 453-458
    122石磊,张作义,高祖瑛. 200MW核供热堆两相流密度波不稳定性实验的Shannon信息熵特性研究.核动力工程. 2004, 25(1): 18-21
    123 W. Q. Zhong, M. Zhang. Characterization of Dynamic Behavior of a Spout-fluid Bed with Shannon Entropy Analysis. Powder Technology, 2005, 159(2): 121-126
    124梁财,陈晓平,蒲文灏.高压浓相粉煤气力输送特性及信息熵分析.化工学报. 2007,58(5): 1191-1196
    125王彬.熵与信息.西北工业大学出版社. 1991,97-102
    126王敬修.论熵的物理意义.北京化工学院学报. 1994,21 (3):86-92
    127 D. Jonathan, H. Smith. Some Observations on the Concepts of Information-theoretic Entropy and Randomness. Entropy. 2001, 3: 1-11
    128 V. Jiradilok. Fluidization of Nanoparticles in a Two Dimensional Bed. Illinois Institute of Technology, PhD Dissertation. 2006: 27-33
    129 T. Zhou, H. Z. Li. Estimation of Agglomerate Size for Cohesive Particles during Fluidization. Powder Technology. 1999, 101: 57-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700