用户名: 密码: 验证码:
大气颗粒物个数浓度、粒径分布及颗粒物生成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气颗粒物的个数浓度、粒径分布特征反映了不同环境下大气光化学过程、气团来源性质及地区排放源特征的差异。了解颗粒物的这些性质及其来源有助于深入分析颗粒物对大气辐射平衡、大气化学过程及区域气候的影响,并有助于细颗粒物控制对策的制定。本研究在我国上海、北京、济南等城市地区及华北-华东区域性高山观测点-泰山山顶针对粒径范围在3nm至10μm之间的大气颗粒物个数浓度、粒径分布特征进行了测量及分析,以期考察我国超大城市及华北-华东地区区域大气颗粒物个数浓度、粒径分布特点,并基于个数浓度粒径分布数据针对颗粒物生成及成长过程进行了研究。
     研究中根据在上述地区观测得到的颗粒物个数浓度粒径分布数据针对不同粒经范围内颗粒物个数浓度和所占PM_(2.5)的个数浓度、表面积浓度、质量浓度的百分比、颗粒物个数浓度粒径分布的时间变化特征等进行了考察。发现在我国超大城市上海、北京地区存在高浓度的超细颗粒物,且所占PM_(2.5)总个数浓度比例在90%左右,比欧美观测点观测结果高出约30%,说明我国大城市地区存在着较严重的超细颗粒物污染。从颗粒物个数浓度粒径分布来看城市下风方向观测点(上海-太仓、北京-昌平)、城区观测点(济南市区)的颗粒物个数浓度在夏季均以凝结核模态颗粒物为主,说明夏季颗粒物的生成过程比较旺盛。而泰山地区观测结果显示颗粒物个数浓度主要分布于埃根核模态,以此推测泰山观测结果主要反映了边界层-自由对流层之间混合较好且具有一定光化学年龄的气团特征,其中的颗粒物粒径经过一定时间光化学作用后已经成长至较大的粒径范围。
     研究中还结合观测点同步观测的气体污染物及颗粒物质量浓度等数据,通过考察不同粒径颗粒物个数浓度的日夜变化廓线讨论了不同大气环境下超细颗粒物的主要来源,发现在城郊观测点及半区域性观测点凝结核模态颗粒物主要来源于颗粒物的生成及成长过程。而在城区观测点如济南市区,夏季新颗粒物生成过程和机动车排放的贡献共同存在但颗粒物生成过程占主导,冬季观测颗粒物生成过程明显减弱,而机动车排放贡献的显著水平有明显增大。在区域性观测点如泰山观测点,凝结核模态颗粒物较少而超细颗粒物主要来源与颗粒物的成长过程和边界层污染气团的传输。
     大气颗粒物的生成及成长过程是塑造和改变颗粒物粒径分布特征的重要过程之一,也是导致大气颗粒物和大气云凝结核个数浓度大量增加的重要机制。本文针对在多个观测点观测到的颗粒物生成及成长过程进行了分析,针对上海、北京及泰山地区颗粒物生成及成长过程中相关参数进行了计算,包括颗粒物成长速率、颗粒物数浓度净增长率、凝结汇、大气气态硫酸生成率等。研究发现污染相对较重的上海.太仓观测点颗粒物增长速率为6.0 nm·h~(-1),而相对清洁的北京观测点和泰山观测点分别为4.4 nm·h~(-1)和3.2 nm·h~(-1),其结果与世界其它观测点观测结果基本可比。通过计算几个观测点的颗粒物生成速率和颗粒物个数浓度净增长率考察了边界层观测点发生颗粒物生成过程的强度,发现上海-太仓、北京-昌平、济南市区观测点均发现强度较高的颗粒物生成过程,且发生的频率较高。
     通过考察各观测点颗粒物生成和成长过程中源和汇的关系(大气气态硫酸生成率和颗粒物凝结汇的相关性)发现本研究结果与国外观测点相比的特点是前体物浓度高(如SO_2浓度、气态硫酸生成率),同时大气中现存颗粒物(大粒径颗粒物)浓度高,且颗粒物凝结汇较高(高出欧美观测点1个数量级)。北京观测点尤其特别,在前体物中等浓度而颗粒物凝结汇数值非常高的情况下却多次发生高强度的颗粒物生成及成长过程,说明在该观测点参与成核的污染物可能不止是气态硫酸,可能还有植物排放有机物的参与。
     考虑到颗粒物的生成和成长过程同时与气团化学性质、气象过程有关,并在水平区域和垂直分布特征上也反映了大气化学特征及污染物传输规律,本研究中基于对边界层内观测点(北京、上海、济南)和边界层.自由对流层区域观测点(泰山)观测的颗粒物生成-成长过程,讨论了过程个例发生的频率及区域代表性。研究发现,我国华北-华东边界层城市地区观测点发生颗粒物生成过程的强度要大于欧美观测点,且区域性颗粒物生成-成长过程的频率与世界其它观测点同月份基本可比。而代表华北-华东地区边界层顶区域特征的高山观测点发生颗粒物成长过程个例的频率高达65%,高于欧美观测点观测结果2-3倍。
     本文还根据颗粒物数浓度粒径分布数据和气溶胶多级膜采样数据,利用不同粒径颗粒物膜采样的实测质量浓度与在线观测颗粒物体积浓度的相关性,计算了上海地区和北京地区夏季PM_(2.5)颗粒物密度分别为1.51 g·cm~(-3)和1.71g·cm~(-3),PM_(10)颗粒物密度为1.50 g·cm~(-3)和1.66 g·cm~(-3)。
The number concentration and size distribution of the atmospheric particle varies with different photochemiscal process,air mass characteristics and emission type.To know about the size distribution and the origination of the particles in different size can help us have a deep understanding about the effects of atmospheric aerosol on the atmospheric radiation balance,atmospheric chemical process and even climate change.The particle number concentration and size distribution in the size range of 3 nm to 10μm were measured over north China and East China region. The sites were established in the down wind direction of mega cities,urban downtown area and on the summit of mountain.In this thesis,we discussed the pollution level and size distribution characteristics of ultrafine particles and particle formation and growth process over the sites.
     Not only the higher number concentration,but also the higher percentages in PM_(2.5)counts of ultrafine particles have been observed in Shanghai and Beijing area, than in Europe and North America sites.It has been found that the number concentrations were dominated by nuclei mode particles in most of the site (Shanghai,Beijing,summer in Ji'nan).It suggested that the sites may have experienced strong particle formation process during the summer season.But for Mt. Tai,it was dominated by particles in the size range of 20-90 nm,e.g.Aitken mode particles,which inferred that the site was frequently influenced by aged air came from the boundary layer and the free troposphere.And the newly formatted particles have been grown to larger size before their getting to the mountain top site.
     The origination of ultrafine particles in different environment was studied based on the analysis of temporal variation of particle number concentrations in different size range.It is obviously that the ultrafine particles were brought by new particle formation and growth process in most of the site,e.g.downwind site of Shanghai and Beijing.For Ji'nan,we believe the new particle formation contributed most of the ultrafine particles in summer while the contribution from vehicle will be a little more in winter.Few nuclei mode particles were observed in Mt.Tai and the high concentration of uitrafine particles were thought to be caused by particle growth and transport form the boundary layer.
     Particle formation and growth can shape the particle size distribution and also can increase the number concentration of dry particles and CCN.The particle formation and growth process were also analyzed based on the observation in Shanghai,Beijing,Ji'nan and Mt.Tai.A series of parameters have been calculated to evaluate the characteristic of these events,including the particle formation rate, growth rate,the net increase of nuclei mode particles,the condensational sink and gas phase H_2SO_4 in ambient air.The grow rate of particles in Mt.Tai is 3.2 nm h~(-1), and 6.0 nm h~(-1)in shanghai and 4.4 nmh~(-1)in Beijing,which is comparable with other sites world wide.The particle formation rate and number concentration net increase rate were calculated to evaluate the strength of the particle formation events in Shanghai,Beijing and Ji'nan.And they were found to be much higher than that in comparable sites of Europe or North America.This may suggest the strong particle formation events happened in the urban area of north and east of China region.Here we also studied the relationship between the source(gas phase H_2SO_4 in ambient air and SO_2 mixing ratio)and the sink(particle condensational sink)and found nearly all the sites can be characterized by high concentration of precursors with high sink. For Beijing,the new particle formation events were observed under very high condensational sink and moderate precursor,suggesting the possibility of participant of condensation vapors beside of H_2SO_4.It is interesting that the frequency of particle formation and growth events in Mt.Tai(65%)was much(2-4 times)higher than any recently reported results in world scale.Both the strong events happened in boundary layer and high frequency of the events in the upper boundary layer may present the characteristic of particles over the large north and east China region. Knowing that the strong emission of precursors of particles over the region,north and east China maybe taken as a great source of ultrafine particles and may be contribute a lot to the world climate change.
     The particle density of PM_(2.5)and PM_(10)were also calculated base on the result of particle volume concentration measured by particle counter and mass concentration measured by filter,in summer of Shanghai and Beijing respectively. And the values are 1.51g-cm~(-3)for PM_(2.5)and 1.50 g·cm~(-3)for PM_(10)in Beijing,and 1.71 g·cm~(-3)for PM_(2.5)and 1.66 g·cm~(-3)for PM_(10)in Shanghai,respectively.
引文
[1] Pryor, S.C.; Barthelmie, R.J.; Geernaert, L.L.S.; Ellermann, T.; Perry, K.D., Speciated particle dry deposition to the sea surface: Results from ASEPS '97. Atmos. Environ. (1999) 33 , 2045-1058
    [2] Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric Chemistry and Physics from Air Pollution to Climate Change. Wiley, New York.
    [3] Stott, P. A., Tett, S. F. B., Jones, G. S., Allen, M. R., Mitchell, J. F. B., & Jenkins, G. J. (2000). External control of 20th century temperature by natural and anthropogenic forcings. Science, 290,2133-2137.
    [4] Yu, S., Saxena, V. K., & Zhao, Z. (2001). A comparison of signals of regional aerosol-induced forcing in eastern China and southeastern United States. Geophysical Research Letters, 28,713-716.
    [5] Menon, S., Del Genio, A. D., Koch, D., & Tselioudis, G. (2002). GCM simulations of the aerosol indirect effect: Sensitivity to cloud parameterization and aerosol burden. Journal of Atmospheric Sciences, 59,692-713.
    [6] Schwartz, 1996 S.E. Schwartz, The Whitehouse effect—shortwave radiative forcing of climate by anthropogenic aerosols: an overview, J. Aerosol Sci. 27 (1996), pp. 359-382.
    [7] Rosenfeld, D., 2000. Suppression of rain and snow by urban and industrial air pollution. Science 287, 1793-1796.
    [8] Intergovernmental Panel on Climate Change (2002), Climate Change 2001, Cambridge Univ. Press, New York.
    [9] Oberdorster G, Ferin J, Finkelstein J, Wade P, Corson N. 1990. Increased pulmonary toxicity of ultrafine particles? II. Lung lavage studies. J Aerosol Sci 21:384-387.
    [10] Oberdorster G. 2000. Toxicology of ultrafine particles: in vivo studies. Philos Trans R Soc Lond A 358:2719-2740.
    [11] Donaldson, K., Brown, D., et al., 2002. The pulmonary toxicology of ultrafine particles. Journal of Aerosol Medicine— Deposition Clearance and Effects in the Lung 15 (2), 213-220.
    [12] Peters A, Doring A, Wichmann H-E, Koenig W. 1997. Increased plasma viscosity during an air pollution episode: a link to mortality? Lancet 349:1582-1587.
    [13] Aitken, J. A. (1897). On some nuclei of cloudy condensation. Transactions of the Royal Society, XXXIX.
    [14] McMurry, P. H. (2000a). A review of atmospheric aerosol measurements. Atmospheric Environment, 34, 1959-1999.
    [15] McMurry, P. H. (2000b). The history of condensation nucleus counters. Aerosol Science and Technology, 33,297-322.
    [16] Kulmala, M., H. Vehkamaki, T. Petaja, M. Dal Maso, A. Lauri, V. M. Kerminen, W. Birmili, and P. H. McMurry (2004), Formation and growth rates of ultrafine atmospheric particles: A review of observations, J. Aerosol Sci., 35(2), 143- 176.
    [17] Dusek, U., Frank, G. P., Hildebrandt, L., et al., 2006. Size Matters More Than Chemistry for cloud nucleating ability of aerosol particles. Science 312, 1375.
    [18] Frick, G.M., and W.A. Hoppel, Airship measurements of aerosol size distribution, cloud droplet spectra, and trace gas concentrations in the marine boundary layer, Bull. Amer. Meteor. Soc, 74,2195- 2202,1993.
    [19] Wiedensohler, A., et al., Night-time formation and occurrence of new particles associated with orographic clouds, Atmos. Environ., 31, 2545-2560, 1997.
    [20] Kulmala, M., Dal Maso, M., Makela, J. M., Pirjola, L., V.akev.a, M., Aalto, P., Miikkulainen, P., H.ameri, K., & O'Dowd, C. D. (2001). On the formation, growth and composition of nucleation mode particles. Tellus B, 53,479-490.
    [21] Kulmala Markku, 2003. How Particles Nucleate and Grow. Science, 302, 1000-1001
    [22] Langner, J., and H. Rodhe, A global three-dimensional model of the tropospheric sulfur cycle, J. Atmos. Chem., 13,255-263,1991.
    [23] Kulmala, M., Laaksonen, A., et al., 1998. Parameterizations for sulfuric acid/water nucleation rates. Journal of Geophysical Research—Atmospheres 103 (D7), 8301-8307.
    [24] Kulmala, M., Toivonen, A., et al., 1998b. Analysis of the growth of nucleation mode particles observed in Boreal forest. Tellus Series B—Chemical and Physical Meteorology 50 (5), 449-462.
    [25] Weber, R. J., McMurry, P. H., Mauldin, L., Tanner, D. J., Eisele, F. L., Brechtel, F. J., Kreidenweis, S. M., Kok, G L., Schillawski, R. D., & Baumgardner, D. (1998). A study of new particle formation and growth involving biogenic and trace gas species measured during ACE1. Journal of Geophysical Research D, 103, 16385-16396.
    [26] O'Dowd, C.D., Becker, E., et al., 2000. Aerosol physico-chemical characteristics over a boreal forest determined by volatility analysis. Boreal Environmental Research 5 (4), 337-348.
    [27] Yu, F., & Turco, R. P. (2000). UltraSne aerosol formation via ion-mediated nucleation. Geophysical Research Letters, 27, 883-886.
    [28] Weber, R. J., Marti, J. J., McMurry, P. H., Eisele, F. L., Tanner, D. J., & Je9erson, A. (1997). Measurements of new particle formation and ultrafine particle growth rates at a clean continental site. Journal of Geophysical Research D, 102, 4375-4385.
    [29] Pirjola, L., Laaksonen, A., Aalto, P., & Kulmala, M. (1998). Sulfate aerosol formation in the arctic boundary layer. Journal of Geophysical Research D, 103, 8309-8321.
    [30] Kerminen, V.-M., Pirjola, L., & Kulmala, M. (2001). How signi$cantly does coagulational scavenging limit atmospheric particle production?. Journal of Geophysical Research, 106,24119-24125.
    [31] Zhang, K.M., Wexler, A.S., 2002. Modeling the number distributions of urban and regional aerosols: theoretical foundations. Atmospheric Environment 36 (11), 1863-1874.
    [32] Birmili, W., & Wiedensohler, A. (2000). New particle formation in the continental boundary layer: Meteorological and gas phase parameter inFuence. Geophysical Research Letters, 27, 3325-3328.
    [33] Weber, R. J., McMurry, P. H., Mauldin III, R. L., Tanner, D., Eisele, F. L., Clarke, A. D., & Kapustin, V. N. (1999). New particle formation in the remote troposphere: A comparison of observations at various sites. Geophysical Research Letters, 26, 307-310.
    [34] O'Dowd, C. D., Geever, M., Hill, M. K., Smith, M. H., & Jennings, S. G. (1998). New particle formation: Nucleation rates and spatial scales in the clean marine coastal environment. Geophysical Research Letters, 25, 1661-1664.
    [35] O'Dowd, C. D., McFiggans, G., Greasey, D. J., Pirjola, L., Hoell, C., Smith, M. H., Allan, B. J., Plane, J. M. C., Heard, D. E., Lee, J. D., Pilling, M. J., & Kulmala, M. (1999). On the photochemical production of new particles in the coastal boundary layer. Geophysical Research Letters, 26, 1707-1710.
    [36] Woo, K. S., Chen, D. R., Pui, D. Y. H., & McMurry, P. H. (2001). Measurements of Atlanta aerosol size distributions Observations of ultrafine particle events. Aerosol Science and Technology, 34, 75-87.
    [37] Weber, R. J., Marti, J. J., McMurry, P. H., Eisele, F. L., Tanner, D. J., & Je9erson, A. (1997). Measurements of new particle formation and ultrafine particle growth rates at a clean continental site. Journal of Geophysical Research D, 102, 4375-1385.
    [38] Dal Maso, M., Kulmala, M., et al., 2002. Condensation and coagulation sinks and formation of nucleation mode particles in coastal and boreal forest boundary layers. Journal of Geophysical Research—Atmospheres 107 (D15).
    [39] Kulmala, M., Toivonen, A., M.akel.a, J. M., & Laaksonen, A. (1998). Analysis of the growth of nucleation mode particles observed in Boreal forest. Tellus B, 50, 449-462.
    [40] Pirjola, L., Kulmala, M., 2001. Development of particle size and composition distributions with a novel aerosol dynamics model. Tellus Series B—Chemical and Physical Meteorology 53 (4), 491-509.
    [41] Laakso, L., Makela, J.M., et al., 2002. Model studies on ioninduced nucleation in the atmosphere. Journal of Geophysical Research—Atmospheres 107 (D20).
    [42] Hirsikko, A., Laakso, L., et al., 2005. Annual and size dependent variation of growth rates and ion concentrations in boreal forest. Boreal Environment Research 10 (5), 357-369.
    [43] Alfarra, M.R., Coe, H., et al., 2004. Characterization of urban and rural organic particulate in the lower Fraser valley using two aerodyne aerosol mass spectrometers. Atmospheric Environment 38 (34), 5745-5758.
    [44] Monkkonen, P., Koponen, I.K., et al., 2005. Measurements in a highly polluted Asian mega city: observations of aerosol number size distribution, modal parameters and nucleation events. Atmospheric Chemistry and Physics 5, 57-66.
    [45] Shi, J.P., Evans, D.E., et al., 2001. Sources and concentration of nanoparticles (<10nm diameter) in the urban atmosphere. Atmospheric Environment 35, 1193-1202
    [46] Stanier, CO., Khlystov, A.Y., et al., 2004. Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study (PAQS). Atmospheric Environment 38 (20), 3275-3284.
    [47] Stanier, CO., Khlystov, A.Y., et al., 2004. Nucleation events during the Pittsburgh air quality study: description and relation to key meteorological, gas phase, and aerosol parameters. Aerosol Science and Technology 38,253-264.
    [48] Gidhagen, L., Johansson, C, et al., 2004. Simulation of NOx and ultrafine particles in a street canyon in Stockholm, Sweden. Atmospheric Environment 38 (14), 2029-2044.
    [49] Shi, J.P., Harrison, R.M., 1999. Investigation of ultrafine particle formation during diesel exhaust dilution. Environmental Science and Technology 33, 3730-3736.
    [50] Pohjola, M.A., Pirjola, L., et al., 2006. Correction to modelling of the influence of aerosol processes for the dispersion of vehicular exhaust plumes in street environment. Atmospheric Environment 40 (2), 311-314.
    [51] Seigneur, C., Hudischewskyi, A.B., et al., 1986. Simulation of aerosol dynamics: a comparative review of mathematical models. Aerosol Science and Technology 5, 205-222.
    [52] Makela, J. M, Aalto, P., Jokinen, V., Pohja, T., Nissinen, A., Palmroth, S., Markkanen, T., Seitsonen, K., Lihavainen, H., & Kulmala, M. (1997). Observations of ultrafine particle formation and growth in boreal forest. Geophysical Research Letters, 24, 1219-1222.
    [53] Vakeva, M., H.ameri, K., Puhakka, T., Nilsson, E. D., Hohti, H., & M.akel.a, J. M. (2000). E9ects of meteorological processes on aeroso areal particle size distribution in an urban background. Journal of Geophysical Research D, 105, 9807-9821.
    [54] Stanier, C. O., Khlystov, A. Y., & Pandis, S. N. (2002). Investigation of nucleation bursts during the Pittsburgh air quality study. Abstracts of the Sixth International Aerosol Conference (pp. 1291-1292).
    [55] Shi, & Qian, (2003). Continuous measurements of 3 nm to 10μm aerosol size distributions in St. Louis, M.S. Thesis, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455.
    [56] Birmili, W., Berresheim, H., Plass-D.ulmer, C., Elste, T., Gilge, S., Wiedensohler, A., & Uhrner, U. (2003). The Hohenpeissenbergaerosol formation experiment (HAFEX): A long-term study includingsize-resolved aerosol, H2SO4, OH, and monoterpenes measurements. Atmospheric Chemistry and Physics, 3,361-376.
    [57] O'Dowd, C. D., McFiggans, G., Greasey, D. J., Pirjola, L., Hoell, C., Smith, M. H., Allan, B. J., Plane, J. M. C, Heard, D. E., Lee, J. D., Pilling, M. J., & Kulmala, M. (1999). On the photochemical production of new particles in the coastal boundary layer. Geophysical Research Letters, 26, 1707-1710.
    [58] Weber, R. J., Marti, J. J., McMurry, P. H., Eisele, F. L., Tanner, D. J., & Jefferson, A. (1996). Measured atmospheric new particle formation rates: Implications for nucleation mechanisms. Chemical Engineering Communications, 151, 53-64.
    [59] Kavouras, I. G., Mihalopoulos, N., & Stephanou, E. G. (1998). Formation of atmospheric particles from organic acids produced by forests. Nature, 395, 683-686.
    [60] McNaughton, C. S., Clarke, A. D., Howell, S. G., Moore II, K. G, Brekhovskikh, V., Weber, R., Orsini, D. A., Covert, D., Buzorius, G., Brechtel, F. J., Carmichael, G. R., Tang, Y., Eisele, F. L., Mauldin, R. L., Bandy, A. R., Thornton, D. C., and Blomqvist, B.: Spatial distribution and size evolution of particles in Asian outflow: Significance of primary and secondary aerosols during ACE-Asia and Trace-P, J. Geophys. Res., 109, D19S06, doi:10.1029/2003JD003528,2004.
    [61] Lunden, MM., Black, D. R., McKay, M. et al., 2006. Characteristics of Fine Particle Growth Events Observed Above a Forested Ecosystem in the Sierra Nevada Mountains of California. Aerosol Science and Technology, 40:373-388, 2006
    [62] Nishita, C., K. Osada, M. Kido, K. Matsunaga, and Y. Iwasaka (2008), Nucleation mode particles in upslope valley winds at Mount Norikura, Japan: Implications for the vertical extent of new particle formation events in the lower troposphere, J. Geophys. Res., 113, D06202, doi:10.1029/2007JD009302.
    [63] Wehner, B., H. Siebert, F. Stratmann, T. Tuch, A. Wiedensohler, T. Peta¨ja¨, M. Dal Maso, and M. Kulmala (2007), Horizontal homogeneity and vertical extent of new particle formation events, Tellus, Ser. B, 59, 362-371.
    [64] Brock, C. A., Washenfelder, R. A., Trainer, M., Ryerson, T. B., Wilson, J. C., Reeves, J. M., Huey, L. G., Holloway, J. S., Parrish, D. D., H.ubler, G., & Fehsenfeld, F. C. (2002). Particle growth in the plumes of coal-$red power plants. Journal of Geophysical Research, 107(D12),doi: 10.1029/2001JD001062
    [65] Brock, C. A., Trainer, M., Ryerson, T. B., Neuman, J. A., Parrish, D. D., Holloway, J. S., Nicks, D. K., Jr., Frost, G J., H.ubler, G., Fehsenfeld, F. C., Wilson, J. C., Reeves, J. M., LaFeur, B. G., Hilbert, H., Atlas, E. L., Donnelly, S. G., Schau\er, S. M., Stroud, V. R., & Wiedinmyer, C. (2003). Particle growth in urban and industrial plumes in Texas. Journal of Geophysical Research, 108(D3), doi: 10.1029/2002JD002746
    [66] Chan, Chak K. Xiaohong Yao, 2008, Air pollution in mega cities in China, Atmospheric Environment 42 (2008) 1-42.
    [67]He,K.,Yang,F.,Ma,Y.,Zhang,Q.,Yao,X.H.,Chan,C.K.,Cadle,S.H.,Chan,T.,Mulawa,P.A.,2001.The characteristics of PM2.5 in Beijing,China.Atmospheric Environment 35,4959-4970.
    [68]Wang,J.,Xie,Z.,Zhang,Y.,Shao,M.,Zeng,L.,Cheng,C.,Xu,X.,Zhao,X.,Meng,Y.,2004.Study on the characteristics of mass concentration of atmospheric fine particles in Beijing.Acta Meteorologic Sinica 62,104-111(in Chinese with English abstract).
    [69]Wang,Y.,Zhuang,G.,Tang,A.,Yuan,H.,Sun,Y.,Chen,S.,Zheng,A.,2005.The ion chemistry and the source of PM2.5 aerosol in Beijing.Atmospheric Environment 39,3771-3754.
    [70]Yu,J.,Chert,T.,Guinot,B.,Cachier,H.,Yu,T.,Liu,W.,Wang,X.,2006.Characteristics of carbonaceous particles in Beijing during winter and summer 2003.Advances in Atmospheric Sciences 23,468-473.
    [71]Shi,Z.,Shao,L.,Jones,T.P.,Lu,S.,2005.Microscopy and mineralogy of airborne particles collected during severe dust storm episodes in Beijing,China.Journal of Geophysical Research 110,D01303.
    [72]Liu,Y.,Li,W.L.,Zhou,X.J.,2005.Simulation of secondary aerosols over North China in summer.Science in China Series D—Earth Science 48(Suppl.Ⅱ),185-195.
    [73]Wang,Y.,Zhuang,G.,Sun,Y.,An,Z.,2006a.The variation of characteristics and formation mechanisms of aerosols in dust,haze,and clear days in Beijing.Atmospheric Environment 40,6579-6591.
    [74]Wang,Y.,Zhuang,G.S.,Zhang,X.Y.,Huang,K.,Xu,C.,Tang,A.,Chen,J.,An,Z.,2006.The ion chemistry,seasonal cycle,and sources of PM2.5 and TSP aerosol in Shanghai.Atmospheric Environment 40,2935-2952.
    [75]Ye,B.,Ji,X.,Yang,H.,Yao,X.H.,Chan,C.K.,Cadle,S.H.,Chan,T.,Mulawa,P.A.,2003.Concentration and chemical composition of PM2.5 in Shanghai for 1-year period.Atmospheric Environment 37,499-510.
    [76]Yao,X.H.,Chan,C.K.,Fang,M.,Cadle,S.H.,Chan,T.,Mulawa,P.A.,He,K.,Ye,B.,2002.The water-soluble ionic composition of PM2.5 in Shanghai and Beijing,China.Atmospheric Environment 36,4223-4234.
    [77]王文兴,杨沛源,任阵海,吕黄生,1984,太原地区大气环境综合观测总研究报告。
    [78]许黎,冈田菊夫,张鹏等,北京地区春末-秋初气溶胶理化特性的观测研究,大气科学,2002,26(3),401-411。
    [79]姜忠,石广玉,陈焕森。2003。北京市1998-2001年大气气溶胶粒子数浓度分析,气候与环境研究,8,495-502。
    [80]Wehner,B.,A.Wiedensohler,T.M.Tuch,Z.J.Wu,M.Hu,J.Slanina,and C.S.Kiang(2004),Variability of the aerosol number size distribution in Beijing,China:New particle formation,dust storms,and high continental background,Geophys.Res.Lett.,31,L22108,doi:10.1029/2004GL021596.
    [81]Wu,Z.,Hu,M.,Liu,S.,Wehner,B.,Bauer,S.,Maβling,A.,Wiedensohler,A.,Petaja,T,Dal Maso M.,Kulmala,M.,2007.New particle formation in Beijing,China:Statistical analysis of al-year data set.Journal of Geophysical Research 112,doi:10.1029/2006JD007406.
    [82]Liu,Shang,Min Hu,Birgit Wehner,Alfred Wiedensohler and Yafang Cheng,Aerosol number size distribution and new particle formation at a rural/coastal site in Pearl River Delta(PRD)of China,Atmospheric Environment(2008),doi:10.1016/j.atmosenv.2008.01.063
    [83]胡敏,赵云良,何凌燕,等。北京冬、夏季颗粒物及离子成分质量浓度谱分布。环境科学,2005,26(4):1-6。
    [84]胡敏,刘尚,吴志军,张静,赵云良,Birgit Wehner,Alfred Wiedensohler.北京夏季高温高湿和降水过程对大气颗粒物谱分布的影响。2006,27(11):2293-2298
    [85]Yao,X.H.,Lau,A.P.S.,Lau,Fang,M.,Chan,C.K.,Hu,M.,2003a.Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing,China:1—inorganic ions.Atmospheric Environment 37,2991-3000.
    [86]Diliner,A.M.,Schauer,J.J.,Zhang,Y.,Zeng,L.,Cass,G.R.,2006.Size-resolved particulate matter composition in Beijing during pollution and dust events.Journal of Geophysical Research 111,D05203.
    [87]Xiu,G.,Zhang,D.,Chen,J.,Huang,X.,Chen,Z.,Guo,H.,Pan,J.,2004.Characterization of major water-soluble inorganic ions in size-fractionated particulate matters in Shanghai campus ambient air.Atmospheric Environment 38,227-236.
    [88]牛生杰,孙照渤,2005。春末中国西北沙漠地区沙尘气溶胶物理特征的飞机观测,高原气象,24,4,604-610。
    [89]樊曙先,安夏兰,2000。贺兰山地区云凝结核的测量及分析。中国沙漠,20,3,338-340。
    [90]Wang,T.,A.Ding,J.Gao,and W.S.Wu(2006),Strong ozone production in urban plumes from Beijing,China,Geophys.Res.Lett.,33,L21806,doi:10.1029/2006GL027689.
    [91]China Statistical Yearbook 2005,2006.National Bureau of Statistics of China,China Statistics Press,Beijing.
    [92]HEI International Scientific Oversight Committee,2004.Health Effects of Outdoor Air Pollution in Developing Countries of Asia:A Literature Review.Special Report 15,Health Effects Institute,Boston,MA.
    [93]China Energy Statistics Yearbook 2005,2006.National Bureau of Statistics of China,China Statistics Press,Beijing.
    [94]Report of the State of the Environment in China,2005.State Environmental Protection Administration of China,/http://www.zhb.gov.cn/plan/zkgb/05hjgb/200607/t20060727_91439.html.
    [95]Akimoto,H.,Narita,H.,1994.Distribution of SO_2,NOx,and CO_2 emissions from fuel combustion and industrial activities in Asia with 1°×1° resolution.Atmospheric Environment 28,213-225.
    [96]Seinfeld.J.H.,Atmospheric Chemistry and Physics of Air Pollution.John Wiley and Sons,New York,1986.
    [97] Urban Statistical Yearbook of China 2005,2006. National Bureau of Statistics of China, China Statistics Press, Beijing.
    [98] Liu, J.G., Diamond, J., 2005. China's environment in a globalizing world. Nature 435,1179-1186.
    [99] Shao, M., Tang, X., Zhang, Y., Li, W., 2006. City clusters in China: air and surface water pollution. Frontiers in Ecology & the Environment 4, 353-361.
    [100] Hao, J., Tain, H., Lu, Y., 2002. Emission Inventories of NOx from Commercial Energy Consumption in China, 1995-1998. Environmental Science and Technology 36,552-560.
    [101] Ding, A. J., T. Wang, V. Thouret, J.-P. Cammas, and P. Nedelec. 2007. Tropospheric ozone climatology over Beijing: analysis of aircraft data from the MOZAIC program. Atmos. Chem. Phys. Discuss., 7,9795-9828.
    [102] Richter A. et al., Satellite Measurements of NO2 from International Shipping Emissions, Geophys. Res. Lett., 31, L23110, doi:10.1029/2004GL020822,2004
    [103] O'Dowd, C. D., Aalto, P., H.ameri, K., Kulmala, M., & Ho9mann, T. (2002b). Atmospheric particles from organic vapours. Nature, 416,497-498.
    [104] Kerminen, V.-M., Pirjola, L., & Kulmala, M. (2001). How signi$cantly does coagulational scavenging limit atmospheric particle production?. Journal of Geophysical Research, 106,24119-24125.
    [105] Kulmala M., H. Vehkam.aki, T. Pet.aj.a, M. Dal Maso, A. Lauri, V.-M. Kerminen, W. Birmili, P.H. McMurry. 2004. Formation and growth rates of ultra$ne atmospheric particles: a review of observations. Aerosol Science 35 (2004) 143-176
    [106] N.S. Holmes. 2007. A review of particle formation events and growth in the atmosphere in the various environments and discussion of mechanistic implications. Atmospheric Environment 41 (2007) 2183-2201
    [107] Clement, C. F., Ford, I. J., Twohy, C. H., Weinheimer, A., & Campos, T. (2002). Particle production in the outFow of a midlatitude storm.Journal of Geophysical Research D, 107,4559, doi: 10.1029/2001JD001352
    [108] McMurry, P. H. and J. C. Wilson, 1982, Growth Laws for Secondary Ambient Aerosols: Implications for Chemical Conversion Mechanisms. Atmospheric Environment 16:121-134.
    [109] Juozaitis, A., Trakumas, S., Girgzdiene, R., Girgzdys, A., Sopauskiene, D. and Ulevicius, V. 1996. Investigations of gas-to-particle conversion in the atmosphere. Atmos. Res. 41, 183-201.
    [110] Vana, M., Kulmala, M, Dal Maso, M, Horrak, U., and Tamm, E.: Comparative study of nucleation mode aerosol particles and intermediate air ions formation events at three sites, J. Geophys. Res., 109, doi:10.1029/2003JD004413,2004.
    [111] Whitby, K.T., W.E. Clark, V.A. Marple, G.M. Sverdrup, G.J. Sem, K. Willeke, B.Y.H. Liu and D.Y.H. Pui (1975). Characterization of California Aerosols I. Size Distributions of Freeway Aerosols, Atmos. Environ. 9:463-482.
    [112] Liu, B.Y.H., W.W. Szymanski, and K.H. Ahn, On Aerosol Size Distribution Measurement by Laser and White Light Optical Particle Counters, J. Environ. Sci. 28:29-24(1985).
    [113] Barnard, J.C., and L.C. Harrison, Monotonic Responses from Monochromatic Optical Particle Counters, Appl. Opt. 27:584-592 (1988)
    [114] Liu, B.Y.H., D.Y.H Pui, K.T. Whitby, D.B. Kittelson, Y. Kousaka and R.L. McKenzie , The Aerosol Mobility Chromatograph: A New Detector for Sulfuric Acid Aerosols, Atmos. Environ. 12:99-104 (1978).
    [115] Liu, B.Y.H., D.Y.H. Pui and B.Y. Lin , Aerosol Charge Neutralization by a Radioactive Alpha Source, Particle Characterization 3:111-116 (1986).
    [116] Harris J.M. et al., 2000. An interpretation of trace gas correlations during Barrow, Alaska, winter dark periods, 1986-1997. Journal of Geophysical Research, 105, D13, 17,267-17238.
    [117] Wotawa G., Kroger H., Stohl A., 2000. Transport of ozone towards the Alps-results from trajectory analyses and photochemical model studies. Atmospheric Environment, 34, 1367-1377.
    [118] Lam K.S., Wang T.J., Chan L.Y., Wang T., Harris J., 2001. Flow patterns influencing the seasonal behavior of surface ozone and carbon monoxide at a coastal site near Hong Kong. Atmospheric Environment 35,3121-3135.
    [119] Draxler, R.R., A.D. Taylor, 1982. Horizontal dispersion parameters for long-range transport modeling. J. Appl. Meteorol., 21, 367-372.
    [120] Draxler, R.R., and B.J.B. Stunder, 1988. Modeling the CAPTEX vertical tracer concentration profiles. J. Appl. Meteorol., 27, 617-625.
    [121] Taylor, A.D., 1997. Conformal map transformations for meteorological modelers. Computers and Geosciences, 23,63-75.
    [122] Draxler, R.R., 1996. Trajectory optimization for balloon flight planning. Weather and Forecasting, 11,111-114.
    
    [123] Sokal, R.R., and F.J. Rohlf, 1981. Biomety, 2nd edition, Freeman.
    [124] Hirsch N.Y., E.J. Gilroy, 1984. Methods of fitting a straight line to data: Examples in water resources, Water Res. Bull., 20, 705-711.
    [125] Karatzas K., Papadopoulos A., 2002. Regression analysis and urban air quality forecasting: An application for the city of Athens. Global Nest: the Int J., 4, 153-162.
    [126] Liu, H., D.J. Jacob, J.E. Dibb, A.M. Fiore, and R.M. Yantosca, Constraints on the sources of tropospheric ozone from ~(210)Pb~(-7)Be-ozone correlations, J. Geophys. Res., 109, D07306, doi:10.1029/2003JD003988,2004.
    [127] Molnar, P., S. Janhall and M. Hallquist (2001). "Investigation of aitken mode particles from traffic emissions." J. Aerosol Sci. 32(Suppl. 1): S109-S110.
    [128] Hitchins, J., L. Morawska, R. Wolff and D. Gilbert (2000). "Concentrations of submicrometre particles from vehicle emissions near a major road." Atmospheric Environment 34: 51-59.
    [129] Ruuskanen, J., Tuch, Th., Ten Brink, H., Peters, A., Khystov, A., Mirme, A., Kos, G.P.A., Brunekreef, B., Wichmann, H.E., Buzorius, G., Vallius, M., Kreyling, W.G., Pekkanen, J., 2001. Concentrations of ultrafine, fine and PM2.5 particles in three European cities. Atmospheric Environment, 35,3729-3738.
    [130] Wichmann, H.E., Peters, A., 2000. Epidemiological evidence of the effects of ultrafine particle exposure. Philosophical Transactions of the Royal Society A, 358, 2751-2769.
    [131]Tuch,T.,Brand.P.,Wichmann,H.E.,Heyder,J.,1997.Variation of particle number and mass concentration in various size ranges of ambient aerosols in eastern Germany.Atmospheric Environment,31(24):4193-4197.
    [132]Weber,R.J.,McMurry,P.H.,1996.Fine particle size distributions at the Mauna Loa observatory,Hawaii.Journal of Geophysical Research—Atmospheres,101(D9),14767-14775.
    [133]Kim,S.,Shen,S.,Sioutas,C.,Zhu,Y.,& Hinds,W.,(2002).Size distributions and diurnal and seasonal trends of uitrafine particles in source and receptor sites of the Los Angeles basin.Journal of the Air and Waste Management 52,297-307.
    [134]Morawska,L.,Jayarantne,E.R.,Mengersen,K.,& Thomas,S.(2002).Differences in airborne particle and gaseous concentrations in urban air between weekdays and weekends.Atmospheric Environment 36,4375-4383.
    [135]Alam,A.,Shi,J.P.,and Harrison,R.M.:Observations of new particle formation in urban air,J.Geophys.Res.,108(D3),4093,doi:10.1029/2001JD001417,2003.
    [136]Guenther,P.L.,Lesko,J.M.,et al.,1996.Cost effectiveness of emissions reduction through vehicle repair compared to CNG conversion.Journal of Air and Waste Management Association 46,985-989.
    [137]Maricq,M.M.,Podsiadlik,D.H.,et al.,1998.Examination of the size-resolved and transient nature of motor vehicle particle emissions.Environmental Science and Technology 33(10),1618-1626.
    [138]Ristovski,Z.,Morawska,L.,et al.,1998.Submicrometer and supermicrometer particulate emission from spark ignition vehicles.Environmental Science and Technology 32,3845-3852.
    [139]Kittelson D B,Johnson J,Watts W,Wei Q et al,2000.Diesel aerosol sampling in the atmosphere,SAE Paper No.2000-01-2212.
    [140]Gao J.,Wang T.,Ding A.J.,Liu C.B.,2005.Observational study of ozone and carbon monoxide at the summit of Mt.Tai(1534m a.s.l.)in central-eastern China.Atmospheric Environment,39,2005,4779-4791.
    [141]M.akel.a,J.,Dal Maso,M.,Pirjola,L.,Keronen,P.,Laakso,L.,Kulmala,M.,& Laaksonen, A. (2000). Characteristics of the atmospheric particle formation events observed at a boreal forest site in southern Finland. Boreal Environment Research, 5,299-313.
    [142] Kulmala, M., Dal Maso, M., M.akel.a, J.M., & O'Dowd, CD. (2000b). Formation and growth nucleation mode particles. Finnish association for aerosol research. Report Series in Aerosol Science, Vol. 48 (pp. 83-88).
    [143] Zhang, Q., Stanier CO., Canagaratna, M., Jayne, J., Worsnop, D., Pandis, S., Jimenez, J. 2004. Insights into the Chemistry of New Particle Formation and Growth Events in Pittsburgh Based on Aerosol Mass Spectrometry. Environmental science and technology. 38,4797-4809.
    
    [144] Fuchs, N. A. (1964). Mechanics of Aerosols. Pergamon, New York, NY.
    [145] Fuchs, N. A. and A. G. Sutugin (1970). Highly Dispersed Aerosols. Ann Arbor Science Publishers, Ann Arbor, MI.
    [146] Rader, D. J. (1985). Application of the Tandem Differential Mobility Analyzer to Studies of Droplet Evaporation and Growth. Minneapolis, MN, University of Minnesota.
    [147] McMurry, P. H., K. S. Woo, R. Weber, D.-R. Chen and D. Y. H. Pui (2000). "Size Distributions of 3 to 10 nm Atmospheric Particles: Implications for Nucleation Mechanisms." Philosophical Transactions of the Royal Society (Series A: Mathematical, Physical and Engineering Sciences) A358: 2625-2642.
    [148] Woo K S. Measurement of atmospheric aerosols:size distributions of nanoparticles, estimation of size distribution moments and control of relative humidity [D]. The university of Minnesota, 2003.41-42.
    [149] Birmili, W., & Wiedensohler, A. (2000). New particle formation in the continental boundary layer: Meteorological and gas phase parameter inFuence. Geophysical Research Letters, 27,3325-3328.
    [150] Misaki, M. (1964). Mobility spectrums of large ions in the new Mexico semidesert. Journal of Geophysical Research, 16,3309.
    [151] Koutsenogii, P. K., & Jaenicke, R. (1994). Number concentration and size distribution of atmospheric aerosol in Siberia. Journal of Aerosol Science, 25, 377-383.
    [152]Mihalopoulos,N.,Nguyen,B.C.,Boissard,C.,Campin,J.M.,Putaud,J.P.,Belviso,S.,Barnes,I.,& Becker,K.H.(1992).Field study of dimethylsui$de oxidation in the boundary layer:Variations of dimethylsul$de,methanesulfonic acid,sulfur dioxide,non-sea salt sulfate and Aitken nuclei at a coastal site.Journal of Atmospheric Chemistry,14,459-477.
    [153]Kulmala,M.,Pirjola,L.,Aalto,P.,Miikkulainen,P.,M.akel.a,J.M.,& H.ameri,K.(2000a).Growth and composition of nucleation mode particles.Finnish association for aerosol research.Report Series in Aerosol Science,Vol.47(pp.195-200).
    [154]Birmili,W.,Galgon,D.,Wiedensohler,A.,M.uller,K.,Choularton,T.W.,Bower,K.N.,Frank,G.,Karlsson,M.,& Martinsson,B.(2001a).Evolution of the fine particle distribution in the outFow of a city.Journal of Aerosol Science,32,S193-S194.
    [155]Nilsson E.D.and M.Kulmala.Aerosol formation over the Boreal forest in Hyytiala,Finland:monthly frequency and annual cycles-the roles of air mass characteristics and synoptic scale meteorology.Atmos.Chem.Phys.Discuss.,6,10425-10462,2006
    [156]Makela,J.,Dal Maso,M.,Pirjola,L.,Keronen,P.,Laakso,L.,Kulmala,M.,&Laaksonen,A.(2000).Characteristics of the atmospheric particle formation events observed at a boreal forest site in southern Finland.Boreal Environment Research,5,299-313.
    [157]M.Boy,T.Karl,A.Turnipseed,et al.,2007.New particle formation in the front range of the Colorado Rocky Mountains.Atmos.Chem.Phys.Discuss.,7,15581-15617,
    [158]Held,A.,A.Nowak,W.Birmili,A.Wiedensohler,R.Forkel,and O.Klemm (2004),Observations of particle formation and growth in a mountainous forest region in central Europe,J.Geophys.Res.,109,D23204,doi:10.1029/2004JD005346.
    [159]Hamed,A.,Joutsensaari,J.,2007.Nucleation and growth of new particles in Po Valley,Italy.Atmos.Chem.Phys.,7,355-376.
    [160]McMurry P H,Wang X,Park K,et al.The relationship between mass and mobility for atmospheric particles:A new technique for measuring particle density [J].Aerosol Sci Technol,2002,36(2):227-238.
    [171]Hand J L,Kreidenweis S M.A new method for retrieving particle refractive index and effective density from aerosol size distribution data[J].Aerosol Sci Technol,2002,36(10):1012-1026.
    [172]Pak S S,Liu,B Y H,Rubuw K L.Effect of coating thickness on particle bounce in inertial impactor[J].Aerosol Sci Technol,1992,16:141-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700