用户名: 密码: 验证码:
颗粒物质中局域干扰对结构的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对颗粒物质的结构特点,在满足可重复性的前提下,提出了一种新的填充方案——定点源法;利用该方法将颗粒填充到一定直径的圆桶中,然后将探测杆或探测端头匀速插入颗粒物质,沿竖直方向往返穿行,对颗粒物质施加局域扰动,通过传感器得到探测杆或探测端头在颗粒物质中穿行时的系列阻力曲线.主要结果如下:
     1.颗粒物质在强扰动下的结构改变符合Reynolds剪切膨胀的定性判断;
     2.对于探测杆,存在横截面尺寸和穿行速率的临界值v_c,在该临界值以下,穿行阻力F与速率v无关;临界速率v_c与横截面形状有关;
     3.在其它条件相同的情况下,对于不同横截面形状的探测杆,穿行阻力的变化规律是类似的,特别地,在初始都有一线性段,但是横截面形状不同,其线性段的长度也不一样(在周长相等条件下,圆杆的最短,方杆甚之,正三棱杆的最长);另外对于圆杆,其下行阻力可分为三个阶段:线性段、非线性段和崩塌段,而方杆和正三棱杆仅有线性段和非线性段;
     4.探测杆的穿行阻力与其粗细程度和横截面的具体形状有关,对于圆杆、方杆、正三棱杆,三种杆的约化阻力拟合公式的形式是相同的;探测杆的具体横截面形状对穿行阻力规律没有太大的影响,但对阻力的大小有影响,存在形状因子;在横截面周长相等的条件下,如果将圆形的因子定为1,则其它形状的因子小于1,且正三角形的因子最小;
     5.在其它条件相同的情况下,探测杆的穿行阻力与颗粒直径的平方成反比:F∝1/d~2,式中的d为颗粒的直径;
     6.正n棱探测杆的穿行阻力为和
According to the characters of granular media, a new filling procedure for granular media (stationary localized-source procedure) is put forward on the condition that the reproducibility can be realized. Using this procedure, the granular media is filled into cylinder. Then the detecting rod or tip are penetrated into granular media at the same speed along the direction parallel to axis of cylinder, after which the detecting rod or tip will move up and down in the granular media. By which perturbation is applied to the local area of granular media. The sensor detects the resistance force which the granular media applies on the detecting rod or tip. The main conclusions are as follows:
     1. The structure deformation while strong perturbation is applied matches the qualitative predictions of Reynolds' dilation theory.
     2. The force detected by the detecting rod is independent of the velocity of penetration.
     3. While other conditions are all fixed, the rules that the penetration resistance obeys are similar for the detecting rod with different cross section, especially for the initiation stage, the friction takes on qusi-linearity.
     4. The force that the detecting rod experienced is dependent of the diameter and cross section shape of the detecting rod, such as the cylinder rod、the quadrangular rod and the triangular rod. The general resistance equation for the rods with different cross section is similar; The cross section shape of detecting rod has no obvious effect on the rules that the resistance force obeys, but has obvious effects on value of the friction. Here we introduce a parameter: shape factor of the cross section. If the shape factor of cross section for cylinder rod is set as 1, which for other cross section is less than 1, at the same time, that for triangular rod is the smallest, while the cross section has the same perimeter.
     5. While other conditions are all fixed, the force that the detecting rodexperienced is inverse proportion to quadratic order of the granular diameter: F∝1/d~2,wherein d is diameter of granula.
     6. The penetration resistance equation for the rods areand
引文
[1] Coulomb C. A. (de)., Memoires de Mathematiques et de Physique Presentes a l'AcademieRoyale des Sciences par Divers Savants et Lus dans les Assemblees, L'Imprimerie Royale,Paris, 343(1773).
    
    [2] Faraday, M., On a Peculiar Class of Acoustical Figures and on Certain Forms Assumed byGroups of Particles upon Vibrating Elastic Surfaces, Fhil. Trans. R. Soc, London, 52,299-340(1831).
    
    [3] P. Evesque and J. Rajchenbach, Instability in a Sand Heap, Phys. Rev. Lett., 62, 44 (1989).
    
    [4] F. Melo, P. Umbanhowar, and H. L Swinney, Transition to parametric wave patterns in avertically oscillated granular layer, Phys. Rev. Lett, 72,172-175 (1994).
    
    [5] F. Melo, P. B. Umbanhowar, and H. L. Swinney, Phys. Rev. Lett., 75,3838 (1995).
    
    [6] P. Umbanhowar, F. Melo, and H. L. Swinney, Nature (London), 382, 793 (1996).
    
    [7] E. Clement, L. Vanel, J. Rajchenbach, and J. Duran, Pattern formation in a vibratedtwo-dimensional granular layer, Phys. Rev. E, 53, 2972-2975 (1996).
    
    [8] C. Bizon, M. D. Shattuck, J. B. Swift, W. D. McCormick, and Harry L. Swinney, Patterns in3D Vertically Oscillated Granular Layers: Simulation and Experiment, Phys. Rev. Lett. 80,57- 60 (1998).
    
    [9] P. G de Gennes, Granular matter: a tentative view, Rev. of Mod. Phys., 71, S374(1999).
    
    [10]马红孺,陆坤权,软凝聚态物质物理学,物理,29,5 16-524(2000).
    
    [11] Bob Behringer, Taking the temperature, Nature, 415, 594(2002).
    
    [12] Raphael Blumenfeld and Sam F. Edwards, Granular Entropy: Explicit Calculations forPlanar Assemblies, Phys. Rev. Lett., 90,114303 (2003).
    
    [13] R. Blumenfeld and S. F. Edwards, Geometric partition functions of cellular systems:Explicit calculation of the entropy in two and three dimensions, Eur. Phys. J. E, 19,23-30(2006).
    
    [14]王季陶,现代热力学基础简介,物理,29,524-530(2000).
    
    [15]王季陶,现代热力学的完整分类系统——非平衡非耗散热力学新领域,物理,32,9-15(2003).
    
    [16]赵天玉,三维空间中球的堆积密度的两种验证方法,数学通讯,No.6,26(1996).
    
    [17]李佳牧,Kepler装球猜想:进展及相关问题,数学通讯,No.6,43(1999).
    
    [18] Finney, J. L, Proc. R. Soc. London, Ser. A, 319,479(1970).
    
    [19] George Y. Onoda and Eric G. Liniger, Random loose packings of uniform spheres and thedilatancy onset, Phys. Rev. Lett, 64, 2727-2730(1990).
    
    [20]谢洪勇,粉体力学与工程,化学工业出版社(北京),2003.
    
    [21]武锦涛,移动床中固体颗粒运动与传热的研究,浙江大学(杭州)博士学位论文,2005.
    
    [22] Irene Ippolito, Chrystele Annic, Jacques Lemaitre, et al., Granular temperature:Experimental analysis, Phys. Rev. E, 52, 2072-2075(1995).
    
    [23] Ning Xu, Corey S. O'Hern, and Lou Kondic, Stabilization of nonlinear velocity profiles inathermal systems undergoing planar shear flow, Phys. Rev. E, 72,041504(2005).
    
    [24] Loic Vanel, Daniel Howell, D. Clark, et al., Memories in sand: Experimental tests ofconstruction history on stress distributions under sandpiles, Phys. Rev. E, 60, 5040(1999).
    
    [25] J. J. Alonso and H. J. Herrmann, Shape of the Tail of a Two-Dimensional Sandpile, Phys.Rev. Lett., 76, 4911-4914 (1996).
    
    [26] Martin van Hecke, Granular matter: tale of tails, Nature, 435,1041-1042 (2005).
    
    [27] H. M. Jaeger, Chu-heng Liu, and Sidney R. Nagel, Relaxation at the Angle of Repose, Phys.Rev. Lett., 62,40-43 (1989).
    
    [28] Per Bak, Chao Tang, and Kurt Wiesenfeld, Self-organized criticality, Phys. Rev. A, 38, 364 -374 (1988).
    
    [29] Per Bak, Chao Tang, and Kurt Wiesenfeld, Self-organized criticality: An explanation of the1/f noise, Phys. Rev. Lett., 59, 381 - 384 (1987).
    
    [30] Per Bak, Chao Tang, and Kurt Wiesenfeld, Self-organized criticality, Phys. Rev. A, 38, 364 -374 (1988).
    
    [31] Chao Tang and Per Bak, Critical Exponents and Scaling Relations for Self-OrganizedCritical Phenomena, Phys. Rev. Lett., 60, 2347-2350 (1988).
    
    [32] Chao Tang and Per Bak, Mean Field Theory of Self-Organized Critical Phenomena, J.Stat.Phys., 51, 797(1988).
    
    [33] P. Bak and C. Tang, Self-Organized Criticality, in Physics News in 1988, Physics TodayJanuary, S-27 (1989).
    
    [34] Jensen H. J., Self-Organized Criticality: Emergent Complex Behavior in Physical andBiological Systems, Cambridge University Press(New York), 1998.
    
    [35] Frette V., Christensen K, S(?)renssen A. M., et al., Avalanche dynamics in a pile of rice,Nature,379,49-52(1995).
    
    [36] G. A. Held, D. H. Solina, H. Solina, et al., Experimental study of critical-mass fluctuationsin an evolving sandpile, Phys. Rev. Lett., 65,1120-1123 (1990).
    
    [37] Leo P. Kadanoff, Sidney R. Nagel, Lei Wu, and Su-min Zhou, Scaling and universality inavalanches, Phys. Rev. A, 39, 6524-6537 (1989).
    
    [38] Manna S.S., Two-state model of. self-organized criticality, Journal of Physics A: Mathematicaland General, Vol. 24, No. 7,1991, pp. L363-L369(1).
    
    [39]吴爱祥,孙业志,刘相平,散体动力学理论及应用,冶金工业出版社(北京),29-30(2002).
    
    [40]孔维姝,胡林,吴宇,颗粒物质中的奇异现象,大学物理,25,52-55(2006).
    
    [41] Jacques Duran, Sands, Powders, and Grains: An introduction to the physics of granularmaterials, Springer-Verlag(New York), 2000.
    
    [42] Roberts I., Proc. Roy. Soc, 36, 226(1884).
    
    [43] H. A. Janssen, Versuche fiber Getreidedruck in Silozellen, Zeitschrift des VereinsDeutscher Ingenieure, 39,1045-1049(1895).
    
    [44]王复明,原方,师旭超,浅圆仓散料测压力计算探讨,工程力学,23,111(2006).
    
    [45] C. F. Jenkin, The pressure exerted by granular material: An application of the principlesof dilatancy, Proc. R. Soc. London. A., 131,53-89(1931).
    
    [46] K. Wieghardt, Experiments in granular flow, Annu. Rev. Fluid Mech., 7, 89(1975).
    
    [47] C.Dahmane and Y. Molodtsof, Powders & Grains, C.Thornton(Balkema, Rotterdam),369(1993).
    
    [48] V. K. Horvath, I. M. Janosi, and P. J.Vella, Anomalous density dependence of static frictionin sand, Phys. Rev. E, 54,2005-2009(2005).
    
    [49]胡林,杨平,徐亭等,颗粒物质中圆棒受到的静摩擦力,物理学报,52,879-882(2003).
    
    [50] Lord Rayleigh(John William Strutt). Philos. Mag., 36,11(1906); Lord Rayleigh(John William Strutt). Philos. Mag., 36, 61(1906); Lord Rayleigh(John William Strutt). Philos. Mag., 36, 129(1906);??Lord Rayleigh(John William Strutt). Philos. Mag., 36,206(1906).见于Scientific Papers of Lord Rayleigh,Vol.Ⅲ.Dover,New York,1964.
    
    [51]武玉琴,胡林,安红海等,颗粒物质中静摩擦力与接触面形状有关,大学物理实验,18(3),4-7(2005).
    
    [52]孔维姝,胡林,杜学能等,用探测棒研究颗粒堆中的最大静摩擦力,物理学报,56,2318-2322(2007).
    
    [53]肖文波,胡林,武玉琴,颗粒物质中滑动摩擦力的变化规律,应用力学学报,22,643-646(2005).
    
    [54]杜学能,胡林,孔维姝等,颗粒物质内部滑动摩擦力的非线性振动现象,物理学报,55,6488-6493(2006).
    
    [55] M. B. Stone, D. P. Bernstein, R. Barry et al., Getting to the bottom of a granular medium,Nature, 427, 503-504(2004).
    
    [56] D. Lohse, R. Rauhe, R. Bergmann et al., Creating a dry variety of quicksand, Nature, 432,689-690(2004).
    
    [57] M. Hou, Z. Peng, R. Liu et al., Projectile impact and penetration in loose granular bed,Sci.TecAdv.Mat., 6,855-859(2005).
    
    [58] M. Hou, Z. Peng, R. Liu et al., Dynamics of a projectile penetrating in granular systems,Phys. Rev. E, 72,062301-062304(2005).
    
    [59] M. P. Ciamarra, A. H. Lara, A. T. Lee et al., Dynamics of drag and force distributions forprojectile impact in a granular medium, Phys. Rev. Lett., 92,194301(2004).
    
    [60] Loic Vanel, Daniel Howell, D. Clark, et al.,Memories in sand: Experimental tests ofconstruction history on stress distributions under sandpiles, Phys. Rev. E, 60,5040(1999).
    
    [61] Matuttis H.G, Luding S., Herrmann H.J., Discrete element simulations of dense packingsand heaps made of spherical and non-spherical particles, Powder Technology, 109,278-292(2000).
    
    [62]刘宝亮,锥形流化床结构与生物质颗粒流化特性研究,中国林业科学研究院(北京)博士学位论文,2007。
    
    [63] P. G de Gennes, Granular matter: a tentative view, Rev. of Mod. Phys., 71, S374(1999).
    
    [64] Tamas Unger, Characterization of static and dynamic structures in granular materials (Doctoral Dissertation), Budapest University of Technology and Economics, Hungary, 2004.
    
    [65]谢洪勇,粉体力学与工程,北京:化学工业出版社,2003.
    
    [66] Cleary Paul W., Guy Metcalfe, Kurt Liffman, How well do discrete element granular flow models capture the essentials of mixing process?, Applied Mathematical Modelling, 22, 995-1008(1998).
    
    [67] Cleary Paul W., DEM simulation of industrial particle flows: Case studies of dragline excavators, mixing in tumblers and centrifugal mills, Powder Technology, 109, 83-104(2000).
    
    [68] Zhang Z.P., Liu L.F., Yuan Y.D., Yu A.B., A simulation study of the effects of dynamic variables on the packing of spheres, Powder Technology, 116, 23-32(2001).
    
    [69] Cleary Paul W., Sawley Mark L., DEM modeling of industrial granular flows: 3Dcase studies and the effect of particle shape on hopper discharge, Applied Mathematical Modelling, 26, 89-111(2002).
    
    [70]徐泳,K.D.Kafui,C.Thornton,用颗粒离散元法模拟料仓卸料过程,农业工程学报,15,65-69(1999).
    
    [71]武锦涛,移动床中固体颗粒运动与传热的研究,浙江大学(杭州)博士学位论文,2005.
    
    [72] G Ovariez, C. Fond, and E. Clement, Overshoot effect in the Janssen granular column: Acrucial test for granular mechanics, phys. Rev. E, 67,060302(2003).
    
    [73] H. A. Janssen, Zeitschrift des Vereins Deutscher Ingenieure, 39,1045-1049(1895).
    
    [74] L. Vanel and E. Clement, Pressure screening and fluctuations at the bottom of a granularcolumn, Eur. Phys. J. B, 11,525-533(1999).
    
    [75] Yimin Jiang and Mario Liu, Incremental stress-strain relation from granular elasticity:Comparison to experiments, Phys. Rev. E, 77,021306(2008).
    
    [76]刘连峰,弹塑性颗粒物质准静态变形的细观力学行为,岩土工程学报,29,524-530(2007).
    
    [77]胡林,杨平,徐亭等,颗粒物质中圆棒受到的静摩擦力,物理学报,52,879-882(2003).
    
    [78]肖文波,胡林,武玉琴,颗粒物质中最大静摩擦力随填充高度的变化规律,摩擦学学报,25,183-185(2005).
    
    [79]肖文波,胡林,武玉琴,颗粒物质中滑动摩擦力的变化规律,应用力学学报,22,643-646(2005).
    
    [80]杜学能,胡林,孔维姝等,颗粒物质内部滑动摩擦力的非线性振动现象,物理学报,55,6488-6493(2006).
    
    [81]孔维姝,胡林,杜学能等,用探测棒研究颗粒堆中的最大静摩擦力,物理学报,56,2318-2322(2007).
    
    [82]吴宇,胡林,曲东升等,棒在颗粒物质中穿行时摩擦振荡行为的研究,山东大学学报,42,34-54(2007).
    
    [83] C. F. Jenkin, The pressure exerted by granular material: An application of the principlesof dilatancy, Proc. R. Soc. London. A, 131,53-89(1931).
    
    [84] K. Wieghardt, Experiments in granular flow, Annu. Rev. Fluid Meck, 7, 89(1975).
    
    [85] C.Dahmane and Y. Molodtsof, Powders & Grains, C.Thornton(Balkema, Rotterdam),369(1993).
    
    [86] V. K. Horvath, I. M. Janosi, and P. J.Vella, Anomalous density dependence of static frictionin sand, Phys. Rev. E, 54, 2005-2009(2005).
    
    [87]胡林,杨平,徐亭等,颗粒物质中圆棒受到的静摩擦力,物理学报,52,879-882(2003).
    
    [88] M. B. Stone, D. P. Bernstein, R. Barry et al., Getting to the bottom of a granular medium,Nature, 427,503-504(2004).
    
    [89] D. Lohse, R. Rauhe, R. Bergmann et al., Creating a dry variety of quicksand, Nature, 4152,689-690(2004).
    
    [90] M. Hou, Z. Peng, R. Liu et al., Projectile impact and penetration in loose granular bed,Sci.Tec.Adv.Mat., 6, 855-859(2005).
    
    [91] M. Hou, Z. Peng, R. Liu et al., Dynamics of a projectile penetrating in granular systems,Phys. Rev. E, 72, 062301-062304(2005).
    
    [92] P. Dantu, Proc. of the Fourth International Conf. on Soil Mechanics and Foundation Eng.,Butterworths Scientific(London), 1,144(1957).
    
    [93] Liu C. H. et al., Force fluctuations in bead packs, Science, 269, 513-515(1995).
    
    [94]赵清澄,光测力学教程,高等教育出版社(北京),1996.
    
    [95] T. S. Majmudar and R. P. Behringer, Contact force measurements and stress-induced anisotropy in granular materials, Nature, 435,1079-1082(2005).
    
    [96]刘源,缪馥星,苗天德,二维颗粒堆积体中力的传递与分布研究,若土工程学报,27,468-473(2005).
    
    [97] T. S. Majmudar, M. Sperl, S.Luding, and R. P. Behringer, Jamming Transition in Granular??Systems, Phys. Rev. Lett., 98,058001(2007).
    
    [98] Adrian Daerr and Stephane Douady, Two types of avalanche behaviour in granular media,Nature, 399,241-243(1999).
    
    [99] Adrian Daerr, Dynamical equilibrium of avalanches on a rough plane, Physics of Fluids,13,2115-2124(2001).
    
    [100]武玉琴,胡林,安红海等,颗粒物质中静摩擦力与接触面形状有关,大学物理实验,18(3),4-7(2005).
    
    [101]孔维姝,胡林,杜学能等,用探测棒研究颗粒堆中的最大静摩擦力,物理学报,56,2318-2322(2007).
    
    [102] O. Reynolds, Philos. Mag. 20,469 (1885).
    
    [103] Pierre Evesque, Analysis of the statistics of sandpile avalanches using soil-mechanicsresults and concepts, Phys. Rev. A, 43, 2720-2740(1991).
    
    [104]吴爱祥,孙业志,刘相平,散体动力学理论及应用,冶金工业出版社(北京),29-30(2002).
    
    [105] M. D. Haw, Jamming, two-fluid behavior, and "self-filtration" in concentratedparticulate suspensions,Phys. Rev. Lett., 92,185506(2004).
    
    [106]吴宇,胡林,曲东升,棒在颗粒物质中穿行时摩擦振荡行为的研究,山东大学学报,42,34-54(2007).
    
    [107] M. B. Stone, R. Barry, D. P. Bernstein, et al., Local jamming via penetration of agranular medium, Phys. Rev. E, 70,041301(2004).
    
    [108] Matthew B. Stone, David P. Bernstein, Rachel Barry, et al., Getting to the bottom of agranular medium, Nature, Ml, 503-504(2004).
    
    [109] Darwin G H., On the horizontal thrust of a mass of sand, Instit. Civ. Engin. Proc, 71,350(1883).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700