用户名: 密码: 验证码:
磁性纳米颗粒系统的磁学性质及偶极相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有广泛的应用前景和丰富的物理内涵,磁性纳米颗粒正吸引着国内外众多科学家的目光,成为纳米科技领域中最热门的方向之一。本论文从材料制备和颗粒间偶极相互作用的角度去研究磁性纳米颗粒的性质,其中偶极相互作用研究是本论文的重点。
     在材料制备方面,采用金属蒸发真空电弧离子注入机(MEVVA)把大剂量的铁离子分别注入到(100)、(110)和(111)晶向的单晶氧化镁中以形成磁性纳米颗粒薄膜,分别通过RBS和SQUID测量薄膜的成分和磁学性质。磁学测量说明在氧化镁母体中形成了尺寸分布范围很宽的磁性纳米颗粒。测量结果也显示该颗粒薄膜在5K和300K温度下都出现类似于铁磁性的回线;而且不同晶向样品的矫顽力HC的大小有以下规律:HC(110)     在磁性纳米颗粒系统的偶极相互作用研究方面,主要采用蒙特卡罗模拟的局域动力学模型对各向异性轴随机均匀分布的单畴单轴铁磁性纳米颗粒的单分散体系进行了系统的研究。研究综合考虑了偶极相互作用强度、各向异性强度、以及颗粒的空间排列结构等因素的影响,通过模拟测量ZFC/FC磁化强度曲线,M-H磁化曲线以及热剩磁曲线,来定性地探索各种因素对系统的有效能垒分布、磁化过程以及磁关联的影响。该部分主要研究了四个问题:
     (1)偶极相互作用对系统有效能垒分布的影响
     通过对不同各向异性强度和颗粒浓度的磁性纳米颗粒系统的ZFC/FC曲线的模拟研究发现,系统的阻塞温度TB随着偶极相互作用强度的增强而显著提高,说明偶极相互作用提高磁性纳米颗粒系统的平均有效能垒。同时ZFC/FC曲线模拟结果也表明了偶极相互作用使有效能垒分布的宽度增加。这些结论对当前关于偶极相互作用在改变磁性纳米颗粒系统的有效能垒中起何种作用的争论,具有一定的参考意义。
     (2)颗粒的空间排列结构对偶极相互作用系统性质的影响
     通过对颗粒空间排列为立方排列和无序排列两种系统的ZFC/FC曲线、M-H磁化曲线的模拟研究及关联函数的学习发现,在偶极相互作用的磁性纳米颗粒系统中,颗粒的空间排列结构是一个非常重要的影响因素,不同空间排列结构的系统的磁关联状态、有效能垒分布和磁化过程差别很大。
     由于空间排列结构的影响,在一定强度的磁场下,高浓度系统的阻塞温度会比低浓度系统的阻塞温度低,因此在用ZFC/FC曲线分析偶极相互作用系统的有效能垒时,应该考虑系统中颗粒可能形成的空间排列状态,这个结论为偶极相互作用系统有效能垒的争论提供一种新的思路。
     此外,本文也提出由于颗粒的空间排列效应和各向异性效应的共同作用,导致偶极相互作用体系在超顺磁温区的磁化过程不能简单地用T*模型描述。
     (3)偶极相互作用系统中的磁关联
     通过研究经过ZFC/FC过程后的系统的磁关联函数发现,偶极相互作用使系统形成包含铁磁性和反铁磁性排列的磁关联结构;这种关联结构与磁性纳米颗粒的空间排列、偶极相互作用强度、系统温度及外磁场的关系密切。磁关联是影响系统的有效能垒分布和磁化过程性质的主要原因之一;由于磁关联的存在,不能直接应用非相互作用的纳米颗粒系统的热剩磁模型分析来偶极相互作用系统的有效能垒分布。此外,本文通过在朗之万函数中引入场相关的关联长度,定性地解释了高密度的磁性纳米颗粒系统隧穿磁阻的H/T标度问题。
     (4)外磁场在偶极相互作用系统中扮演的角色
     通过对ZFC/FC曲线、M-H磁化曲线和热剩磁曲线的模拟研究发现,外磁场与偶极相互作用形成一种竞争关系,表现在外磁场降低偶极相互作用系统的ZFC曲线的峰值温度,并减弱系统的内秉磁关联。
Magnetic nanoparticles have received considerable interests, due to both their important potential applications and their rich experimental behaviors in physics. In this thesis, interested in both the preparations and the dipolar interactions of the magnetic nanoparticle assembly, we focused more on the investigation of the latter.
     We firstly studied the magnetic properties of the Fe-implanted MgO samples. Single crystals of MgO with (100), (110) and (111) orientations were implanted with Fe ions at high dose by using metal-vapor vacuum arc ion source (MEVVA). The magnetic properties were investigated by a superconducting quantum interference device magnetometer (SQUID) and Rutherford backscattering spectrometry (RBS) was used to analyze the Fe concentration and distribution. The presence and the wide size distribution of magnetic nanoparticles in MgO matrix was verified by magnetization measurements. Results show that all the samples behave as ferromagnetism at 5K and 300K, and the coercive field, HC, well follows the relation: HC(110)     We then devoted to the investigation of dipolar interactions influence on the magnetic properties of the magnetic nanoparticle systems by using Monte Carlo simulations with local dynamics model. Monodispersed single-domain ferromagnetic nanoparticle systems with randomly oriented anisotropic axis were studied systematically. Three important effects including the dipolar interaction intensity, the anisotropy intensity and the nanoparticles’spatial arrangement were considered carefully. By simulating the zero field cooling (ZFC)/field cooling (FC) magnetization (susceptibility) curves, M-H magnetization curves and the thermal remanence curves, the influence of dipolar interactions on the magnetization process, the effective energy barrier of the systems and the magnetic correlation were evaluated. There are four parts in this dissertation:
     1. Influence of dipolar interactions on the effective energy barrier distribution.
     From the ZFC/FC magnetization simulations for systems with different dipolar interactions and anisotropy intensity, we observe that the blocking temperature TB clearly increases with interaction strength, indicating that the dipolar interactions enhance the average effective energy barrier. It is also clear from the ZFC/FC magnetization simulations that the increase in dipolar interactions gives rise to an increase in the width of the effective energy barrier distribution.
     2. The nanoparticle’s spatial arrangement effect on the magnetic properties of the dipolar interacting systems.
     From the ZFC/FC magnetization simulations and the M-H magnetization curves simulations for the randomly arranged and cubic arranged systems,we find that systems with different particle spatial arrangement have different effective energy barrier distribution, magnetization process and magnetic correlation. The spatial arrangement effect associated with the anisotropy will result in the invalidity of the T* model. More over, the spatial arrangement effect may cause the decrease of blocking temperature with magnetic particle concentration in proper applied field. Consequently, we point out that the spatial arrangement effect should be taken into account in analyzing the effective energy barrier of dipolar interacting systems using ZFC/FC magnetization curves.
     3. Magnetic correlation in the dipolar interacting systems.
     From the correlation function obtained after ZFC or FC procedure, we clarify that the dipolar interactions cause the formation of short-range order of the particle moments. This short-range order consists of both antiferromagnetic and ferromagnetic array of the particle moments, and depends crucially on the spatial arrangement, the strength of the dipolar interactions, the temperature and the applied field. The magnetic correlation has important effect on the effective energy barrier distribution and magnetic process. The thermal remanence thus can not be directly employed to study the effective energy barrier distribution of the dipolar interacting systems.
     4. Role of the applied field on the dipolar interacting systems.
     From the ZFC/FC magnetization, M-H curves and the reversed thermal remanence curves, we conclude that the applied field competes with the dipolar interactions. This is manifested in decreasing the ZFC peak temperature with applied field, as well as the weakening of the magnetic correlation strength.
引文
1. C.P.Bean and J.D.Livingston, Superparamagnetism, J.Appl.Phys. 1959, 30:120S-129S.
    2. S.A.Makhlouf, F.T.Parker, et al. Magnetic hysteresis anomalies in ferritin, Phys.Rev.B, 1997, 55:R14717-R14720.
    3. J.Nogués, J Sort, V Langlais, V Skumryev, S.Surinach, J.S.Munoz, and M. D.Baro, Exchange bias in nanoparticles, Phys Rep. 2005, 422:65-117.
    4. A.Lu, E.L.Salabas, and Ferdi Schüth, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angew.Chem.Int.Ed. 2007, 46:1222-1244.
    5. S. D. Bader, Colloquium: Opportunities in nanomagnetism, Rev. Mod. Phys. 2006,78:1-15 .
    6.焦正宽,曹光旱,磁电子学,浙江:浙江大学出版社,2004,P471.
    7. R.C.O’Hnadley著,周永洽等译,现代磁性材料,北京:化学工业出版社,2002,P270-305.
    8. X.Batlle, A.Labarta, Finite-size effects in fine particles: magnetic and transport properties, J.Phys.D. 2002, 35:R15-R42.
    9. W.F.Brown, Jr. Thermal Fluctuations of a Single-Domain Particle, Phys.Rev. 1963, 130: 1677 -1686.
    10. C.M.Sorensen,Magnetism in Nanoscale Materials in Chemistry, Wiley-Interscience Publication, New York, 2001.
    11. RH Kodama, et al. Surface Spin Disorder in NiFe2O4 Nanoparticles, Phys. Rev.Lett. 1996, 77:394-397.
    12. R.H.Kodama and A. E. Berkowitz, Atomic-scale magnetic modeling of oxide nanoparticles, Phys,Rev.B 1999, 59: 6321-6336.
    13. M.Respaud, et al. Surface effects on the magnetic properties of ultrafine cobalt particles, Phys,Rev.B 1998, 57:2925-2935.
    14. F. B?dker, S. M?rup, and S. Linderoth, Surface effects in metallic iron nanoparticles, Phys. Rev. Lett. 1994, 72:282– 285.
    15. Y. Wang, et al. Weakly ferromagnetic ordered mesoporous Co3O4 synthesized by nanocasting from vinyl-functionalized cubic ia3d mesoporous silica , Adv.Mater. 2005, 17:53-56.
    16. W.S.Seo, et al. Size-Dependent Magnetic Properties of Colloidal Mn3O4 and MnO Nanoparticles, Angew. Chem. Int. Ed. 2004, 43:1115-1117.
    17. A. E. Berkowitz, et al. Giant magnetoresistance in heterogeneous Cu-Co alloys, Phys. Rev. Lett. 1992, 68:3745– 3748.
    18. John Q. Xiao, J. Samuel Jiang, and C. L. Chien, Giant magnetoresistance in nonmultilayer magnetic systems, Phys. Rev. Lett. 1992, 68:3749–3752.
    19. F. Parent, et al. Giant magnetoresistance in Co-Ag granular films preparedby low-energy cluster beam deposition , Phys. Rev. B 1997, 55: 3683– 3687.
    20. K. Ounadjela, et al. Correlation between the structural and transport properties of as-grown epitaxial phase-separated Co-Ag thin films, Phys. Rev. B 1996, 54:12252– 12261.
    21. J.A.De.Toro, J.R.Andres, J.A.Gonzalez, J.P.Goff, A.J.Barberto and J.M.Riveiro, Improved giant magnetoresistance in nanogranular Co/Ag: The role of interparticle RKKY interactions, Phys.Rev.B. 2004, 70:224412.
    22. F. Badia, X. Batlle,et al. Magnetotransport properties of NiFe–Ag granular alloys: Origin of the thermal behavior, J. Appl. Phys. 1997, 82:677.
    23. J.Milano, A.M.Llois, et al. Magnetic and transport properties of Ag/CoFe granular multilayers, J. Appl. Phys. 2004, 96:7392-7398.
    24. M. N. Baibich, et al. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, Phys. Rev. Lett.1988, 61: 2472– 2475.
    25. S. S. P. Parkin, R. Bhadra, and K. P. Roche, Oscillatory magnetic exchange coupling through thin copper layers Phys. Rev. Lett. 1991,66: 2152– 2155.
    26. H.Fujimori, S.Mitani, and S.Ohnuma, Tunnel-type GMR in metal-nonmetal granular alloy thin films, Mater.Sci.Eng. B, 1995, 31:219-223.
    27. H.Fujimori, S.Mitani, and K.Takanashi, Giant magentoresistance in insulating granular films and planar tunneling junctions, Mater.Sci.Eng. A, 1999, 267:184-192.
    28. H Liu, et al. Large room-temperature spin-dependent tunneling magnetoresistance in polycrystalline Fe 3 O4 films, Appl.Phys.Lett. 2003, 83:3531-3533.
    29. T. Zhu and Y. J. WangPhys. Enhanced tunneling magnetoresistance of Fe-Al2O3 granular films in the Coulomb blockade regime, Phys.Rev. B ,1999, 60: 11918-11921.
    30. S. Bedanta, et al. Overcoming the Dipolar Disorder in Dense CoFe Nanoparticle Ensembles: Superferromagnetism, Phys.Rev.Lett. 2007, 98:176601.
    31. A.B.Pakhomov, X.Yan and B.Zhao, Giant hall effect in percolating ferromagnetic granular metal-insulator films, Appl.Phys.Lett.1995, 67:3497-3499.
    32. X.X.Zhang, et al. Giant Hall Effect in Nonmagnetic Granular Metal Films, Phys. Rev. Lett. 2001, 86: 5562-5565.
    33. Leandro M. Socolovsky, et al. Nanostructure of granular Co-SiO2 thin films modified by thermal treatment and its relationship with the giant Hall Effect, Phys.Rev. B, 2005, 72:184423.
    34. S.Sun, C.B.Murray, D.Weller, L.Folks, and Moser, A Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science,2000, 287:1989-1992.
    35. K Ouchi, N Honda, Magnetics, IEEE Transactions , 2000, 36:16-22.
    36. A.Hernando, et al. Giant magnetic anisotropy at the nanoscale: Overcoming the superparamagnetic limit, Phys.Rev.B. 2006, 74:052403.
    37. A.K.Gupta and M.Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications,Biomaterials, 2005, 26: 3995-4021.
    38. S Neveu, A Bee, M Robineau, D Talbot, Size-Selective Chemical Synthesis of Tartrate Stabilized Cobalt Ferrite Ionic Magnetic Fluid, J.Colloid.Interface.Sci, 2002, 255:293–298.
    39. F Grasset, et al. Synthesis and Magnetic Characterization of Zinc Ferrite Nanoparticles with Different Environments: Powder, Colloidal Solution, and Zinc Ferrite-Silica Core-Shell Nanoparticles, Langmuir, 2002, 18 (21), 8209 -8216.
    40. S Sun and H Zeng, Size-controlled synthesis of magnetite nanoparticles J. Am. Chem. Soc,2002, 124 (28), 8204 -8205
    41. S.J.Park, S Kim,et al. Synthesis and Magnetic Studies of Uniform Iron Nanorods and Nanospheres, J. Am.Chem.Soc, 2000, 122:8581-8582.
    42. V.F. Puntes, K.M. Krishnan, and A.P. Alivisatos, Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt, Science, 2001, 291:2115– 2117.
    43. Q.Chen, A.J. Rondinone, et al. Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation, J.Magn.Magn.Mater. 1999, 194:1-7
    44. J Park, K An, et al. Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Mater. 2004, 3:891-895.
    45. E.V. Shevchenko, Colloidal synthesis and self-assembly of CoPt 3 nanocrystals, J.Am.Chem.Soc. 2002, 124:11480-11485.
    46. N.R.Jana, Y Chen, X Peng, Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach, Chem. Mater, 2004, 16 (20), 3931 -3935.
    47. B. J. Hattink, et al. Tunneling magnetoresistance in Co-ZrO2 granular thin films, Phys. Rev. B 2006, 73, 045418.
    48. R. Venugopal,et al. Magnetic properties of nanoclusters formed by implantation of Fe into Ge using a metal-vapor vacuum arc ion source, Phys. Rev. B 2001, 65: 014418.
    49. J.L.Dormann, D.Fiorani, and E.Tronc, Magnetic relaxation in fine-particle systems, Adv. Chem.Phys. 1997, 98:283
    50. M.P.Sharrock,Time-dependent magnetic phenomena and particle-size effects in recording media, IEEE Trans.Magn. 1990, 26:193-197.
    51. K.E.Johnson, Thin-film recording media: Challenges for physics and magnetism in the 1990s, J.Appl.Phys. 1991, 69:4932.
    52. S. M?rup and E. Tronc, Superparamagnetic relaxation of weakly interacting particles, Phys. Rev. Lett. 1994, 72:3278-3281.
    53. W. Luo, S.R. Nagel, T. F. Rosenbaum, and R. E. Rosensweig, Dipole interactions with random anisotropy in a frozen ferrofluid, Phys. Rev. Lett. 1991, 67: 2721-2724.
    54. F. Luis, J. M. Torres, et al. Enhancement of the magnetic anisotropy of nanometer-sized Co clusters: Influence of the surface and of interparticle interactions, Phys. Rev. B 2002, 65:094409.
    55. J. García-Otero, M. Porto, J. Rivas, and A. Bunde, Influence of Dipolar Interaction on Magnetic Properties of Ultrafine Ferromagnetic Particles, Phys. Rev. Lett. 2000, 84:167-170.
    56. R. W. Chantrell and N. Walmsley , Calculations of the susceptibility of interacting superparamagnetic particles, Phys. Rev. B,2000, 63:024410.
    57.òIglesias and A Labarta, Magnetic relaxation in terms of microscopic energy barriers in a model of dipolar interacting nanoparticles, Physical Review B, 2004, 70:144401
    58. R.W.Chantrell, N.S.Walmsley, J.Gore and M.Maylin, Initial susceptibility of interacting fine particles, J.Magn.Magn.Mater. 1999, 196:118-119.
    59. O. Chubykalo-Fesenko and R. W. Chantrell, Multidimensional energy barrier distributions of interacting magnetic particles evaluated at different magnetization states, J. Appl. Phys. 2005, 97:10J315.
    60. J. C. Denardin, A. L. Brandl, et al. Thermoremanence and zero-field-cooled/field-cooled magnetization study of Cox(SiO2)1-x granular films, Phys. Rev. B 2002, 65: 064422.
    61. M Hanson, C Johansson, and S Morup, The Influence of Magnetic Anisotropy on the Magnetization of Small Ferromagnetic Particles, J. Phys: Condens. Matter. 1993, 5:725-732.
    62. M. Respaud , Magnetization process of noninteracting ferromagnetic cobalt nanoparticles in the superparamagnetic regime: Deviation from Langevin law, J. Appl. Phys. 1999, 86: 556-561.
    63. F. Wiekhorst, et al. Anisotropic superparamagnetism of monodispersive cobalt-platinum nanocrystals, Phys. Rev. B 2003, 67: 224416.
    64. P. E. J?nsson and J. L. García-Palacios , Thermodynamic perturbation theory for dipolar superparamagnets, Phys. Rev. B, 2001, 64:174416.
    65. I. Yasumori, D. Reinen, and P. W. Selwood, Anisotropic Behavior in Superparamagnetic Systems, J. Appl. Phys. 1963, 34:3544.
    66. P.Allia, et al. Granular Cu-Co alloys as interacting superparamagnets, Phys. Rev. B, 2001,64:144420.
    67. J. M. Vargas, et al. Effect of dipolar interaction observed in iron-based nanoparticles, Phys. Rev. B, 2005, 72:184428.
    68. C. Binns , et al. Magnetic behavior of nanostructured films assembled from preformed Feclusters embedded in Ag, Phys. Rev. B, 2002, 66: 184413
    69. A. Milner, et al. Spin-Dependent Electronic Transport in Granular Ferromagnets, Phys. Rev. Lett. 1996, 76:475– 478.
    70. J. Inoue and S. Maekawa, Theory of tunneling magnetoresistance in granular magnetic films, Phys. Rev. B,1996, 53:R11927 - R11929.
    71. S. Mitani, et al.Enhanced Magnetoresistance in Insulating Granular Systems: Evidence for Higher-Order Tunneling, Phys. Rev. Lett. 1998, 81:2799-2802.
    72. S. Sankar, A. E. Berkowitz, David J. Smith,Spin-dependent transport of Co-SiO2 granular films approaching percolation, Phys. Rev. B,2000, 62: 14273 -14278.
    73. D. Kechrakos and K. N. Trohidou, Magnetic properties of dipolar interacting single-domain particles, Phys. Rev. B , 1998, 58: 12169– 12177.
    74. D Kechrakos, KN Trohidou , Effects of dipolar interactions on the magnetic properties of granular solids, J.Magn.Magn.Matter.1998, 177: 943-944.
    75. P.Allia, et al.Magnetic hysteresis based on dipolar interactions in granular magnetic systems, Phys. Rev. B, 1999, 60:12207-12218.
    76. J.Du, B.Zhang, R.K.Zheng, and X.X.Zhang, Memory effect and spin-glass-like behavior in Co-Ag granular films, Phys. Rev. B, 2007, 75: 014415.
    77. R.W.Chantrell, M.El-Hilo,and keven O’Grady, Spin-glass behavior in a fine particle system, IEEE.Trans.Magn.1991, 27:3570-3578.
    78. J.P.Pereira Nunes, M.Basiana, and C.S.M.Bastos, Magnetization curves as probes of Monte Carlo simulation of nonequilibrium states, Phys.Rev.E.2003, 69:056703.
    79. R. Sappey, et al. Nonmonotonic field dependence of the zero-field cooled magnetization peak in some systems of magnetic nanoparticles, Phys. Rev. B,1997, 56: 14551– 14559.
    80. H Kachkachi, WT Coffey, Field dependence of the temperature at the peak of the zero-field-cooled magnetization, J.Phys: Condens.Matter. 2000, 12:3077-3090.
    81. R.K.Zheng, et al. The origin of the non-monotonic field dependence of the blocking temperature in magnetic nanoparticles, J.Phys: Condens.Matter. 2006, 18:5905-5910.
    82. M.Azeggagh and H.kachkachi, Effects of dipolar interactions on the zero-field-cooled magnetization of nanoparticle assembly, Phys.Rev.B. 2007, 75:174410.
    83. H. Mamiya, I. Nakatani, and T. Furubayashi, Magnetic Relaxations of AntiferromagneticNanoparticles in Magnetic Fields, Phys. Rev. Lett, 2002, 88: 067202
    84. J. L. García-Palacios and D. A. Garanin, Nonlinear response of superparamagnets with finite damping: An analytical approach, Phys. Rev. B, 2004, 70:064415
    85. H.kachkachi, and M.Azeggagh, Magnetization of nanomagnet assemblies: Effects of anisotropy and dipolar interactions, Eur.Phys.J.B, 2005, 44:299-308.
    86. K.Binder and A.P.Young, Spin glasses: Experimental facts, theoretical concepts, and open questions, Rev.Mod.Phys, 1986, 58:801-976.
    87. C.Djurberg, et al. Dynamics of an interacting particle system: evidence of critical slowing down, Phys.Rev.Lett, 1997, 79: 5154-5157.
    88. H.Mamiya, et al.Slow Dynamics for spin-glass-like phase of a ferromagnetic fine particle system, Phys.Rev.Lett. 1999, 82:4332-4335.
    89. T.Jonsson, et al. Aging in a magnetic particle system, Phys.Rev.Lett. 1995, 75:4138-4141.
    90. G.Ayton, M.J.P.Gingras, and G.N.Patey, Orientational Ordering in Spatially Disordered Dipolar Systems, Phys.Rev.Lett, 1995, 75:2360-2363.
    91. S.Ravichandran and B.Bagchi, Orientational Relaxation in a Random Dipolar Lattice: Role of Spatial Density Fluctuations in Supercooled Liquids, Phys.Rev.Lett, 1996,76:644-647.
    92. G.Ayton, M.J.P.Gingras, and G.N.Patey, Ferroelectric and dipolar glass phases of noncrystalline systems, Phys.Rev.E, 1997, 56:562-570.
    93. H. Mamiya, I. Nakatani, and T. Furubayashi, Blocking and Freezing of Magnetic Moments for Iron Nitride Fine Particle Systems , Phys. Rev. Lett. 1998, 80: 177– 180.
    94. Markus Ulrich, et al. Indication of spin-glass Slow relaxation in ferromagnetic nanoparticles: behavior, Phys. Rev. B 2003,67: 024416.
    95. M.Porto, Ordered systems of ultrafine ferromagnetic particles, Eur.Phys.J.B 2005, 45:369-375.
    96. S.Russ, and A.Bunde, Monte Carlo simulations of frozen metastable states in ordered systems of ultrafine magnetic particles, Phys.Rev.B, 2006, 74:064426.
    97. V.F.Puntes, P.Gorostiza, D.M.Aruguete, N.G.Bastus and P.Slivisatos, Collective behaviour in two-dimensional cobalt nanoparticle assemblies observed by magnetic force microscopy, Nat.Mater, 2004, 3:263-268.
    98. Xi Chen, S. Bedanta,et al. Superparamagnetism versus superspin glass behavior in dilutemagnetic nanoparticle systems, Phys. Rev. B ,2005,72: 214436.
    99. S.Bedanta, et al. Superferromagnetic domain state of a discontinuous metal insulator multilayer, Phys.Rev.B, 2005,72:024419.
    100. S.Sahoo,et al. Cooperative versus superparamagnetic behavior of dense magnetic nanoparticles in Co80Fe20/Al2O3 multilayers, Appl.Phys.Lett, 2003, 82:4116-4118.
    101.W.Kleemann, et al. Interacting ferromagnetic nanoparticles in discontinuous Co80Fe20/Al2O3 multilayers: From superspin glass to reentrant superferromagnetism, Phys.Rev.B, 2000, 63:134423.
    102. P.Politi and M.G. Pini, Dipolar interaction between two-dimentional magnetic particles, Phys.Rev.B, 2002, 66: 214414.
    103. L.Wang, et al. Monte Carlo simulation of a cluster system with strong interaction and random anisotropy , Phys. Rev. B 2001,64: 214410.
    104. D. A. Dimitrov and G. M. Wysin, Magnetic properties of superparamagnetic particles by a Monte Carlo method, Phys. Rev. B,1996, 54: 9237– 9241.
    1. I.G. Brown, J. E. Gavin, R. A. MacGill, R. T. Wright, Miniature high current metal ion source, Appl.Phys. Lett.1986, 49:1019-1021.
    2. Chiah Man Fat, Preparation and characterization of granular magnetic cobalt silver thin film, Master thesis, Chinese Universisty of Hong Kong, 1999.
    3. Z.Q.Mao, Z.H.He, D.H.Chen, W.Y.Cheung, and S.P.Wang, Crystal orientation dependence of ferromagnetism in Fe-implanted MgO single crystals, Solid.State.Commu.2007, 142: 329-332
    4. A.Anders. Ion charge state distributions of vacuum arc plasmas: The origin of species, Phys.Rev.E.1997, 55:969-981.
    5. J. Ziegler, J. Biersack, and U. Littmark, The Stopping and Range of Ions in Matter (Pergamon, New York, 1985); SRIM 2006 code, www.srim.org.
    6. H.Ryssel and I.Ruge, In ion implantation, John Wiley & Sons Ltd, New York, 1986.
    7. L. R. Doolittle, Algorithms for the rapid simulation of Rutherford backscattering spectra, Nucl. Instr. Meth. B,1985, 9:344.
    8. K.Binder and D.W.Heerman, in Monte Carlo Simulations in Statistical Physics, Springer Series in Solid State Sciences No.80 (Springer, Berlin, 1988).
    9. D.罗伯,计算材料学,北京:化学工业出版社2002,P74.
    10. N.Metropolis, A.W.Rosenbluth, M.N.Rosenbluth, A.H.Teller, and E.Teller, J.Chem.Phys.1953, 21:1087.
    11. H.Mullder-Krumbhaar,K.Binder, J.Stat.Phys. 1973,8:1.
    12. J. Merikoski, J. Timonen, and M. Manninen, Ferromagnetism in small clusters, Phys.Rev.Lett. 1991, 66:938-941.
    13. J. P. Bucher and L. A. Bloomfield, Heisenberg model of subdomain fcc clusters: A Monte Carlo study, Phys. Rev. B. 1992, 45:2537-2540.
    14. D. A. Dimitrov and G. M. Wysin, Magnetic properties of superparamagnetic particles by a Monte Carlo method, Phys. Rev. B,1996, 54: 9237– 9241.
    15. J. García-Otero, M. Porto, J. Rivas, and A. Bunde, Influence of Dipolar Interaction On Magnetic Properties of Ultrafine Ferromagnetic Particles, Phys. Rev. Lett. 2000, 84:167-170.
    16. J. García-Otero, M. Porto, J. Rivas and A. Bunde, Influence of the cubic anisotropy constants on the hysteresis loops of single-domain particles: A Monte Carlo study, J. Appl. Phys. 1999, 85: 2287-2292.
    17. J. García-Otero, M. Porto, J. Rivas and A. Bunde, Henkel plots of single-domain ferromagnetic particles J. Appl. Phys.2000, 87:7376.
    18. M.Porto, Ordered systems of ultrafine ferromagnetic particles, Eur.Phys.J.B 2005, 45:369-375.
    19. L.Wang, et al. Monte Carlo simulation of a cluster system with strong interaction and random anisotropy , Phys. Rev. B 2001,64: 214410.
    20. C. Binns , et al. Magnetic behavior of nanostructured films assembled from preformed Fe clusters embedded in Ag, Phys. Rev. B, 2002, 66: 184413
    21. J.P.Pereira Nunes, M.Basiana, and C.S.M.Bastos, Magnetization curves as probes of Monte Carlo simulation of nonequilibrium states, Phys.Rev.E.2003, 69:056703.
    22. U.Nowak, R.W.Chantrell and E.C.Kennedy, Monte Carlo Simulation with Time Step Quantification in Terms of Langevin Dynamics , Phys. Rev. Lett. 2000, 84:163-166.
    23. O.Chubykalo,et al. Monte Carlo technique with a quantified time step: Application to the motion of magnetic moments, Phys.Rev.B. 2003, 67:064422.
    24. X.Z.Cheng, et al. Mapping the monte carlo scheme to Langevin dynamics: A Fokker-Planck Approach, Phys.Rev.Lett.2006, 96:067208.
    25. D. Kechrakos and K. N. Trohidou, Magnetic properties of dipolar interacting single-domain particles, Phys. Rev. B , 1998, 58: 12169– 12177.
    26. D. Kechrakos and K. N. Trohidou, Monte Carlo study of the transverse susceptibility in ordered arrays of magnetic nanoparticles, Phys.Rev.B. 2006, 74:144403.
    27. E.C.Stoner and E.P.Wohlfarth, Philos.Trans.R.Soc.London Ser.A 1948, 240:599.
    1. P.Wu, et al. Ferromagnetism in Fe-implanted a-plane ZnO films, Appl.Phys.Lett. 2006, 89:012508.
    2. K.Potzger, et al. Ferromagnetic Gd-implanted ZnO single crystals, J.Appl.Phys. 2006, 99:063906.
    3. K.Potzger, et al. Fe implanted ferromagnetic ZnO, Appl.Phys.Lett. 2006, 88:052508.
    4. M. Passacantando,et al.Growth of ferromagnetic nanoparticles in a diluted magnetic semiconductor obtained by Mn+ implantation on Ge single crystals, Phys. Rev. B.2006, 73: 195207.
    5. M.A.Scarpulla, et al. Ferromagnetic Ga1-xMnx as produced by ion implantation and pulsed-laser melting, Appl.Phys.Lett. 2003, 82:1251-1253.
    6. S.A.Wolf, et al. Spintronics: A Spin-Based Electronics Vision for the Future, Science, 2001, 294:1488.
    7. Jürgen K?nig, Hsiu-Hau Lin, and Allan H. MacDonald, Theory of Diluted Magnetic Semiconductor Ferromagnetism, Phys. Rev. Lett. 2000, 84:5628-5631.
    8. T Dietl, H Ohno, F Matsukura, J Cibert, D Ferrand, Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors, 2000, 287:1019-1022.
    9. S.honda, et al. Magneto-optical effects from nanophase -Fe and Fe3O4 precipitates formed in yttrium-stabilized ZrO2 by ion implantation and annealing, Appl.Phys.Lett. 2000,77:711.
    10. S.Zhu, L.M.Wang, X.T.Zu and X.Xiang, Optical and magnetic properties of Ni nanoparticles in rutile formed by Ni ion implantation, Appl.Phys.Lett.2006, 88:043107.
    11. N.Hayashi, et al. Embedded iron nano-particles prepared by Fe ion implantation into MgO crystals, Surf.Coat.Tech, 2003, 169-170: 540-543.
    12. R.Venugopal, et al. Magnetic properties of nanoparticles formed by implantation of Fe into Geusing a metal-vapor vacuum arc source, Phys.Rev.B. 2001, 65:014418.
    13. K.Potzger, et al. Ion beam synthesis of Fe nanoparticles in MgO and Yttria-stabilized zirconia, J.Appl.Phys. 2006,99:08N701.
    14. E.Alves, et al. Structural and magnetic studies of Fe-implantedα-Al2O3.Surf.Coat.Tech.2000, 128-129: 434-439
    15. J. Ziegler, J. Biersack, and U. Littmark, The Stopping and Range of Ions in Matter (Pergamon, New York, 1985); SRIM 2006 code, www.srim.org.
    16. A.Anders. Ion charge state distributions of vacuum arc plasmas: The origin of species, Phys.Rev.E.1997, 55:969-981.
    17. J.P.Biersack, Nucl.Instrum.Methods. 1981, 182-183:199.
    18. L. R. Doolittle, Algorithms for the rapid simulation of Rutherford backscattering spectra, Nucl. Instr. Meth. B,1985, 9:344.
    19. Z.Q.Mao, Z.H.He, D.H.Chen, W.Y.Cheung, and S.P.Wang, Crystal orientation dependence of ferromagnetism in Fe-implanted MgO single crystals, Solid.State.Commu.2007, 142: 329-332.
    20. S.Ramachandran, J.Narayan and J.T.Prater, Magnetic properties of Ni-doped MgO diluted magnetic insulators, Appl.Phys.Lett.2007, 90:132511.
    21. A.Perez, et al. Iron-ion-implantation effects in MgO crystals, Phys.Rev.B.1983, 28:1227-1238.
    22. D. Kumar, H. Zhou, T. K. Nath, Alex V. Kvit and J. Narayan, Self-assembled epitaxial and polycrystalline magnetic nickel nanocrystallites, Appl. Phys. Lett. 2001,79:2817-2819.
    23. S. Zhu, X. Xiang, X. T. Zu, L. M. Wang, Magnetic nano-particles of Ni in MgO single crystals by ion implantation Nucl. Instr. Meth. B 2006, 242:114-117.
    24. I.O.Usov, P. N. Arendt, J. R. Groves, L. Stan and R. F. DePaula, Crystallographic orientation dependence of radiation damage in Ar+ implanted YSZ and MgO single crystals, Nucl.Instr.Meth. B 2005, 240:661-665.
    25. I.O.Usov, P. N. Arendt, J. R. Groves, L. Stan and R. F. DePaula, Annealing of radiation damage in (100),(110) and (111) MgO single crystals implanted with Ar+ ions, Nucl.Instr.Meth. B.2006, 243: 87-91.
    26. J Nogués, J Sort, V Langlais, V Skumryev, S.Surinach, J.S.Munoz, and M. D.Baro, Exchange bias in nanoparticles, Phys Rep. 2005, 422:65-117.
    1. W.F.Brown,Jr., Thermal Fluctuations of a Single-Domain Particle, Phys.Rev.1963, 130:1677-1686.
    2. O. Chubykalo-Fesenko and R. W. Chantrell, Multidimensional energy barrier distributions of interacting magnetic particles evaluated at different magnetization states, J. Appl. Phys. 2005, 97:10J315.
    3. S.Shtrikman, and E.P.Wohlfarth, The theory of the Vogel-Fulcher law of spin glasses, Phys.Lett. A. 1981, 85:467-470.
    4. J.L.Dormann, L.Bessais, and D.Fiorani, A Dynamic Study of Small Interacting Particles: Superparamagnetic Model and Spin-Glass Laws, J.Phys.C. 1988, 21:2015-2034.
    5. S. M?rup and E. Tronc, Superparamagnetic relaxation of weakly interacting particles, Phys. Rev. Lett. 1994, 72:3278-3281.
    6. M.El-Hilo,K.O’Grady, and R.W.Chantrell, Susceptibility phenomena in a fine particle system: I. Concentration dependence of the peak, J.Magn.Magn.Meter. 1992, 114:295-306
    7. W. Luo, S.R. Nagel, T. F. Rosenbaum, and R. E. Rosensweig, Dipole interactions with random anisotropy in a frozen ferrofluid, Phys. Rev. Lett. 1991, 67: 2721-2724.
    8. P.Prene, et al. IEEE.Trans.Magn.1993, 29:2658.
    9. F. Luis, J. M. Torres, et al. Enhancement of the magnetic anisotropy of nanometer-sized Co clusters: Influence of the surface and of interparticle interactions, Phys. Rev. B 2002, 65: 094409.
    10. X.X.Zhang, G.H.Wen, G.Xiao,and S.H.Sun, Magnetic relaxation of diluted and self-assembled cobalt nanocrystals, J.Magn.Magn.Mater. 2003, 261:21-28.
    11. S. M?rup, Hyperfine Interact. 1990, 60:959.
    12. S. M?rup, et al. A new interpretation of M?ssbauer spectra of microcrystalline goethite:“Super-ferromagnetism”or“super-spin-glass”behaviour?, J.Magn.Magn.Mater. 1983:163-174.
    13. J. García-Otero, M. Porto, J. Rivas, and A. Bunde, Influence of Dipolar Interaction on Magnetic Properties of Ultrafine Ferromagnetic Particles, Phys. Rev. Lett. 2000, 84:167-170.
    14. R. W. Chantrell and N. Walmsley , Calculations of the susceptibility of interacting superparamagnetic particles, Phys. Rev. B,2000, 63:024410.
    15.òIglesias and A Labarta, Magnetic relaxation in terms of microscopic energy barriers in a model of dipolar interacting nanoparticles, Physical Review B, 2004, 70:144401.
    16. D.Martien, Introduction to: AC Susceptibility, Quantum Design, www.qdusa.com.
    17. E.P.Wohlfarth, The temperature dependence of the magnetic susceptibility of spin glasses Phys.Lett.A, 1979,70:489-491.
    18. R.W.Chantrell, M.El-Hilo,and keven O’Grady, Spin-glass behavior in a fine. particle system, IEEE.Trans.Magn.1991, 27:3570-3578.
    19. J. C. Denardin, A. L. Brandl, et al. Thermoremanence and zero-field-cooled/field-cooled magnetization study of Cox(SiO2)1-x granular films, Phys. Rev. B 2002, 65: 064422.
    20. J.P.Pereira Nunes, M.Basiana, and C.S.M.Bastos, Magnetization curves as probes of Monte Carlo simulation of nonequilibrium states, Phys.Rev.E.2003, 69:056703.
    21. R.W.Chantrell, N.S.Walmsley, J.Gore and M.Maylin, Initial susceptibility of interacting fine particles, J.Magn.Magn.Mater. 1999, 196:118-119.
    22. R.W.Chantrell, N.S.Walmsley, J.Gore and M.Maylin, Theoretical studies of the field-cooled and zero-field-cooled magnetization o interacting fine particles, J.Appl.Phys. 1999, 85:4340-4342.
    23. X.X.Zhang, et al. Magnetic properties, relaxation, and quantum tunneling in CoFe2O4 nanoparticles embedded in potassium silicate, Phys.Rev.B. 1996, 54:4101-4106.
    24. R.K.Zheng, et al. The origin of the non-monotonic field dependence of the blocking temperature in magnetic nanoparticles, J.Phys:Condens.Matter, 2006, 18:5905-5909
    25. M.Porto, Ordered systems of ultrafine ferromagnetic particles, Eur.Phys.J.B 2005, 45:369-375.
    26. M.Porto, Relative significance of particle anisotropy in systems of ultrafine ferromagnetic particles, J.Appl.Phys. 2002, 92:6057-6061.
    27. C.M.Sorensen, Magnetism in Nanoscale materials in Chemistry(Ed:K.J.Klabunde), Wiley-Interscience Publication, NewYork, 2001.
    28. L.Wang, et al. Monte Carlo simulation of a cluster system with strong interaction and random anisotropy , Phys. Rev. B 2001,64: 214410.
    29. C. Binns, et al. Magnetic behavior of nanostructured films assembled from preformed Fe clusters embedded in Ag, Phys. Rev. B, 2002, 66: 184413
    30. D. A. Dimitrov and G. M. Wysin, Magnetic properties of superparamagnetic particles by a Monte Carlo method, Phys. Rev. B,1996, 54: 9237– 9241.
    31. P.Allia, et al. Granular Cu-Co alloys as interacting superparamagnets, Phys. Rev. B. 2001, 64:144420.
    32. H. Mamiya, I. Nakatani, and T. Furubayashi, Blocking and Freezing of Magnetic Moments for Iron Nitride Fine Particle Systems , Phys. Rev. Lett. 1998, 80: 177– 180.
    33. R. Sappey, et al. Nonmonotonic field dependence of the zero-field cooled magnetization peak in some systems of magnetic nanoparticles, Phys. Rev. B,1997, 56: 14551– 14559.
    34. H Kachkachi, WT Coffey, Field dependence of the temperature at the peak of the zero-field-cooled magnetization, J.Phys: Condens.Matter. 2000, 12:3077-3090.
    35. M.Azeggagh and H.kachkachi, Effects of dipolar interactions on the zero-field-cooled magnetization of nanoparticle assembly, Phys.Rev.B. 2007, 75:174410.
    36. H. Mamiya, I. Nakatani, and T. Furubayashi, Magnetic Relaxations of Antiferromagnetic Nanoparticles in Magnetic Fields, Phys. Rev. Lett, 2002, 88: 067202.
    1. P.Politi, and M.G.Pini, Dipolar interaction between two-dimensional magnetic particles, Phys.Rev.B. 2002, 66:214414.
    2. N.R.Jana, Y Chen, X Peng, Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach, Chem. Mater, 2004, 16 (20), 3931 -3935.
    3. WX Fang, ZH He, XQ Xu, ZQ Mao, H Shen, Magnetic-field-induced chain-like assembly structures of Fe3O4 nanoparticles , Europhys. lett. 2008, 77:68004
    4. O. Chubykalo-Fesenko, and R. W. Chantrell, Multidimensional energy barrier distributions of interacting magnetic particles evaluated at different magnetization states, J. Appl. Phys. 2005, 97:10J315.
    5. J.M.Luttinger, and L.Tisza, Phys.Rev. 1946, 70:954-
    6. S.Russ, and A.Bunde, Monte Carlo simulations of frozen metastable states in ordered systems of ultrafine magnetic particles, Phys.Rev.B. 2006, 74:064426.
    7. M.Azeggagh and H.kachkachi, Effects of dipolar interactions on the zero-field-cooled magnetization of nanoparticle assembly, Phys.Rev.B. 2007, 75:174410.
    8. S. Sankar, A. E. Berkowitz, David J. Smith,Spin-dependent transport of Co-SiO2 granular films approaching percolation, Phys. Rev. B,2000, 62: 14273 -14278.
    9. C.P.Bean and J.D.Livingston, Superparamagnetism, J.Appl.Phys. 1959, 30:120S-129S.
    10. E.C.Stoner and E.P.Wohlfarth, Philos.Trans.R.Soc.London Ser.A 1948, 240:599.
    11. R. W. Chantrell and N. Walmsley , Calculations of the susceptibility of interacting superparamagnetic particles, Phys. Rev. B,2000, 63:024410.
    12. P.Allia, et al. Granular Cu-Co alloys as interacting superparamagnets, Phys. Rev. B. 2001, 64:144420.
    13. C.Binns, and M.J.Maher, magnetic behaviour of thin films produced by depositing pre-formed Fe and Co nanoclusters, New.J.Phys.2002,4:85.1-85.15.
    14. M Hanson, C Johansson, and S Morup, The Influence of Magnetic Anisotropy on the Magnetization of Small Ferromagnetic Particles, J. Phys: Condens. Matter. 1993, 5:725-732.
    15. M. Respaud , Magnetization process of noninteracting ferromagnetic cobalt nanoparticles in the superparamagnetic regime: Deviation from Langevin law, J. Appl. Phys. 1999, 86: 556-561.
    16. F. Wiekhorst, et al. Anisotropic superparamagnetism of monodispersive cobalt-platinum nanocrystals, Phys. Rev. B 2003, 67: 224416.
    17. I. Yasumori, D. Reinen, and P. W. Selwood, Anisotropic Behavior in Superparamagnetic Systems, J. Appl. Phys. 1963, 34:3544.
    18. P. E. J?nsson and J. L. García-Palacios , Thermodynamic perturbation theory for dipolar superparamagnets, Phys. Rev. B, 2001, 64:174416.
    19. J.M.Vargas, et al. Dipolar interaction and size effects in powder samples of colloidal iron oxide nanoparticles, Nanotechnology, 2005, 16:S285-S290.
    20. J. M. Vargas, et al. Effect of dipolar interaction observed in iron-based nanoparticles, Phys. Rev. B, 2005, 72:184428.
    21. C. Binns , et al. Magnetic behavior of nanostructured films assembled from preformed Fe clusters embedded in Ag, Phys. Rev. B, 2002, 66: 184413
    22. Z.Mao, D.Chen, and Z.He, Equilibrium Magnetic Properties of Dipolar Interacting Ferromagnetic Nanoparticles, Doi. 10.1016/j.jmmm.2008.04.118
    23. J. L. García-Palacios and D. A. Garanin, Nonlinear response of superparamagnets with finitedamping: An analytical approach, Phys. Rev. B, 2004, 70:064415
    24. H.kachkachi, and M.Azeggagh, Magnetization of nanomagnet assemblies: Effects of anisotropy and dipolar interactions, Eur.Phys.J.B, 2005, 44:299-308.
    25. M.Porto, Ordered systems of ultrafine ferromagnetic particles, Eur.Phys.J.B 2005, 45:369-375.
    26. M.Porto, Relative significance of particle anisotropy in systems of ulatrfine ferromagnetic particles, J.Appl.Phys. 2002, 92:6057-6061.
    27. S. M?rup and E. Tronc, Superparamagnetic relaxation of weakly interacting particles, Phys. Rev. Lett. 1994, 72:3278-3281.
    28.òIglesias and A Labarta, Magnetic relaxation in terms of microscopic energy barriers in a model of dipolar interacting nanoparticles, Physical Review B, 2004, 70:144401
    29. J.L.Dormann, L.Bessais, and D.Fiorani, A Dynamic Study of Small Interacting Particles: Superparamagnetic Model and Spin-Glass Laws, J.Phys.C. 1988, 21:2015-2034.
    30. F. Luis, J. M. Torres, et al. Enhancement of the magnetic anisotropy of nanometer-sized Co clusters: Influence of the surface and of interparticle interactions, Phys. Rev. B 2002, 65: 094409.
    1. S.Sun, C.B.Murray, D.Weller, L.Folks, and Moser, A Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science,2000, 287:1989-1992.
    2. V.F.Puntes, P.Gorostiza, D.M.Aruguete, N.G.Bastus and P.Slivisatos, Collective behaviour in two-dimensional cobalt nanoparticle assemblies observed by magnetic force microscopy, Nat.Mater, 2004, 3:263-268.
    3. R. W. Chantrell and N. Walmsley , Calculations of the susceptibility of interacting superparamagnetic particles, Phys. Rev. B,2000, 63:024410.
    4. H. Mamiya, I. Nakatani, and T. Furubayashi, Blocking and Freezing of Magnetic Moments for Iron Nitride Fine Particle Systems , Phys. Rev. Lett. 1998, 80: 177– 180.
    5. S. Bedanta, et al. Overcoming the Dipolar Disorder in Dense CoFe Nanoparticle Ensembles: Superferromagnetism, Phys.Rev.Lett. 2007, 98:176601.
    6. S.Sahoo,et al. Cooperative versus superparamagnetic behavior of dense magnetic nanoparticles in Co80Fe20/Al2O3 multilayers, Appl.Phys.Lett, 2003, 82:4116-4118.
    7. J.B.Kortright, et al. Interparticle magnetic correlations in dense Co nanoparticles assemblies, Phys.Rev.B. 2005, 71:012402.
    8. M.Azeggagh and H.kachkachi, Effects of dipolar interactions on the zero-field-cooled magnetization of nanoparticle assembly, Phys.Rev.B. 2007, 75:174410.
    9. J.L.Dormann, D.Fiorani, and E.Tronc, Magnetic relaxation in fine-particle systems, Adv. Chem.Phys. 1997, 98:283
    10. J.A.De.Toro, J.R.Andres, J.A.Gonzalez, J.P.Goff, A.J.Barberto and J.M.Riveiro, Improved giant magnetoresistance in nanogranular Co/Ag: The role of interparticle RKKY interactions, Phys.Rev.B. 2004, 70:224412.
    11. Z. Mao, Z.He and D. Chen, Role of interparticle coupling on the tunneling magnetoresistance of granular films in interacting superparamagnetic system , J. Magn. Magn. Mater, 2008, 320:642-645.
    12. B. J. Hattink, et al. Tunneling magnetoresistance in Co-ZrO2 granular thin films, Phys. Rev. B 2006, 73, 045418.
    13. J. Inoue and S. Maekawa, Theory of tunneling magnetoresistance in granular magnetic films, Phys. Rev. B,1996, 53:R11927 - R11929.
    14. P. Sheng, B. Abeles, and Y. Arie, Hopping Conductivity in Granular Metals, Phys. Rev. Lett. 1973, 31:44-47.
    15. C. Binns and M. J. Maher, Magnetic behaviour of thin films produced by depositing pre-formed Fe and Co nanoparticles, New J. Phys. 2002, 4:85.
    16. F. Wiekhorst, et al. Anisotropic superparamagnetism of monodispersive cobalt-platinum nanocrystals, Phys. Rev. B 2003, 67: 224416.
    17. M. Respaud , Magnetization process of noninteracting ferromagnetic cobalt nanoparticles in the superparamagnetic regime: Deviation from Langevin law, J. Appl. Phys. 1999, 86: 556-561.
    18. P.Allia, et al. Granular Cu-Co alloys as interacting superparamagnets, Phys. Rev. B, 2001,64:144420.
    19. W.Wang, et al. Enhanced tunneling magnetoresistance and high-spin polarization at room temperature in a polystyrene-coated Fe3O4 granular system, Phys.Rev.B. 2006, 73:134412.
    20. J. F. L?ffler, et al. Magnetic Correlations in Nanostructured Ferromagnets,Phys.Rev. Lett.2000, 85:1990-1993.
    21. A. Michels,et al. Range of Magnetic Correlations in Nanocrystalline Soft Magnets, Phys. Rev. Lett. 2003, 91:267204-267207.
    22. W. C. Nunes, L. M. Socolovsky, J. C. Denardin, F. Cebollada, A. L. Brandl, and M. Knobel,Role of magnetic interparticle coupling on the field dependence of the superparamagnetic relaxation time, Phys. Rev. B 72 (2005) 212413.
    23. J. C. Denardin, A. L. Brandl, et al. Thermoremanence and zero-field-cooled/field-cooled magnetization study of Cox(SiO2)1-x granular films, Phys. Rev. B 2002, 65: 064422.
    1. X.X.Zhang,G.H.Wen,G.Xiao,and S.H.Sun, Magnetic relaxation of diluted and self-assembled cobalt nanocrystals, J.Magn.Magn.Mater. 2003, 261:21-28.
    2. X.X.Zhang, et al. Magnetic properties, relaxation, and quantum tunneling in CoFe2O4 nanoparticles embedded in potassium silicate, Phys.Rev.B. 1996, 54:4101-4106.
    3. J.P.Pereira Nunes, M.Basiana, and C.S.M.Bastos, Magnetization curves as probes of Monte Carlo simulation of nonequilibrium states, Phys.Rev.E.2003, 69:056703.
    4. J. C. Denardin, A. L. Brandl, et al. Thermoremanence and zero-field-cooled/field-cooled magnetization study of Cox(SiO2)1-x granular films, Phys. Rev. B 2002, 65: 064422.
    5. R.W.Chantrell, M.El-Hilo,and keven O’Grady, Spin-glass behavior in a fine particle system, IEEE.Trans.Magn.1991, 27:3570-3578.
    6. R. Sappey, et al. Nonmonotonic field dependence of the zero-field cooled magnetization peak in some systems of magnetic nanoparticles, Phys. Rev. B,1997, 56: 14551– 14559.
    7. E.C.Stoner and E.P.Wohlfarth, Philos.Trans.R.Soc.London Ser.A 1948, 240:599.
    8. J.O.Andersson, C.Djurberg, T.Jonsson, P.Svedlindh, and P.Nordblad, Monte Carlo studies of the dynamics of an interacting monodispersive magnetic particle system, Phys.Rev.B. 1997, 56:13983-13988.
    9. P.Allia, et al. Granular Cu-Co alloys as interacting superparamagnets, Phys. Rev. B, 2001,64:144420.
    10. J. M. Vargas, et al. Effect of dipolar interaction observed in iron-based nanoparticles, Phys. Rev. B, 2005, 72:184428.
    11. C. Binns , et al. Magnetic behavior of nanostructured films assembled from preformed Fe clusters embedded in Ag, Phys. Rev. B, 2002, 66: 184413
    12. Z. Mao, Z.He and D. Chen, Role of interparticle coupling on the tunneling magnetoresistance of granular films in interacting superparamagnetic system , J. Magn. Magn. Mater, 2008, 320:642-645.
    13. R.K.Zheng, et al. The origin of the non-monotonic field dependence of the blocking temperature in magnetic nanoparticles, J.Phys: Condens.Matter. 2006, 18:5905-5910.
    14. H Kachkachi, WT Coffey, Field dependence of the temperature at the peak of the zero-field-cooled magnetization, J.Phys: Condens.Matter. 2000, 12:3077-3090.
    15. H Kachkachi, WT Coffey, Field dependence of the temperature at the peak of the zero-field-cooled magnetization, J.Phys: Condens.Matter. 2000, 12:3077-3090.
    16. M.Azeggagh and H.kachkachi, Effects of dipolar interactions on the zero-field-cooled magnetization of nanoparticle assembly, Phys.Rev.B. 2007, 75:174410.
    1. U.Nowak, R.W.Chantrell and E.C.Kennedy, Monte Carlo Simulation with Time Step Quantification in Terms of Langevin Dynamics , Phys. Rev. Lett. 2000, 84:163-166.
    2. X.Z.Cheng, et al. Mapping the monte carlo scheme to Langevin dynamics: A Fokker-Planck Approach, Phys.Rev.Lett.2006, 96:067208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700