用户名: 密码: 验证码:
循环流化床锅炉流动、传热和燃烧模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效、低污染地利用能源是可持续性发展的必然要求。循环流化床燃烧技术正是由于其高效、低污染和煤种适应性广等优点受到世界各国的高度重视,已成为清洁煤燃烧技术的主导发展方向之一,在我国,特别是现阶段,煤仍然是主要的一次能源,所以发展循环流化床燃烧技术对于节能和环保都有重要的现实意义。
     为了保证循环流化床锅炉的合理设计和优化运行,研究设计和操作参数对锅炉的燃烧效率、稳定性等方面的影响是十分重要的。试验的方法虽然必要,但是影响锅炉运行的变量参数之多,使得不可能对每一种工况都进行试验,而满足一定精度要求的数学模型则是一种有效的替代手段,它可节省人力、物力,甚至可以弥补试验手段的不足之处,因此数学模拟又被形象地称为“数值试验”。
     本论文的主要目的是在理论研究和试验结果的基础上,发展循环流化床锅炉整体数学模型,为循环流化床锅炉的设计、优化运行提供可靠参数和信息指导。
     首先,论文采用半经验方法,建立了一个流动模型,以此来估算循环流化床锅炉局部的固体颗粒体积份额分布。该模型假设颗粒在循环流化床锅炉内部呈现环核流动结构,炉膛沿高度方向分为下部浓度较高的密相区、上部颗粒浓度较低的稀相区以及连接这两个区的过渡区,论文中称之为飞溅区。相对于催化裂化流化床而言,循环流化床锅炉往往采用宽筛分颗粒,论文将整个宽筛分颗粒离散为若干组,模型考虑各组颗粒在燃烧过程中的破碎、磨损和缩合等化学、物理过程。模拟结果显示靠近炉膛壁面附近的颗粒的平均直径大于炉膛中心位置的颗粒的平均直径;而沿着炉膛高度方向,颗粒的平均直径逐渐减小,特别是在由密相区向稀相区过渡的飞溅区,颗粒的平均直径迅速减小,这些预测结果与参考文献中的试验数据吻合良好。
     其次,在流动模型的基础上,论文发展了一个用来预测循环流化床锅炉稀相区床层与壁面辐射传热系数的三维模型。模型采用离散坐标法求解辐射传热方程。由于炉膛内存在着煤、焦碳、飞灰、沙子和石灰石等多种颗粒,论文采用Mie散射理论计算不同颗粒的吸收、散射系数等。论文引用文献中的试验数据对模型进行了验证,在此基础上,模型考虑了温度场、表观气体速度等对辐射传热系数的影响,同时也考虑了颗粒特性(包括颗粒直径、宽筛分、颗粒分层、颗粒的光学系数和颗粒的混合等)对辐射传热系数的影响。模拟结果显示:温度场和表观气体速度对于稀相区床层与壁面之间的辐射传热系数有着重大的影响,而颗粒特性也对该系数有着不同程度的影响。论文还讨论了当采用宽筛分燃料时,用Sauter平均直径来计算辐射传热系数比较合适。
     在流动模型的基础上,本论文建立了以“颗粒团更新理论”为基础的对流传热模型,并讨论了模型所涉及的参数的确定方法。这样,通过对流传热系数与辐射传热系数的叠加,整个循环流化床锅炉床内与壁面的传热过程即可进行整体模拟。
     再次,在循环流化床锅炉流动、传热模型的基础上,本论文建立了一个简单的煤燃烧模型。模型考虑了挥发份的析出、燃烧和焦碳燃烧等模型。模型预测了挥发份中各气体组分沿炉膛高度方向的浓度分布,还预测了燃烧后一些主要气体沿炉膛高度方向的浓度分布。结果显示,大部分挥发份在循环流化床锅炉的下部区域析出并燃烧,但仍然有小部分挥发份气体在上部区域燃烧;对于整个燃烧份额而言,而下部区域只占燃烧量的50%左右,远小于鼓泡流化床锅炉的80%;模型还分析了宽筛分燃料的挥发份在炉膛内燃烧的规律。
     最后,对全文的研究内容和结果进行了总结,指出用离散坐标法来求解辐射传热方程,同时用Mie理论来考虑循环流化床锅炉中各种辐射传热介质的吸收和散射系数,这样计算的辐射传热系数的精度将大大提高。而当循环流化床锅炉采用宽筛分燃料时,将导致明显的轴向和径向的颗粒分层,从而影响到传热系数、挥发份的析出和燃烧以及燃料燃烧份额在炉膛高度方向的分布变化等。
Sustainable development needs efficient energy production and low environmental impact. At short and medium terms, low emission of coal combustion may have an important role in this content, particularly in China. Circulating fluidized bed combustors (CFBC) with some particular advantages in this respect provide the availability of reliable design method and control tools.
     In spite of the great industrial and academic interest in circulating fluidized bed combustors, an effective method to design boiler with various possible fuel for CFB boiler and to scale-up furnace is strongly needed.
     This dissertation aims to develop an overall mathematical model of circulating fluidized bed (CFB) combustors on up-to-date theories and experimental data of previous research work.
     Since solid particles exhibit a wide particle size distribution in CFB boilers, a hydrodynamic model based on the semi-empirical approach is developed to approximate the local particle size distribution in CFB. The core/annulus flow structure is applied in this model and the particles in the bed are discretized into several size groups. The model accounts for the disintegration and shrinking of coal particles during the combustion process of each group of particles. It shows that coarser particles are gathered near the walls and the average particle diameter decreases along the boiler height, and this trend is more significant in the splash region.
     A three-dimensional model is developed to predict the bed-to-wall radiative heat transfer coefficient in the upper dilute zone of CFB combustors. The radiative transfer equation is solved by the discrete ordinates method. The Mie scattering theory is applied to calculate the absorption and scattering efficiency factors of particles existing in CFB combustors. The model considers the influences of particle properties (including particle size distribution, particle optical constants and solid composition) on the radiative heat transfer coefficient. Simulation results show that the particle properties have significant influences on the bed-to-wall radiative heat transfer coefficient in CFB combustors.
     The cluster renewal model is applied to predict the convective heat transfer coefficient. Therefore, the total heat transfer coefficient is simulated.
     A coal combustion model is developed combined to the hydrodynamic model and heat transfer model. It considers the devolatilization, volatile combustion and char combustion. The main gas concentration profiles in the CFB combustor are simulated.
引文
[1]姚福生,洁净煤技术,科技日报,2002.4.11.
    [2]中国电力年鉴,2001,http://www.chinapower.com.cn/
    [3]毛健雄,煤的清洁燃烧,科学出版社,1998
    [4]中国21世纪议程——中国21世纪人口、环境与发展的白皮书,中国环境科学出版社,1994
    [5]岑超平,同时脱硫脱氮处理是我国烟气治理的发展方向,环境保护,2001, NO.12: 17~21
    [6]陆延昌,大力发展超临界压力机组优化火电结构,中国电力,2000, 33(1): 1-5
    [7]曹文亮,高建强,王兵树等,对几种洁净煤发电技术及其经济性能的探讨,锅炉技术,2003, 34(3): 7-10
    [8]高纪栓,循环流化床锅炉及其技术特点,区域供热,2004, NO.3: 5~9
    [9]陈望祥,关于电力工业产业政策和发展规划的建议,http://www.chinainfo.gov.cn/, 2004
    [10]王耀昕,大型循环流化床锅炉的发展趋势,电站系统工程,2004, 20(2): 64
    [11]李官鹏,程世庆,韩奎华,循环流化床锅炉的发展和特点,电站系统工程,2004, 20(2): 23-24
    [12]肖平,蒋敏华,循环流化床锅炉的发展前景,2004, 33(1): 2~5
    [13]岳光溪,循环流化床技术发展与应用(下),节能与环保,2004, 11(1): 11-12
    [14]吴正舜,煤的破碎机理及循环流化床燃烧技术的应用研究,华中科技大学博士学位论文,2001
    [15]王应时,范维澄,周力行等,燃烧过程数值计算,科学出版社,1986
    [16]张家琛,火电厂仿真,华中理工大学出版社,1994
    [17]钱诗智,气固流化床流体动力学特性的实验研究及数学模化,华中理工大学博士学位论文,1999
    [18] Basu, P., Combustion of coal in circulating fluidized-bed boilers: a review, ChemicalEngineering Science 54 (1999) 5547-5557.
    [19] Pugsley, T.S. Berruti, F., A predictive hydrodynamic model for circulating fluidized bed risers, Powder Technology 89 (1996) 57-69.
    [20] Werther S., Fluid mechanics of large-scale CFB units, in: A. Avidan (Ed.), Circulating Fluidized Bed Technology IV, Somerset, Pennsylvania, New York: AIChE (1993) pp.1-14.
    [21] Azzi, M., Turlier , P., Large, J.F., Bernard, J.R., in: P. Basu, M. Horio and M. Hasatani (Eds.), Circulating Fluidized bed Technology III, Pergamon Press, Oxford (1990) pp.189-194.
    [22] Kunii, D., Levenspiel, O., Fluidization Engineering 2nd edition. Butterworth-Heinemann, Boston (1991).
    [23] Couturier, M., Doucette, B., Stevens, O., Poolpol, S., Razbin, V., Proc. Int. Conf. Fluidized Bed Combustion. Montreal (1991) 107-114.
    [24] King, D., in: O.E. Potter and D.J. Nicklin (Eds.), Fluidization VII, Engineering Foundation, New York (1992) pp.15-26.
    [25] Werdermann, C., Dr.-Ing. dissertation Technical University Hamburg-Harburg (1992).
    [26] Zhang, W., Johnsson, F., Leckner, B., 6th China National Conference on Fluidization, October 6-9 (1993) Wuhan, China.
    [27] Saxton, A.L., Worley, A.C., the Oil and Gas Journal, May 18 (1970) 82-99.
    [28] Viitanen, P., Ind. Eng. Chem. Res. 32 (1993) 577-583.
    [29] Engstrom F., Lee Y.Y., Future challenges of circulating fluidized bed combustion technology, in: P. Basu, M. Horio and M. Hasatani (Eds.), Circulating Fluidized bed Technology III, Pergamon Press, Oxford (1990) pp.15-26.
    [30] Bai D., Jin J., Yu Z., Zhu J., The axial distribution of the cross-sectionally averaged voidage in fast fluidized beds, Powder Technology 71 (1992) 51– 58.
    [31] Knoebig T., Luecke K., Werther J., Mixing and reaction in the circulating fluidized bed– A three-dimensional combustor model, Chemical Engineering Science 54 (1999) 2151-2160
    [32] Senior R.C., Brereton C., Modelling of circulating fluidized-bed solids flow and distribution, Chemical Engineering Science 47 (1992) 281-296.
    [33] Johnsson F., Breitholtz C., Leckner B., Solids segregation in a CFB-boiler furnace, in: L.S. Fan, T.M. Knowlton (Eds.), Fluidization IX, Engineering Foundation, New York (1998) pp. 755-764.
    [34] Mathiesen V., Solberg T., Hjertager B.H., An experimental and computational study of multiphase flow behavior in a circulating fluidized bed, International Journal of Multiphase Flow 26 (2000) 387-419.
    [35] Harris B.J., Davidson J.F., Modelling options for circulating fluidized beds: a core/annulus deposition model, in: A. Avidan (Ed.), Circulating Fluidized Bed Technology IV, Somerset, Pennsylvania, New York: AIChE (1993) pp.35-40.
    [36] Hyre M.R., Glicksman L.R., Axial and lateral solids distribution modeling in the upper region of circulating fluidized beds, Powder Technology 110 (2000) 98-109.
    [37] Phillippek C., Knobig T., Schonfelder H., Werther J., NOX formation and reduction during combustion of wet sewage sludge in the circulating fluidized bed– measurements and simulation, in: F.D.S. Preto (Ed.), Proceedings of the 14th international conference on fluidized bed combustion, New York: ASME, Vol.2 (1997) pp.983-996.
    [38] Montat D., Fauquet P., Lafanechere L., Bursi J., SILVA: EDF two phase 1D annular model of a CFB boiler furnace, in: F.D.S. Preto (Ed.), Proceedings of the 14th international conference on fluidized bed combustion, New York: ASME, Vol.2 (1997) pp.1023-1032.
    [39] Johnsson F., Leckner B., Vertical distribution of solids in a CFB-furnace, in: K.J. Heinschel (Ed.), Proceedings 13th international conference on fluidized bed combustion, ASME, Orlando, Vol.1 (1995) pp.671-679.
    [40] Sarvaia P.C., Azevedo J.L.T., Carvalho M.G., Modeling combustion, NOX emissions and SO2 retention in a circulating fluidized bed, in: L.N. Rubow (Ed.), Proceedings of the 12th international conference on fluidized bed combustion, New York: ASME, Vol.3 (1993) pp.375-380.
    [41] Hannes J., Renz U., van den Bleek C.M., The IEA model for circulating fluidized bed combustion, in: K.J. Heinschel (Ed.), Proceedings 13th international conference on fluidized bed combustion, ASME, Orlando, Vol.1 (1995) pp.287-296.
    [42] Talukdar J., Basu P., Greenblatt J.H., Reduction of calcium sulfate in circulatingfluidized bed furnace, Fuel 75 (1996) 1115-1123.
    [43] Basu P., Talukdar J., Wu S., Experimental validation of one and half dimensional model of char combustion in a circulating fluidized bed, AIChE Symposium Series, no. 301, Vol.90, (1994) pp.114-123.
    [44] Johnsson F., Andersson S., Leckner B., Expansion of a freely bubbling fluidized bed, Powder Technology 68 (1991) 117-123.
    [45] Werther J., Wein J. Expansion behavior of gas fluidized beds in the turbulent regime. AIChE Symposium Series, no. 301, Vol.90 (1994) pp.31-44.
    [46] Adanez J., Gayàn P., Grasa G., de Diego L.F., Armesto L., Cabanillas A., Circulating fluidized bed combustion in the turbulent regime: modelling of carbon combustion efficiency and sulphur retention, Fuel 80 (2001) 1405-1414.
    [47]李政,循环流化床锅炉通用整体数学模型、仿真与性能预测,清华大学博士学位论文,1994
    [48] Geldart, D, J. Cullinan, D. Gilvray, S. Georghiades and D. J. Pope, The effects of fines on entrainment from gas fluidized beds, Trans. Inst. Chem. Engrs. 57 (1979) 269
    [49] Patience, G.S., Chaouki J., Gas phase hydrodynamics in the riser of a circulating fluidized bed, Chemical Engineering Science 48 (1993) 3195-3205.
    [50] Puchyr D.M., Mehrotra A.K., Behie L.A., Kalogerakis, N.E., Modelling a circulating fluidized bed riser reactor with gas-solids downflow at the wall, Canadian Journal of Chemical Engineering 75 (1997) 317–326.
    [51] Bi X.T., Zhou J., Qin S.Z., Grace J.R., Annular wall layer thickness in circulating fluidized bed risers, Canadian Journal of Chemical Engineering 74 (1996) 811-814.
    [52] Harris A.T., Thorpe R.B., Davidson J.F., Characterization of the annular film thickness in circulating fluidized-bed risers, Chemical Engineering Science 57 (2002) 2579-2587.
    [53] Zhang W., Tung Y., Johnsson F., Radial voidage profiles in fast fluidized beds of different diameters, Chemical Engineering Science 46 (1991) 3045-3052.
    [54] Wu R.L., Grace J.R., Lim C.J., A model for heat transfer in circulating fluidized beds, Chemical Engineering Science 45 (1990) 3389-3398.
    [55] Rhodes M.J., Modelling the flow structure of upward-flowing gas-solids suspensions, Powder Technology 60 (1990) 27-38.
    [56] Koenigsdorff R., Werther J., Gas-solids mixing and flow structure modeling of the upper dilute zone of a circulating fluidized bed, Powder Technology 82 (1995) 317-329.
    [57] Pugsley T.S., Berruti F., A predictive hydrodynamic model for circulating fluidized bed risers, Powder Technology 89 (1996) 57-69.
    [58] Werther J., Hartge E.-U., Kruse M., Gas mixing and interphase mass transfer in the circulating fluidized bed, in: O.E. Potter and D.J. Nicklin (Eds.), Proceedings of FLUIDIZATION VII, Brisbane, Australia (1992) pp.257–264.
    [59] Teplitsky Yu.S., Borodulya V.A., Nogotov E.F., Axial solids mixing in a circulating fluidized bed, International Journal of Heat and Mass Transfer 46 (2003) 4335-4343.
    [60] Venderbosch R.H., Prins W., Kiel J.H.A., van Swaaij W.P.M., Solids hold-up and pressure gradients in a small laboratory riser, In: M. Kwauk and J. Li (Eds.), Circulating Fluidized Bed Technology V, Beijing (1996) 96-102.
    [61] Plasynski S.I., Klinzing G.E., Mathur M., High-pressure vertical pneumatic transport investigation, Powder Technology 79 (1994) 95-109.
    [62] Geldart D., Pope D.J., Interaction of fine and coarse particles in the freeboard of a fluidized bed, Powder Technology 34 (1983) 95-97.
    [63] Na Y., Yan G., Leckner B., Large and small particles in CFB combustions, In: M. Kwauk and J. Li (Eds.), Circulating Fluidized Bed Technology V, Beijing (1996) 194-199.
    [64] Peirano E., Leckner B., A mean diameter for numerical computations of polydispersed gas-solid suspensions in fluidization, Chemical Engineering Science 55 (2000) 1189-1192.
    [65] Weinell C.E., Johansen K.D., Johnsson J.E., Single-particle behaviour in circulating fluidized beds, Powder Technology 92 (1997) 241-252.
    [66] Katoh Y., Glicksman L.R., Lints M.C., Visualization of the particles behavior near the wall of a circulating fluidized bed, Video Presentation (1990) 2nd ASME-JSME Fluid Engineering Joint Conference.
    [67] Li J., Xia Y., Tung Y., Kwauk M., Micro-visualization of the two-phase structure in a fast fluidized bed, in: P. Basu, M. Horio and M. Hasatani (Eds.), Circulating Fluidized bed Technology III, Pergamon Press, Oxford (1991) pp.183-188.
    [68] Lints M., Glicksman L.R., The structure of particle clusters near the wall of a circulating fluidized bed, AIChE Symposium Series, 89 (No.296) (1993) pp.35-47.
    [69] Griffith A.E., Louge M.Y., The scaling of cluster velocity at the wall of circulating fluidized bed risers, Chemical Engineering Science 53 (1998) 2475– 2477.
    [70] Noymer P.D., Glicksman L.R., Descent velocities of particle clusters at the wall of a circulating fluidized bed, Chemical Engineering Science 55 (2000) 5283-5289.
    [71] Soong C.H., Tuzla K., Chen J.C., Experimental determination of cluster size and velocity in circulating fluidized beds, in: J.F. Large and C. Laguerie (Eds.), Proceedings of FLUIDIZATION VIII, Tours, France, Engineering Foundation, New York (1995) pp.219– 227.
    [72] Golriz M., Leckner B., Experimental studies of heat transfer in a circulating fluidized bed boiler, in: Proceedings International Conference on Engineering Applications of Mechanics, Sharif University of Technology, Tehran, Iran, Vol. 3, 1992, pp.167– 174.
    [73] Gidaspow D., Tsuo Y.P., Luo K.M., Computed and experimental cluster formation and velocity profiles in circulating fluidized beds, in: J.R. Grace, L.W. Shemilt and M.A. Bergougnou (Eds.), Fluidization VI, Banff, Canada, 1989, pp.81–88.
    [74] Molerus O., Fluid dynamics and its relevance for basic features of heat transfer in circulating fluidized beds, in: A. Avidan (Ed.), Circulating Fluidized Bed Technology IV, AIChE New York, 1993, pp.311–318.
    [75] Rhodes M.J., Mineo H., Hirama T., Particle motion at the wall of 305mm diameter riser of a cold model circulating fluidized bed, in: P. Basu, M. Horio and M. Hasatani (Eds.), Circulating Fluidized Bed Technology III, Pergamon, Oxford, 1991, pp.207– 214.
    [76] Takeuchi H., Pyatenko A.T., Hatano H., Gross behavior of parabolic strands in a riser, in: L.S. Fan and T.M. Knowlton (Eds.), Proceedings of FLUIDIZATION IX, Durango, CO, Engineering Foundation, New York (1998) pp.173–180.
    [77] Wu R.L., Lim C.J., Grace J.R., Brereton C.M.H., Instantaneous local heat transfer and hydrodynamics in a circulating fluidized bed, International Journal of Heat andMass Transfer 34 (1991) 2019–2027.
    [78] Hartge E.-U., Resneer D., Werther J., Solids concentration and velocity patterns in circulating fluidized beds, in: P. Basu and J.F. Large (Eds.), Circulating Fluidized Bed Technology II, Pergamon, Oxford (1988) pp.165– 180.
    [79] Horio M., Morishita K., Tachibana O., Murata N., Solid distribution and movement in circulating fluidized beds, in: P. Basu and J.F. Large (Eds.), Circulating Fluidized Bed Technology II, Pergamon, Oxford (1988) pp.147–154.
    [80] Nicolai R., Goedicke F., Tanner H., Reh L., Particle induced heat transfer between walls and gas-solid fluidized beds, in: A. Avidan (Ed.), Circulating Fluidized Bed Technology IV, AIChE New York (1993) pp.305– 309.
    [81] Nowak W., Mineo H., Yamazaki R., Yoshida K., Behavior of particles in a circulating fluidized bed of a mixture of two different sized particles, in: P. Basu, M. Horio and M. Hasatani (Eds.), Circulating Fluidized Bed Technology III, Pergamon, Oxford (1991) pp.219–224.
    [82] Rudnick C., Werther J., The discrimination of cluster characteristics from fiber optic probe signals in circulating fluidized beds, in: L.S. Fan and T.M. Knowlton (Eds.), Proceedings of FLUIDIZATION IX, Durango, USA, Engineering Foundation, New York, (1998) pp.573– 580.
    [83] Tsukada M., Nakanishi D., Horio M., Effect of pressure on transport velocity in a circulating fluidized bed, in: A. Avidan (Ed.), Circulating Fluidized Bed Technology IV, AIChE New York (1993) pp.209–215.
    [84] Zevenhoven R., Near wall particle velocity and concentration measurements in circulating fluidized beds in relation to heat transfer, in: B.R. Robert (Ed.), Proceedings of the 15th International Conference on Fluidized Bed Combustion, Savannah, GA, American Society of Mechanical Engineers (1999) Paper No. FBC99-0097.
    [85] Zhou J., Grace J.R., Lim C.J., Brereton C.M.H., Particle velocity profiles in a circulating fluidized bed riser of square cross section, Chemical Engineering Science 50 (1995) 237-244.
    [86] Bader R., Findlay J., Knowlton T.M., Gas/solid flow patterns in a 30.5-cm-diameter circulating fluidized bed, in: P. Basu and J.F. Large (Eds.), Circulating Fluidized BedTechnology II (1988) pp.161–165.
    [87] Harris B.J., Davidson J.F., A core-annulus deposition model for circulating fluidized beds, in: A. Avidan (Ed.), Circulating Fluidized Bed Technology IV, AIChE New York (1993) pp.32-39.
    [88] Miller A., Gidaspow D., Dense vertical gas-solid flow in a pipe, AIChE J. 38 (1992) 1801-1815.
    [89] Qian G., Li J., Particle velocity measurement in a CFB with an integrated probe, in: A. Avidan (Ed.), Circulating Fluidized Bed Technology IV, AIChE New York, 1993, pp.274-278.
    [90] Harris A.T., Davidson J.F., Thorpe R.B., The prediction of particle cluster properties in the near wall region of a vertical riser, Powder Technology 127 (2002) 128-143.
    [91] Bellgardt F., Hembach F., Schossler M., Werther J., Modeling of large scale atmospheric fluidized bed combustors, in: J.P. Mustonen, (Ed.), Proceedings 9th Int. Conf. Fluidized Bed Combustion, ASME, Boston (1987) pp. 713-721.
    [92] Chirone R., D’Amore M., Massimilla L., Mazza A., Char attrition during the batch fluidized bed combustion, AIChE Journal 31 (1985) 812-820.
    [93] Pis T.J., Fuertes A.B., Artos V., Suarez A., Rubiera F., Attrition of coal ash particles in a fluidized bed, Powder Technology 66 (1991) 41.
    [94] Arena U., Cammarota A., Massimilla L., Siciliano L., Basu P., Carbon attrition during the combustion of a char in a circulating fluidized bed, Combustion Science and Technology 73 (1990) 383-394.
    [95] Riehle C., Measuring and calculating solid carry over in a CFB cold flow model for different materials, Powder Technology 107 (2000) 207-211.
    [96] Hirschberg B., Werther J., Factors affecting solids segregation in circulating fluidized bed riser, AIChE Journal 44 (1998) 25-34.
    [97] Chesonis D., Klinzing G., Shah Y., Dassori C., Solids mixing in a recirculating fluidized bed, In: P. Basu, M. Horio and M. Hasatani (Eds.), Circulating Fluidized Bed Technology III, Pergamon Press, New York, 1990, pp.587-594.
    [98] Jiang P., Bi H., Liang S., Fan L.S., Hydrodynamic behavior of circulating fluidized bed with polymeric particles, AIChE Journal 40 (1994) 193-206.
    [99] Bai D., Nakagawa N., Shibuya E., Kato H., Axial distribution of solids holdups inbinary solids circulating fluidized beds, Journal Chemical Engineering of Japan 27 (1994) 271-279.
    [100] den Moortel T.V., Azario E., Santini R., Tadrist L., Experimental analysis of the gas-particle flow in a circulating fluidized bed using a phase Doppler particle analyzer, Chemical Engineering Science 53 (1998) 1883-1899.
    [101] Karri S.B.R., Knowlton T.M., Flow direction and size segregation of annulus solids in a riser, in: L.S. Fan and T.M. Knowlton (Eds.), Fluidization IX, Durango, USA, Engineering Foundation, New York (1998) pp.189-196.
    [102] Arastoopour H., Yang Y., Experimental studies on the dilute gas and cohesive particles flow behavior using Laser Doppler Anemometer, in: O.E. Potter and D.J. Nicklin (Eds.), Fluidization VII, Brisbane, Australia, Engineering Foundation, New York (1992) pp.723-731.
    [103] Horio M., in: J.R.Grace, A.A.Avidan and T.M.Knowlton (Eds.), Circulating fluidized beds, Blackie Academic & Professional (1997) pp.42-43.
    [104] Saraiva P.C., Azevdo J.L.T., Carvalho G., Mathematical simulation of a circulating fluidized bed combustor, Combust Science and Technology 93 (1993) 233-242.
    [105] Adanez J., de Diego L.F., Gayan P., Armesto L., Cabanillas A., A model for prediction of carbon combustion efficiency in circulating fluidized bed combustors, Fuel 74 (1995) 1049-1056.
    [106] Field M.A., Gill D.W., Morgan B.B., Hawksley P.G.W., Combustion of pulverized coal, BCURA, Leatherhead (1967).
    [107] Joutsenoja T., Heino P., Hernberg R., Bonn B., Pyrometric temperature and size measurements of burning coal particles in a fluidized bed combustion reactor, Combustion and Flame 118 (1999) 707-717.
    [108] Zhou H., Flamant G., Gauthier D., DEM-LES simulation of coal combustion in a bubbling fluidized bed. Part II: coal combustion at the particle level, submitted for publication to Chemical Engineering Science (2003).
    [109] Zhao J., Brereton C., Grace J.R., Lim C.J., Legros R., Gas concentration profiles and NOX formation in circulating fluidized bed combustion, Fuel 76 (1997) 853-860.
    [110] Lewis W.K., Gilliland E.R., Lang P.M., Entrainment from fluidized beds, Chemical Engineering Progress Symposium Series 58 (1962) 65-78.
    [111] Peirano E., Leckner B., Fundamentals of turbulent gas-solid flows applied to circulating fluidized bed combustion, Progress in Energy and Combustion Science 24 (1998) 259-296.
    [112] Wirth K.E., Seiter M., Solids concentration and solids velocity in the wall region of circulating fluidized bed, in: E.J. Anthony (Ed.), Proceedings of the 14th international conference on fluidized bed combustion, Montreal (1991) pp.311-316.
    [113] Werdermann C.C., Werther J., Heat transfer in large-scale circulating fluidized combustors of different sizes, in: A.A. Avidan (Ed.), Circulating Fluidized Bed Technology IV, AIChE, New York (1994) pp.436-441.
    [114] Milioli F.E., Foster P.J., A model for particle size distribution and elutriation in fluidized beds, Powder Technology 83 (1995) 265-280.
    [115] Do H.T., Grace J.R., Clift R., Particle ejection and entrainment from fluidized beds, Powder Technology 6 (1972) 195-200.
    [116] Flamant G., Transfert de chaleur couplés dans les lits fluidisésàhaute température, Applicationàla conversion thermique de l’énergie solaire, thèse de docteur Es-Sciences, No. 93, Institut National Polytechnique de Toulouse, Mar 4 (1985).
    [117] Andersson B.-A., Leckner B., Bed-to-wall heat transfer in circulating fluidized bed boilers, Presented at 2nd Minsk International Heat and Mass Transfer Forum, Minsk, USSR. 1992
    [118] Golriz M.R., Sunden B., An experimental investigation of thermal characteristics in a 12MWth CFB boiler, Expt. Heat Transfer, 7 (1994) 217-233.
    [119] Basu P., Nag P.K., Heat transfer to walls of a circulating fluidized-bed furnace, Chemical Engineering Science 51 (1996) pp 1-26.
    [120] Breitholtz C., Heat transfer in circulating fluidized bed boilers, PhD thesis, Chalmers University of Technology, G?teborg, Sweden (2000).
    [121] Baskakov A., Leckner B., Breitholtz K., Complex heat transfer furnaces with a circulating fluidized bed, Heat Transfer Research, 32 (2001) 343-348.
    [122] Andersson B.-A., Effect of bed particle size on heat transfer in circulating fluidized bed boilers, Powder Technology, 87 (1996) 233-238.
    [123] Dutta A, Basu P., Overall heat transfer to water-walls and wing-walls of commercial circulating fluidized bed boilers, Journal of the Institute of Energy, 75 (2002) 75-80.
    [124] Dutta A., Basu P., An improved cluster-renewal model for estimation of heat transfer coefficients on the water-walls of commercial circulating fluidized bed boilers, 17th Int. Fluidized Bed Combustion Conference, Jacksonville, ASME, May (2003).
    [125] Flamant G., Menigault T., Combined wall-to-fluidized bed heat transfer. Bubbles and emulsion contributions at high temperature, International Journal of Heat and Mass Transfer 30 (1987) 1803-1812.
    [126] Kudo K., Taniguchi H., Kaneda H., Yang W., Zhang Y., Guand K.H., Matsumura M., Flow and heat transfer simulation in circulating fluidized beds, in: P. Basu, M. Horio and M. Hasatani (Eds.), Circulating Fluidized Bed Technology III, Pergamon Press, Oxford (1991) pp.269-274.
    [127] Johnsson F., Andersson B.A., Leckner B., Heat transfer in FBB-discussion on models, Presented at IEA Meeting on mathematical Modeling on AFBC in Boston, May (1987).
    [128] Johnsson F., Andersson B.A., Leckner B., Heat transfer in circulating fluidized bed boilers, Minsk International Heat and mass transfer Forum, May, Minsk, USSR (1988).
    [129] Sekthira A., Lee Y.Y., Genetti W.E., Heat transfer in circulating fluidized bed, Proceedings of the 25th National Heat Transfer Conference, Houston, Texas (1988).
    [130] Nowak W., Arai N., Hasatani M., Bis Z., Busoul M., Stochastic model of heat transfer in circulating fluidized bed, Proceedings of the 4th SCEJ Symposium on Circulating Fluidized Bed, Tokyo, December (1991) pp.19-29.
    [131] Qi C., Farag I.H., Heat transfer mechanism due to particle convection in circulating fluidized bed, preprint volume, 4th International Conference on CFB, Aug 1-5, Pittsburg, USA (1993) pp.396-401.
    [132] Basu P., Nag P.K., An investigation into heat transfer in circulating fluidized beds, International Journal of Heat and Mass Transfer 30 (1987) 2399-2409.
    [133] Subbarao, D., Basu, P., A model for heat transfer in circulating fluidized beds, International Journal of Heat and Mass Transfer 29 (1986) 487-489.
    [134] Glicksman L.R., Circulating fluidized bed heat transfer, in: P. Basu and J.F., Large (Eds.), Circulating Fluidized Bed Technology II, Pergamon press, Oxford (1988) pp. 13-29.
    [135] Lints M.C., Glicksman L.R., Parameters governing particle to wall heat transfer in a circulating fluidized bed, in: A.A. Avidan (Ed.), Circulating Fluidized Bed Technology IV, AIChE, New York (1994) pp.297-304.
    [136] Yenming Z., Gantang C., Zhangmao W., A model for bed-to-surface heat transfer in circulating fluidized beds, J. Chem. Ind. Engg (in Chinese) (1989) 1-11.
    [137] Wu R.L., Grace J.R, Lim C.J., A model for heat transfer in circulating fluidized beds, Chemical Engineering Science 45 (1990) 3389-3398.
    [138] Chen J.C., Cimini R.J., Dou S.S., A theoretical model for simultaneous convective and radiative heat transfer in circulating fluidized bed, in: P. Basu and J.F., Large (Eds.), Circulating Fluidized Bed Technology II, Pergamon Press, Oxford (1988) pp. 255-262.
    [139] Leckner B., Heat transfer in circulating fluidized bed boilers, in: P. Basu, M. Horio and M. Hasatani (Eds.), Circulating Fluidized bed Technology III, Pergamon Press, Oxford (1991) pp.27-38.
    [140] Mahalingam M., Kolar A.K., Heat transfer model for the membrane wall of a high temperature circulating fluidized bed, in: P. Basu, M. Horio and M. Hasatani (Eds.), Circulating Fluidized bed Technology III, Pergamon Press, Oxford (1991) pp. 239-246.
    [141] Mahalingam M., Kolar, A.K., Emulsion layer model for wall heat transfer in a circulating fluidized bed, AIChE Journal 37 (1991) 1139-1150.
    [142] Ziegler E.N., Koppel L.B., Brazelton W.T., Effects of solid thermal properties on the heat transfer to gas fluidized beds, Ind. Engng Chem. Fundam. 3 (1964) 324-328.
    [143] Chen C.C, Chen C.L, Experimental study on the bed-to-wall heat transfer in a circulating fluidized bed, Chemical Engineering Science 47 (1992) 1017-1025.
    [144] Reddy B. V. and P. Basu A model for heat transfer in a pressurized circulating fluidized bed furnace, International Journal of Heat and Mass Transfer 44 (2001) 2877-2887.
    [145] Wu R.L., Grace J.R, Lim C.J., Brereton C.M.H., Suspension-to-surface heat transfer in a circulating fluidized bed combustor, AIChE Journal 35 (1989) 1685-1691.
    [146] Wu R.L., Lim C.J., Grace J.R, The measurement of instantaneous local heat transfer coefficient in circulating fluidized bed. Can. J. Chem. Eng. 67 (1989) 301-307.
    [147] Couturier M., Doucette B., Stewart F.R., Poolpol S., Experimental determination of heat transfer coefficient in 72MWt circulating fluidized bed boiler, in: L.N. Rubow (Ed.), Proceedings of the 12th international conference on fluidized bed combustion, New York: ASME (1993) pp.1215-1222.
    [148] Kobro H., Brereton C., Control of fluidity of circulating fluidized beds, in Circulating Fluidized Bed Technology (Ed. P. Basu), Pergamon Press, Toronto (1986) pp.263-272.
    [149] Lints M, Glicksman L.R., The structure of particle clusters near the wall of a circulating fluidized bed, AIChE Symposium Series 89 (1993) 35-47.
    [150] Decker N.A., Glicksman L.R., Conduction heat transfer at the surface of boilers immersed in gas fluidized beds of spherical particles, AIChE Symposium Series 77 (1981).
    [151] Wu R.L., Lim C.J., Grace J.R, Brereton C.M.H., Instantaneous local heat transfer and hydrodynamics in a circulating fluidized, International Journal of Heat and Mass Transfer 34 (1991) 2019-2027.
    [152] Lints M., Particle-to-wall heat transfer in circulating fluidized beds, Doctoral Thesis, Massachusetts Institute of Technology, Cambridge MA (1992).
    [153] Basu P., Heat transfer in high temperature fast fluidized beds, Chemical Engineering Science 45 (1990) 3123-3136.
    [154] Li J., Xia Y., Tung Y., Kwauk M., Micro-visualization of the two-phase structure in a fast fluidized bed, in: P. Basu, M. Horio and M. Hasatani (Eds.), Circulating Fluidized bed Technology III, Pergamon Press, Oxford (1991) pp.183-188.
    [155] Wen C.Y., Miller E.N., Heat transfer in solid-gas transport lines, Ind. Eng. Chem. 53 (1961) 51-53.
    [156] Basu P., Fraser S.A., Circulating Fluidized Bed Boilers-Design and Operation (1991) Butterworths-Heinemann, Stoneham.
    [157] Mickley S.H., Fairbanks D.F., Mechanism of heat transfer to fluidized beds, AIChE Journal 1 (1955) 1135-1147.
    [158] Gelperin N.I., Einstein V.G., Heat transfer in fluidized beds, in Fluidization (Edited by J.F., Davidson and D., Harrison) (1971) Academic Press, New York.
    [159] Han G.Y., Cho Y.J., Radiative heat transfer in a circulating fluidized bed coalcombustor, Powder Technology 102 (1999) 266-273.
    [160] Modest M. F., Radiative Heat Transfer, McGray-Hill, New York (1993).
    [161] Tien C.L., Drolen B.L., Thermal radiation in particulate media with dependent and independent scattering, Annual Review of Numerical Fluid Mechanics and Heat Transfer, Hemisphere, New York, Vol.1 (1987) pp.1-32.
    [162] van de Hulst, H.C., Light scattering by small particles, John Wiley & Sons, New York (1957).
    [163] Hottel H.C., Sarofim A.F., Dalzell W.H., Vasalos I.A., Optical properties of coatings, effect of pigment concentration, AIAA Journal 9 (1971) 1895-1898.
    [164] Brewster M.Q., Tien C.L., Radiative transfer in packed/fluidized beds: dependent vs. independent scattering, ASME Journal of Heat Transfer 104 (1982) 573-579.
    [165] Yamada Y., Cartigny J.D., Tien C.L., Radiative transfer with dependent scattering by particles, Part 2: experimental investigation, ASME Journal of Heat Transfer 108 (1986) 614-618.
    [166] Cartigny J.D., Yamada Y., Tien C.L., Radiative transfer with dependent scattering by particles, Part 1: theoretical investigation, ASME Journal of Heat Transfer 108 (1986) 608-613.
    [167] Drolen B.L., Tien C.L., Independent and dependent scattering in packed-sphere systems, Journal of Thermophysics and Heat Transfer 1 (1987) 63-68.
    [168] Drolen B.L., Kumar K., Tien C.L., Experiments on dependent scattering of radiation, AIAA paper NO. TP-87-210 (1987).
    [169] Im K.H., Ahluwalia R.K., Radiation properties of coal combustion products, Int. J. Heat Mass Transfer 36 (1993) 293-302.
    [170] Boothroyd S.A., Jones A.R., A comparison of radiative characteristics for fly ash and coal, Int. J. Heat Mass Transfer 29 (1986) 1649-1654.
    [171] Yin C., Suspension (PC) Combustion, http://www.iet.auc.dk/~chy/YIN-Chungen.pdf.
    [172] Brewster M.Q., Kunitomo T., The optical constants of coal, char, and limestone, J. Heat Transfer 106 (1984) 678-683.
    [173] Vistanta R., Ungan A., Mengu? M.P., Predictions of radiative properties of pulverized coal and fly-ash polydispersions, ASME paper no. 81-HT-24 (1981).
    [174] Lacroix D., Parent G., Asllanaj F., Jeandel G., Coupled radiative and conductive heattransfer in a non-grey absorbing and emitting semitransparent media under collimated radiation, Journal of Quantitative Spectroscopy and Radiative Transfer 75 (2002) 589-609.
    [175] Querry M.R., Osborne G., Lies K., Jordon R., Coveney R.M.Jr., Complex refractive index of limestone in the visible and infrared, Appl. Optics 17 (1978) 353-356.
    [176] Boothroyd S.A., Jones A.R., Nicholson K., Wood W.R., Light scattering by fly ash and the applicability of Mie theory, Combustion and Flame 69 (1987) 235-241.
    [177] I. Gurvich, N. Shiloah, M. Kleiman, Calculations of the Mie scattering coefficients for multilayered particles with large size parameters, Journal of Quantitative Spectroscopy & Radiative Transfer 70 (2001) 433-440.
    [178] Bohren C.F., Huffman D.R., Absorption and scattering of light by small particles, New York: John Wiley & Sons (1998) pp477-482.
    [179] Brewster M.Q., Thermal radiative transfer and properties. New York: Wiley (1992).
    [180] Chandrasekhar S., Radiative transfer, Dover publications, New York (1960).
    [181] Lee C.E., The discrete SN approximation to transport theory, Technical Information Series Report LA2595, Lawrence Livermore Laboratory (1962).
    [182] Lathrop K.D., Use of discrete-ordinate methods for solution of photon transport problems, Nuclear Science and Engineering 24 (1966) 381-388.
    [183] Carlson B.G., Lathrop K.D., Transport theory-the method of discrete ordinates, in: H. Greenspan, C.N. Kelber and D. Okrent (Eds.), Computing Methods in Reactor Physics, Gordon and Breach, New York (1968).
    [184] Truelove J.S., Discrete-ordinate solutions of the radiation transport equation, J. Heat Transfer 109 (1987) 1048-1051.
    [185] Truelove J.S., Three-dimensional radiation in absorbing-emitting-scattering media using the discrete-ordinates approximation, Journal of Quantitative Spectroscopy and Radiative Transfer 39 (1988) 27-31.
    [186] Fiveland W.A., A discrete ordinates method for predicting radiative heat transfer in axisymmetric enclosures, ASME paper 82-HT-20 (1982).
    [187] Fiveland W.A., Discrete ordinates solutions of the radiative transport equation for rectangular enclosures, J. Heat Transfer 106 (1984) 699-706.
    [188] Fiveland W.A., Discrete ordinates solutions for radiative heat transfer in isotropicallyand anisotropically scattering media, J. Heat Transfer 109 (1987) 809-812.
    [189] Fiveland W.A., Three-dimensional radiative heat-transfer solutions by the discrete ordinates method, J. Thermophysics Heat Transfer 2 (1988) 309-316.
    [190] Li H., Flamant G., Lu J., An alternative discrete ordinate scheme for collimated irradiation problems, International Communications in Heat and Mass Transfer, 30 (2003) 61-70.
    [191] Flamant G., Lu J.D., Variot B.. Towards a generalized model for vertical walls to gas-solid fluidized bed heat transfer-II. Radiative transfer and temperature effects, Chemical Engineering Science 48 (1993) 2493-2503.
    [192] Basu P., Konuche F., Radiative heat transfer from a fast fluidized bed, in: P. Basu and J.F., Large (Eds.), Circulating Fluidized Bed Technology II, Pergamon press (1988) pp.245-253.
    [193] Han G.Y., Tuzla K., Chen J.C., Radiative heat transfer from high temperature suspended flows, presented at AIChE annular meeting, Miami (1992) pp.117-122.
    [194] Steward F.R., Couturier M.F., Poolpol S., in: K.J. Heinschel (Ed.), Proceedings 13th international conference on fluidized bed combustion, ASME, Orlando, Vol. 1 (1995) pp.507-513.
    [195] Luan W., Lim C.J., Brereton C.M.H., Bowen B.D., Grace J.R., Experimental and theoretical study of total and radiative heat transfer in circulating fluidized beds, Chemical Engineering Science 54 (1999) 3749-3764.
    [196] Glatzer A., Linzer W., Radiative heat transfer in circulating fluidized beds, in: J.F. Large and C. Laguérie (Eds.), Fluidization VIII, Tours, France, Engineering Foundation, New York (1995) pp.311-318.
    [197] Fang Z.H., Grace J.R., Lim C.J., Radiative heat transfer in circulating fluidized beds, Journal of Heat Transfer 117 (1995) 963-968.
    [198] Baskakov A.P., Leckner B., Radiative heat transfer in circulating fluidized bed furnaces, Powder Technology 90 (1997) 213-218.
    [199] Xie D., Bowen B.D., Grace J.R., Lim C.J., Two-dimensional model of heat transfer in circulating fluidized beds. Part I: Model development and validation, International Journal of Heat and Mass Transfer 46 (2003) 2179-2191.
    [200] Yamada J., Kurosaki Y., Morikawa T., Radiation emitted from fluidizing particlesadjacent to a heated surface in a fluidized bed, International Journal of Thermal Sciences 40 (2001) 104-113.
    [201] He Q., Winter F., Lu J., Analysis of the heat transfer mechanism in high-temperature circulating fluidized beds by numerical model, Journal of Energy Resources Technology 124 (2002) 34-39.
    [202] Xie D., Bowen B.D., Grace J.R., Lim C.J., Two-dimensional model of heat transfer in circulating fluidized beds. Part II: Heat transfer in a high density CFB and sensitivity analysis, International Journal of Heat and Mass Transfer 46 (2003) 2193-2205.
    [203] Bi X.T., Zhou J., Qin S.Z., Grace J.R., Annular wall layer thickness in circulating fluidized bed risers, Canadian Journal of Chemical Engineering 74 (1996) 811-814.
    [204] [204] Zhang W., Tung Y., Johnsson F., Radial voidage profiles in fast fluidized beds of different diameters, Chemical Engineering Science 46 (1991) 3045-3052.
    [205] Golriz M.R., An experimental correlation for temperature distribution at the membrane wall of CFB boilers, in: K.J. Heinschel (Ed.), Proceedings 13th international conference on fluidized bed combustion, ASME, Orlando, Vol. 1 (1995) pp.499-505.
    [206] Liu F., The effects of particle size distribution and refractive index on fly-ash radiative properties using a simplified approach, International Journal of Heat and Mass Transfer 36 (1993) 1905-1912.
    [207] Marakis J.G., Brenner G., Durst F., Monte Carlo simulation of a nephelometric experiment, International Journal of Heat and Mass Transfer 44 (2001) 989-998.
    [208] Andersson B.-A., Effect of bed particle size on heat transfer in circulating fluidized bed boilers, Powder Technology, 87 (1996) 233-238.
    [209] Lathrop K.D., Carlson B.G., Discrete-ordinates angular quadrature of the neutron transport equation, Technical Information Series Report LASL-3186, Los Alamos Scientific Laboratory (1965).
    [210] Basu P., Fraser S.A.. Circulating Fluidized bed boilers design and operations (Chapter 4), (1991) pp. 95-126.
    [211] Sotudeh-Gharebaagh R., Legros R., Chaouki J., Paris J., Simulation of circulating fluidized bed reactors using ASPEN PLUS, Fuel 77 (1998) 327-337.
    [212] Lu H., Zhao G., Bie R., Gidaspow D., A coal combustion model for circulating fluidized bed boilers, Fuel 79 (2000) 165-172
    [213] Mukadi L., Guy C., Legros R., Prediction of gas emissions in an internally circulating fluidized bed combustor for treatment of industrial solid wastes, Fuel 79 (2000) 1125-1136.
    [214] Liu H., Gibbs B.M., Modelling of NO and N2O emissions from biomass-fired circulating fluidized bed combustors, Fuel 81 (2002) 271-280.
    [215] Chen Z., Lin M., Ignowski J., Kelly B., Linjewile T.M., Agarwal P.K., Mathematical modeling of fluidized bed combustion. 4: N2O and NOx emissions from the combustion of char, Fuel 80 (2001) 1259-1272.
    [216] Agarwal P.K., A single particle model for the evolution and combustion of coal volatiles, Fuel 65 (1986) 803-810.
    [217] Stubington J.F., Clough S.J., The combustion rate of volatiles in a fluidized bed combustor, in: F.D.S. Preto (Ed.), Proceedings of the 14th international conference on fluidized bed combustion, New York: ASME, Vol.2 (1997) pp. 1111-1122.
    [218] Stenseng M., Lin W., Johnsson J.E., Johansen, K.D, Modeling of devolatilization in CFB combustion, in: F.D.S. Preto (Ed.), Proceedings of the 14th international conference on fluidized bed combustion, New York: ASME, Vol.2, 1997, pp. 117-124.
    [219] Beer J.M., The fluidized combustion of coal, paper presented at 16th International Symposium on Combustion, The Combustion Institute, 439-460 (1997).
    [220] Wen C.Y., Chen L.H., A model for coal pyrolysis, Division of Fuel Chemistry, ACS Preprint, 24 (1979) 141.
    [221] Stubington J.F., Chui T.Y.S., Saisithidej S., Fuel Science and Technology International, 1992, 10 (3), 397.
    [222] Stubington J.F., Ng K.W.K., Moss B., Peeler P.K., Comparison of experimental methods for determining coal particle devolatilization times under fluidized bed combustor conditions, Fuel 76 (1997) 233-240.
    [223] Anthony D.B., Howard J.B., Hottel J.B. Meissner H.P., Rapid devolatilization of pulverized coal, Fifteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh (1975) pp.1303–1317.
    [224] Merrick D., Mathematical models of the thermal decomposition of coal: 1.The evolution of volatile matter, Fuel 62 (1983) 534-539
    [225] Loison R., Chauvin R., Pyrolyse rapide du charbon, Chimie et Industrie, 91(1964) 269.
    [226] WeiβV., Schplei J., Fett F.N., Mathematical modelling of coal combustion in a circulating fluidized bed reactor, in: P. Basu and J.F. Large (Eds.), Circulating Fluidized Bed Technology II, Pergamon, Oxford (1988) pp. 289-298
    [227] Mori S., Narukama K., Yamada I., Takebayashi T., Tanii H., Dynamic model of a circulating fluidized bed coal fored boiler, in: E.J. Anthony (Ed.), Proceedings of the 14th International Conference on Fluidized Bed Combustion, Montreal (1991) pp.1261.
    [228] Wang X.S., Gibbs B.M., Rhodes M.J., Modelling of circulating fluidized bed combustion of coal, Fuel 73 (1994) 1120-1127.
    [229] Happanen T., Lee Y., Ratinio A., A three-dimensional model for circulating fluidized bed boilers, in: E.J. Anthony (Ed.), Proceedings of the 14th International Conference on Fluidized Bed Combustion, Montreal (1991) pp.738-742.
    [230] Basu P., Halder P.K., Combustion of single carbon particles in a fast fluidized bed of fine solids, Fuel 68 (1989) 1056-1064.
    [231] Basu P., Subbarao D., An experimental investigation of burning rate and mass transfer in a turbulent fluidized bed, Combustion and Flame 66 (1986) 261-269.
    [232] Ross I.B., Davidson J.F., Combustion of carbon particles in a fluidized bed, Transaction of Chemical Engineering 60 (1982) 108-114.
    [233] Basu P., Broughton J., Elliott D.E., Combustion of single coal particles in fluidized beds. In. Proceedings of fluidized bed combustion conference, Vol. 1. London: Institute of Fuel Symposium Series (1975).
    [234] Basu P., Burning rate of carbon in fluidized beds, Fuel 56 (1977) 390.
    [235] Ross I.B., Patel M.S., Davidson J.F., The temperature of burning carbon particles in fluidized beds, Transactions of Institution of Chemical Engineers 59 (1981) 83-88.
    [236] Field M.A., Gill D.W., Morgan B.B., Hawksley P.G.W., Combustion of pulverized coal, BCURA (1967).
    [237] Rajan R.R., Wen C.Y., A comprehensive model for fluidized bed coal combustor,AIChE Journal 26 (1980) 642-665.
    [238] Arthur J.R., Reactions between carbon and oxygen, Trans. Faraday Soc. 47 (1951) 164.
    [239] Wang. Q., Luo Z., Ni M., Cen K., Particle population balance model for a circulating fluidized bed boiler, Chemical Engineering Journal 93 (2003) 121–133.
    [240] Marinov N.M., Westbrook C.K., Pitz W.J., Detailed and global chemical kinetics model for hydrogen, http://www-cms.llnl.gov/combustion/H2paper.pdf.
    [241]骆仲泱,李绚天,王勤辉等,循环流化床锅炉设计计算的探讨,动力工程,1994, 14(4): 9-28
    [242] Amand L.E., Leckner B., Influence of air supply on the emissions of NO and N2O from a circulating fluidized bed boiler, 24th Symp. (Int.) on Combustion, the Combustion Institute (1992), pp.1407-1414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700