用户名: 密码: 验证码:
南京大气可吸入颗粒物的理化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气可吸入颗粒物(PM10)及其中有机(持久性有机污染物例如多环芳烃PAHs)和无机污染物等是目前我国城市大气污染的主要形式之一,研究PM10及其PAHs和水溶性无机离子的理化特征,对于有关部门制定大气污染控制措施,提高城市居民生活质量,具有重要的理论意义和实用价值。
     本研究运用Anderson9级非生物撞击式采样器,通过现场采样、实验分析和数理统计等方法,以2008和2009年南京市不同功能区大气PM10及其中持久性有机污染物PAHs和无机污染物为主要研究对象,分析PM1o和PM2.1中PAHs时空分布特征并对其来源进行解析;建立系统的大气颗粒物中PAHs分析检测方法,分析PM10中PAHs粒径谱分布;研究PM10中水溶性无机离子组分特征、时空变化规律和源特征,揭示其污染转化机理,研究各类污染源对粒子组分的贡献率。主要结论如下:
     (1)各功能区秋季大气细粒子质量浓度均大于夏季,本底区质量浓度最低。大气PM1o粒子质量浓度谱多呈双模态分布,受粗细粒子共同影响。南京北郊PM2.1与PM10的日浓度变化具有趋势相似性,PM10浓度昼夜变化幅度大于PM2.1,这说明气象条件变化对粗颗粒的影响大于细颗粒。采样期间南京北郊PM10和PM2.1质量浓度分别超过国家标准1.08和2.08倍,说明南京北郊冬季颗粒物污染较为严重。
     (2)南京大气细粒子中PAHs具有明显的时空分布特征,夏季大气细粒子中PAHs浓度低于秋季,且PM1.1/PM2.1的比值大都在60%-80%之间,PAHs大多吸附在PM1.1上。由于夏季气温较高,低环的PAHs更易进入气相中,夏季低环PAHs浓度明显小于秋季。对南京大气细粒子PAHs进行源解析,表明PAHs主要来自化石燃料的不完全燃烧。
     (3)南京北郊冬季大气可吸入颗粒物中主要水溶性阴离子为SO42-(占WSIC总浓度的87%-92%),且海盐对南京北郊大气PM10和PM2.1中的SO42-浓度影响很小。SO42-、Cl-和F-粒径谱分布相似,均呈双模态粗模态中,粗粒子峰值出现4.7-5.8μm处,积聚模中的峰值处于0.7-1.1μm间;N03-和NO2-主要呈现单模态,峰值出现在4.7-5.8μm的粒径范围。SO42-与NO3-、F-与NO3-、SO42-与Cl-的均呈显著性相关,说明其存在一定的同源性。NO3-/SO42-的平均值白天夜间均远小于1,说明南京北郊大气污染以固定源为主。水溶性无机离子WSIC中浓度最高的是SO42-,证明南京北郊以煤烟型污染为主。WSIC与粗粒子(PM2.1-10)的相关性较好,说明WSIC多数附着在PM2.1-10粒径段。
Pollutions with aerosol and of the polycyclic aromatic hydrocarbons is the main forms of atmospheric pollution in many City at present. With the study of the distribution of PAHs and the water-soluble in atmospheric pollution, it has an important theoretical and practical value in the development of pollution control measures to improve the quality of human life.
     Field observations, sample analysis and statistical methods are used in this study. Different Atmospheric particles samples is collected in different function zones of Nanjing during 2007 and 2008. The extractable PAHs and WISC are obtained. Their pollution level, distribution characteristics, seasonal variation is illustrated. Spatial-temporal variation and sources of Polycyclic Aromatic Hydrocarbons(PAHs) and water-soluble inorganic ions in atmospheric particle are analyzed detailed. We discuss their spatial and seasonal variations,reveal the mechanism of pollution into research of various sources of particles contribute to the rate of components, and the conclusions as follow:
     (1) For all the functional areas,the concentration of fine particles in the fall is lower than that in the summer.The PM10 particles in most functional area appears bimodal distribution, PM10 mass concentration were related with both coarse and fine particles. The daily concentrations of PM2.1 and PM10 had the similar trend.The diurnal range of the concentration of PM10 was greater than PM2.5,which showed changes in weather conditions had more obvious impact in coarse particles than fine particles.During the daytime,concentration of PM10 was 1.08 times than the national standard,which was 2.08 times in PM2.1.
     (2) PAHs concentration of fine particles in the summer were significantly lower than that in autumn in Nanjing, the PAHs in PM2.1 are mostly adsorbed on the PM1.1.The fine particles in the PAHs in Summer and autumn, have apparent distribution characteristics in space and time, The summer low-ring PAHs content of functional areas to be significantly less than in autumn.Adopting Source identification parameters method to analysis the resource of the PAHs of the fine particles in different functional atomosphere areas in Nanjing,it has found that PAHs mainly come from the incomplete combustion of fossil fuels.
     (3) Major anions were water-soluble SO42- in Nanjing,and sea salt to the northern suburb of atmospheric in Nanjing had little effect on the concentration of SO42-.SO42-,Cl-and F- had similar distribution,showed bimodal distribution;NO3- and NO2" showed single mode.There were significant correlation between SO42- and NO3-,F-and NO3-,SO42-and Cl-, indicating there were some homology.NO3-/SO42-during the day and night were much smaller than 1,indicating that the main source of air pollution in northern suburb of Nanjing was stationary sources.The highest concentration in the WSIC is SO42-,which proved the main pollution in the northern suburb of Nanjing is from coal.The correlation coefficient between WSIC and coarse particles(PM2.1-20) was better than with fine particles (PM2.1),which showed most WSIC latches on PM2.1-10.
引文
[1]胡敏,何凌燕,黄晓峰,等.北京大气细粒子和超细粒子理化特征、来源及形成机制[J].2008,5:2-6.
    [2]戴树桂.环境化学[M].高等教育出版社,2002,75-90.
    [3]王冰,张承中.大气可吸入颗粒物PM2.5研究进展[J].环境科学与技术,2009,(8):25-26.
    [4]钱凌,银燕,童尧青,等.南京北郊大气细颗粒物的粒径分布特征[J].中国环境科学,2008,28(1):18-22.
    [5]Sloane C S, Watson J G. Size-segregated fine particle measurements by chemical species and their impact on visibility impairment in Denver[J]. Atmospheric Environment.1991,25A:1013-1024.
    [6]Pratsinis S E, Ellis C, et al.The carbon-containing component of the Los Angles aerosol: source apportionment and contributions to the visibility budgetJournal of Air Pollution Control Association.1984,34:643-650.
    [7]Dzubay T.G. Visibility and aerosol composition in Houston, Texas[J]. Environ. Sci.&Technol,1982,16:514-524.
    [8]邵龙义,时宗波,黄勤.成都市大气环境中可吸入颗粒物的研究[J].环境保护,2000,(1):27-32.
    [9]杨复沫,马永亮,贺克斌.细微大气颗粒物PM25及其研究概况[J].世界环境,2001,(4):187-193.
    [10]Chan Y C,Simpson R W,McTainsh G H,etal.Source apportionment of visibility degradation problems in Brisbane(Australia) using the multiple linear regression techniques [J].Environ, Atmos.1999,33(19):3237-3250.
    [11]于凤莲,刘东贤,胡英.有关气溶胶细粒子对城市能见度影响的研究[J].气象科技,2002,30(6):387-391.
    [12]唐孝炎,张远航,邵敏.大气环境化学[M](第二版).北京:高等教育出版社,2006,78-87.
    [13]戴树桂.环境化学[M].北京:高等教育出版社,2001.
    [14]IPCC, Fourth Assessment Report, Climate Change 2007-The Physical Scientific Basis.2007, New York:Cambridge University Press.
    [15]赵越,潘军.北京地区大气中可吸入颗粒物的污染现状分析[J].环境科学研究,2004,17(1):67-69.
    [16]唐孝炎,张远航,邵敏.大气环境化学[M](第二版).北京:高等教育出版社,2006,282-286.
    [17]张仁健,王明星,胡非,等.采暖期前和采暖期北京大气颗粒物的化学成分研究[J].中国科学院研究生院学报,2002,19(01):75-81.
    [18]盛立芳,郭志刚,高会旺,等.渤海气溶胶元素组成及物源分析[J].中国环境监测,2005,21(1):16-21.
    [19]杨建军,马亚萍.太原市大气颗粒物金属元素的富集特征[J].卫生研究,1997,26(2):87-89.
    [20]高金和,王玮,杜渐,等.厦门春季气溶胶特征初探[J].环境科学研究,1996,9(5):33-37.
    [21]Peters A., Liu E., Verrier R.L.,et al. Air Pollution and incidence of cardiac arrhythmia[J]. Epidemiology,2000,11:11-17.
    [22]Pope C A, Thun M U, Nambodim M M. Particulate air pollution as a predictor of mortality in a prospective study of US adults[J]. American Journal of Respiratory and Critical Care Medicine.1995,151:669-674.
    [23]Tiittanen P.,Timonen K. L.,Ruskanen J.,et al.Fine Particulate air Pollution,resuspended road dust and respiratory health among symptomatic children[J].Eur. ResPir.,1999,13:266-273.
    [24]车凤翔.中国城市气溶胶危害评价[J].中国粉体技术,1999,5:4-10.
    [25]王玉秋,张林,戴树桂,等.可吸入性颗粒物上铁介质的活性氧产生及其对肺损伤的影响[J].环境科学进展,1998(增刊):118-123.
    [26]Brook,J.R,Dann,T.E,Bumet,R.T.The relationship among TSP,PM10,PM2.5 and inorganic constituents of atmospheric particulate matter at multiple Canadian location[J]. Journal of Air and Waste Management Association,1997,47:2-8.
    [27]Menzie C A,Potocki B B,Santodonato J.Exposure to carcinogenic PAHs in the Environment Science Technology[J],1992,26(7):1278-1284.
    [28]McLachlan M S.Bioaccumulation of hydrophobic chemicals in agricultural food chains[J]. Environment Science Technology,1996,30(1):252-259.
    [29]王静,朱利中.某焦化厂空气中PAHs的污染现状及健康风险评价[J].环境科学,2003,24(1):135-138.
    [30]Lily Tang,Xiang-Yu Tang,Yong-Guan Zhu,et al.Contamination of polycyclic aromatic hydro-carbons (PAHs) in urban soils in Beijing[J].Environment International,2005,31(6):822-828.
    [31]Papageorgopoulou A,Manoli E,Touloumi E,et al.Polycyclic aromatic hydrocarbons in the ambient air of Greek towns in relation to other atmospheric pollutions [J].Chemosphere, 1999,39(13):2138-2199.
    [32]唐森本.环境有机污染化学[M].冶金工业出版社,1995,12(5):56-68.
    [33]Miton L L.1981.Analytical chemistry of Polycyclic aromatic compounds. Academic Press, NIC,17-40.
    [34]Malins D. C,Hodgins H.O.Petroleum and Marine Fishes:A Review of Uptake,Deposition and Effeets [J].Environ.Sci-Technol.1981,15:1272-1280.
    [35]Reilley K.A.,Banks M.K.,Schwab A. P.Organic Chemicals in the Environment Dissipation of Polycyclic Aromatic Hydrocarbons in the Rhizosphere [J]. Journal of Environmental Quality, 1996,25:212-219.
    [36]Papaqeorqopoulou A,Manoli E,Touloumi E,et al.Polycyclic aromatic hydrocarbons in the ambient air of Greek towns in relation to other atmospheric pollutions [J].Chemosphere, 1999,39(13):2138-2199.
    [37]M.A.Callhana,M.Slimka,N.W.Gabelc,et al.Water-related environmental fate of 129 Priority Pollutants.US Environmental Protection Agency,Washington DC.1979.EPA-440/4-79-029.
    [38]鞠美庭,池勇志,李洪远,等.环境学基础化学[M].北京:工业出版社:106.
    [39]刘大锰,李运勇,蒋伯坤,等.北京首钢地区大气颗粒物中有机污染物的初步研究[J].地球科学,2003,28(3):327-332.
    [40]Temesi D., Molnar A., Meszaros E., et al. Seasonal and diurnal variation in the size distribu-tion of fine carbonaceous particles over rural Hungary [J].Atmospheric Environment,2003, 37(1):139-146.
    [41]Bi X H,Sheng G Y,Peng P G,et al.Size distribution of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in urban and rural atmospheres of Guangzhou,China[J]. Atmospheric Environment,2005,39(3):477-487.
    [42]Van Vaeck L,Van Cauwenberghe K.Characteristic parameters of particle size distribution of primary organic constituents of ambient aerosols[J].Environ Sci Technol,1985,19(8):707-716.
    [43]周春玉,叶汝求,汤国才,等.气溶胶中有机污染物及其分布规律的研究[J].中国环境科学,1991,11:337-342.
    [44]周春玉,叶汝求,汤国才,等.广州气溶胶中有机物的分布及其与人体健康关系的研究[J].环境科学研究,1991b,4(2):41-51.
    [45]Kawanaka Y,Mastumoto E,Sakamaoto K,et al.Size distribution of mutagenic Compounds and mutagenicity in atmospheric particular matter collected with a low pressure cascade impactor[J]. Atmos. Environ.,2004,38(14):2125-2132.
    [46]牛彧文,何凌燕,胡敏,等.深圳冬、夏季大气细粒子及其二次组分的污染特征[J].中国科学B辑,2006,36(2):173-180.
    [47]Mireya Moya,Michel Grutter,Armando Baez.Diumal variability of size-differentiated inorganic aerosols and their gas-phase precursors during January and February of 2003 near downtown Mexico City[J].Atmospheric Environment,2004,38(33):5651-5661.
    [48]Yetoa Hyung,Choia Minkyu,Chun Manyoung,et al.Gas particle concentrations and partition-ing of PCSs in the atmosphere of Korea[J]. Atmospheric Environment,2003,37(2):3561-3570
    [49]Van Dingenena R,Raesa F,Putaud J P,et al.A European aerosol phenomenology:Physical characteristics of particulate matter at kerbside,urban,rural and background sites in Europe [J].Atmospheric Environment,2004,38(16):2561-2577.
    [50]赵海瑞,秦福兴,陈齐,等.水质站网规划研究中几个问题的探讨[J].水文,1995,40(1):325.
    [51]张兆钧,秦敬薰,张政科,等.汉江武汉城区段水环境监测优化布点方案研究[J].环境科学与技术,1994,17(1):38-39.
    [52]吴兑,黄浩辉,邓雪娇.广州黄埔工业区近地层气溶胶分级水溶性成分的物理化学特征[J].气象学报,2001,59(4):213-219.
    [53]DUAN A E.Concentration and chemical characteristics of PM2.5 in Beijing[J].Science of the Total Environment,2006,355:264-275.
    [54]韩月梅,沈振兴,曹军骥,等.西安市大气颗粒物中水溶性无机离子的季节变化特征[J].环境化学,2008,28(2):261-266.
    [55]林艺辉,谢品华,秦敏,等.北京冬季大气SO2,NO2与03的检测与分析[J].大气与环境光学学报,2007,2(1):55-59.
    [56]祝斌,朱先磊.农作物秸秆燃烧PM25排放因子的研究[J].环境科学研究,2005,18(2):29-33.
    [57]Malins D C,Hodgins H.O.Petroleum and marine fishes:A Review of Uptake,Deposition and Effeets[J]. Environ.Sci-Technol.1981,15:1272-1280.
    [58]于国光,王铁冠.北京市大气气溶胶中多环芳烃的研究[J].中国矿业大学学报,2008,37(1):72-78.
    [59]汤国才.气溶胶中多环芳烃的污染源识别方法[J].环境科学研究,1993,6(3):37-41.
    [60]Wang Y,Zhuang G S,Tang A H,et al.The ion chemistry and the source of PM2.5 aerosol in Beijing[J].2006,Atmospheric Environment,2006,35(18):85-92.
    [61]樊曙先,杨雪贞,樊韬,等.南京冬季雾水金属元素及水溶性阴离子浓度特征[J].环境科学学报,2009,29(9):1878-1885.
    [62]张凯,王跃思,温天雪,等.北京大气PM10中水溶性氯盐的贯彻研究[J].环境科学,2006,27(5):825-830.
    [63]赵亚南,王跃思,张凯,等.工作日、双休日和春节期间PM10中水溶性离子浓度变化特征[J].环境科学研究,2008,21(5):150-153.
    [64]KERMINEN V M,TEINITA K,HILLAMOR.Chemistry of sea salt particles in the summer Antarctic atmosphere[J].Atmospheric Environment,2000,34(17):2817-2825.
    [65]蒋昌潭,张丹.重庆市大气PM10中水溶性离子组分的研究[J].环境科学与技术,2009,32(7):109-112.
    [66]银燕,童尧青,魏玉香,等.南京市大气细颗粒物化学成分分析[J].大气科学学报,2009,32(6):723-733.
    [67]Wang Y,Zhang G S.The ion chemistry sources of PM2.5 and TSP Aerosol in Shanghai[J].Atmospheric Environment,2006,40(16):74-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700