用户名: 密码: 验证码:
基于知识推理和视觉机理的遥感图像目标识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着遥感技术的发展,遥感成像的波谱、空间、时间分辨率不断提高,使得遥感传感器采集并传输到地面的影像数据急剧增加。如何从海量遥感影像数据中正确识别指定地物目标是一个极富挑战性而又迫切需要解决的重要课题。模拟人的视觉功能研究人识别目标的过程和人识别目标的生理机理是研究这个课题的一个重要方向。人之所以能在一幅遥感图像中快速准确地识别指定目标是因为人具有必要的知识,以及通过知识推理获得新知识的能力。这种运用知识和能力的基础是人类经过长期进化而形成的完善的视觉感知系统。因此,研究如何将知识推理和视觉机理应用于遥感图像地物目标识别具有重要的价值。
     本文模仿人的知识推理能力和部分视觉机理,研究了知识推理和视觉机理在遥感图像地物目标识别中的应用。研究内容包括基于知识推理的遥感地物目标识别方法;基于视觉前馈模型的遥感纹理目标识别方法;基于周边抑制机理的遥感地物目标背景纹理抑制。
     首先,本文提出了一种基于知识的遥感图像目标识别框架和遥感地物目标通用知识库设计方案。基于知识的遥感地物目标识别框架以知识为中心,通过知识推理完成地物目标识别任务,能够在目标识别过程中更好地实现知识的共享和复用。依据该框架,我们实现了基于知识推理的机场目标识别。遥感地物目标通用知识库以本体为知识表示形式,它能够更好地实现对知识的管理和运用,可以更充分发挥知识推理的作用。本文还对基于知识的目标识别框架的关键环节——语义映射方法进行了初步的研究。
     其次,基于视觉前馈模型,本文使用标准模型特征实现了对遥感图像中典型纹理目标——市郊居民区目标的识别。在单独使用标准模型特征识别纹理目标时,对于目标区域边界附近的像素常常会产生误识别。我们通过把纹理区域划分结果与使用标准模型特征识别结果相结合,减小了误识别的影响,实现了对市郊居民区目标的有效识别。另外,我们通过在目标识别步骤之前进行郊区城区环境判别和纹理区域划分,预先排除了无关的信息,有利于最后提高正确识别率。实验结果表明了我们方法的有效性。
     本文还将周边抑制机理运用于目标周围背景纹理的抑制,达到了有效减少目标的背景纹理,从而突出目标轮廓的目的,为完成目标识别提供了有利的条件。周边抑制机理是人视觉系统所具有的对目标轮廓周边的纹理进行抑制而保留轮廓本身的视觉机理。本文把周边抑制机理同图像多尺度特性相结合,通过周边抑制机理对相互靠近的纹理边缘的强抑制作用和多尺度特性对轮廓的保留作用,显著地抑制了背景纹理,获得良好的轮廓保留效果,为正确识别目标减少了计算量,有利于提高正确识别率。对机场目标的实验结果表明了本文方法的实用性。
     最后,给出了本文总结和下一步工作的展望。
With the development of remote sensing technologies, spectral, spatial and temporal resolutions in remote sensing continually elevate, and thus the amounts of image data, which are acquired by remote sensor and then transferred to ground, drastically increase. How to properly recognize specific ground targets from huge-amount remote sensing image data becomes a quite challenging and urgently demanding important research topic. By simulating human visual functionality, studying the recognition process and physiological mechanisms of human to recognize targets is a critical research direction. The reason for human's capability of rapidly and properly recognizing specific target is that human have necessary knowledge and can acquire new knowledge via knowledge inference. The basis of the ability of employing knowledge is the perfect visual perceptual system which is formed via long-period evolution. Therefore, researches on how to apply knowledge inference and visual mechanisms to recognition of ground targets in remote sensing images are important.
     In this dissertation, the human's ability of knowledge inference and partial visual mechanisms of human are simulated, and the application of knowledge inference and visual mechanisms to ground target recognition in remote sensing images is researched. Research content include remote sensing ground targets recognition method based on knowledge inference, remote sensing textural target recognition method based on visual feed-forward model, background texture suppression for remote sensing targets based on surround suppression mechanism.
     First, for target recognition in remote sensing images, a knowledge-based framework and an architecture design scheme of a general knowledge base were proposed. The knowledge-based target recognition framework centers on knowledge and can better achieve sharing and re-using of knowledge during target recognition process. The framework accomplishes target recognition tasks mainly through knowledge inference. According to the proposed framework, airport target recogntion based on knowledge inference was obtained. The general knowledge base take ontology as knowledge representation form, and it can better achieve managing and employing knowledge, and also it can make knowledge inference be a more important role. Besides, in this dissertation, primary researches on the key step in the target recognition framework, i.e., semantic mapping method, was presented.
     Secondly, based on visual feed-forward model and using Standard Model Features (SMF), recogniton for the typical textural target, suburb inhabitant, in remote sensing image is addressd. When recognizing textural targets using SMF alone, the pixels near target region boundary are often mis-recognized. The influence of mis-recognition is reduced via combination of textural region partition results and SMF recognition results, and thus effective recognition for suburb inhabitant target is achieved. In addition, irrelevant information was excluded in advance via circumstance discrimination between suburb regions and urban regions, textural region partitions, which favor the elevation of final proper recognition. Experiment results demonstrate the effectiveness of our method.
     Thirdly, surround suppression mechanism was applied to the suppression of background textures surrounding a target, and the goal of effectively reducing background textures and giving prominence to target contour is achieved, which provides beneficial condition for target recognition. Surround supperession mechanism is the visual mechanism of human visual system, which can suppress textures surrounding target contour and maintain contour itself. We combine surround suppression mechanism with multiscale properties of images, and through strong suppression to textural edges as well as maintenance of contour, background textures are remarkably suppressed and nice contour maintenance is acquired, therefore, the computational amount for properly recognizing target reduces, which greatly increased recognition rate. Experiment results of airport target demonstrated the practicality of the presented method.
     Finally, whole conclusions are made and further research directions are addressed.
引文
[1]Liu D, He L, Carin L. Airport Detection in Large Aerial Optical Imagery. in:IEEE International Conference on Acoustics, Speech and Signal Processing vol.5,2004. V-761-764.
    [2]Michel A. Airport Detection Using a Simple Model, Multi-Source Images and Altimetric Informations. in:Proc. SPIE vol.2315,1994.604-615.
    [3]Soergel U, Cadario E, Thiele A, et al. Feature Extraction and Visualization of Bridges Over Water From High-Resolution InSAR Data and One Orthophoto. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2008,1(2): 147-153.
    [4]Vergnet R L, Saint-Marc P, Jezouin J-L. A Generic Bridge Finder. in:Workshop on Directions in Automated CAD-Based Vision:1991.176-185.
    [5]Tupin F, Houshmand B, Datcu M. Road Detection in Dense Urban Areas Using SAR Imagery and the Usefulness of Multiple Views. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2405-2414.
    [6]Jeon B-K, Jang J-H, Hong K-S. Road Detection in Spaceborne SAR Images Using a Genetic Algorithm. IEEE Transactions on Geoscience and Remote Sensing,2002, 40(1):22-29.
    [7]Thiele A, Cadario E, Schulz K, et al. Building Recognition From Multi-Aspect High-Resolution InSAR Data in Urban Areas. IEEE Transactions on Geoscience and Remote Sensing,2007,45(11):3583-3593.
    [8]Samadzadegan F, Schenk T, Mahmoudi F T. A Multi-Agent Method for Automatic Building Recognition Based on the Fusion of Lidar Range and Intensity Data. in: Urban Remote Sensing Joint Event:2009.1-6.
    [9]Huertas A, Cole W, Nevatia R. Detecting Runways in Complex Airport Scenes. Computer Vision, Graphics, and Image Processing,1990,51:107-145.
    [10]Chaudhuri D, Samal A. An Automatic Bridge Detection Technique for Multispectral Images. IEEE Transactions on Geoscience and Remote Sensing,2008,46(9): 2720-2727.
    [11]Hinz S, Baumgartner A. Automatic Extraction of Urban Road Networks from Multi-View Aerial Imagery. in:ISPRS:vol.58,2003.83-98.
    [12]Weidner U, Forstner W. Towards Automatic Building Extraction from High-Resolution Digital Elevation Models. ISPRS Journal of Photogrammetry and Remote Sensing,1995,50(4):38-49.
    [13]Matsuyama T. Knowledge-Based Aerial Image Understanding Systems and Expert Systems for Image Processing. IEEE Transactions on Geoscience and Remote Sensing,1987, GE-25(3):305-316.
    [14]Trinder J C, Wang Y. Knowledge-Based Road Interpretation In Aerial Images in: ISPRS:vol.32,1998.635-640.
    [15]Huang X, Jensen J R. A Machine-Learning Approach to Automated Knowledge-Base Building for Remote Sensing Image Analysis with GIS Data. Photogrammetric Engineering & Remote Sensing,1997,63(10):1185-1194.
    [16]Michaelsen E, Stilla U, Soergel U, et al. Extraction of Building Polygons from SAR Images:Grouping and Decision-Level in the GESTALT System. in:2008 IAPR Workshop on Pattern Recognition in Remote Sensing 2008.1-4.
    [17]Baltsavias E P. Object Extraction and Revision by Image Analysis Using Existing Geodata and Knowledge:Current Status and Steps towards Operational Systems. ISPRS Journal of Photogrammetry & Remote Sensing,2004,58:129-151.
    [18]马义德,李廉,绽琨等.脉冲耦合神经网络与数字图像处理.北京:科学出版社,2008.
    [19]Pacifici F, Frate F D. Automatic Change Detection in Very High Resolution Images With Pulse-Coupled Neural Networks. IEEE Geoscience and Remote Sensing Letters, 2010,7(1):58-62.
    [20]Frate F D, Licciardi G, Pacifici F, et al. Pulse Coupled Neural Network for Automatic Features Extraction from Cosmo-Skymed and TerraSAR-XImagery. in: IGARSS:vol.3,2009. III-384-III-387.
    [21]Sternberg R J.认知心理学.(第三版).杨炳钧,陈燕和邹枝玲译.:中国轻工业出版社,2006.
    [22]Stilla U, Michaelsen E, Schulz K, et al. Perceptual Grouping of Regular Structures for Automatic Detection of Man-Made Objects. in:IGARSS:vol.6,2003. 3525-3527.
    [23]Michaelsen E, Soergel U, Thoennessen U. Perceptual Grouping for Automatic Detection of Man-Made Structures in High-Resolution SAR Data. Pattern Recognition Letters,2006,27(4):218-225.
    [24]Michaelsen E, Doktorski L, Soergel U, et al. Perceptual Grouping for Building Recognition in High-resolution SAR Images Using the GESTALT-System. in:Urban Remote Sensing Joint Event:2007.1-6.
    [25]George D, Hawkins J. A Hierarchical Bayesian Model of Invariant Pattern Recognition in the Visual Cortex. in:Proc. International Joint Conference on Neural Network:vol.3,2005.1812-1817.
    [26]Petkov N, Kruizinga P. Computational Models of Visual Neurons Specialised in the Detection of Periodic and Aperiodic Oriented Visual Stimuli:bar and grating cells. Biological Cybernetics,1997,76(2):83-96.
    [27]Qu Y, Li C, Zheng N. Airport Detection Based on Support Vector Machine from A Single Image. in:Fifth International Conference on Information, Communications and Signal Processing (ICICS):2005.546-549.
    [28]Pi Y, Fan L, Yang X. Airport Detection and Runway Recognition in SAR Images. in: IEEE International Geoscience and Remote Sensing Symposium vol.6,2003. 4007-4009.
    [29]Fan W, Chao W, Hong Z. Recognition of Bridges by Integrating Satellite SAR and Optical Imagery. in:International Geoscience and Remote Sensing Symposium:vol.6, 2005.3939-3941.
    [30]Zhu M. A New Way for the Detection and Recognition of Bridges. in:International Conference on Signal Processing:vol.2,2006.
    [31]LI Y, Xu L, Piao H. Semi-Automatic Road Extraction from High-resolution Remote Sensing Image:Review and Prospects. in:Ninth International Conference on Hybrid Intelligent Systems:vol.1,2009.204-209.
    [32]Qin Q, Chen S, Wang W, et al. The Building Recognition of High Resolution Satellite Remote Sensing Image Based on Wavelet Analysis. in:Proceedings of the Fourth International Conference on Machine Learning and Cybernetics:vol.7,2005. 4533-4538.
    [33]梅天灿,李德仁,秦前清.基于直线和区域特征的遥感影像线状目标检测.武汉大学学报·信息科学版,2005,30(8):689-693.
    [34]翟辉琴.基于数学形态学的遥感影像面状目标提取研究:[硕士学位论文].解放军信息工程大学图书馆,2005.
    [35]张志龙.基于遥感图像的重要目标特征提取与识别方法研究:[博士学位论文].国防科技大学图书馆,2004.
    [36]种劲松.合成孔径雷达图像舰船目标检测算法与应用研究:[博士学位论文].中科院电子所,2002.
    [37]Su L, Wang J, Li X. Architecture and Services of a Remote Sensing Spectral Knowledge Base. in:IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions:vol.2,2002.1620-1623.
    [38]Qin Q, Chen S, Wang W. The Founding and Application of Pattern Database for Building Recognition. in:2004 IEEE International Proceedings Geoscience and Remote Sensing Symposium vol.4,2004.2424-2427.
    [39]Wang Y, Wang J, Wang Q. An Expert System for Road Extraction from Remote Sensing Image. in:Third International Symposium on Intelligent Information Technology Application Workshops:2009.125-128.
    [40]沈丽琴,胡栋梁,戚飞虎.基于知识的线状目标的综合理解.自动化学报,1997,23(6):839-841.
    [41]曹菡.空间关系推理的知识表示与推理机制研究:[博士学位论文].武汉大学图书馆,2002.
    [42]李鑫.基于生物视觉机理的直线图形认知系统研究:[硕士学位论文].吉林大学图书馆,2007.
    [43]罗晓辉.双高斯差模型的低层次视觉尺度要素检测研究:[博士学位论文].重庆大学图书馆,2002.
    [44]刘志华.视觉特征捆绑的认知及神经机制的研究:[博士学位论文].华南师范大学图书馆,2004.
    [45]毕胜,梁德群.基于人类视觉特性的纹理分割方法.计算机应用,2006,26(5):1015-1017.
    [46]蔡自兴,徐光祐.人工智能及其应用.(第二版).北京:清华大学出版社,1996.
    [47]Schreiber G.知识工程和知识管理.史忠植,梁永全和吴斌译.北京:机械工业出版社,2003.
    [48]袁锋.基于知识工程的数字化制造系统的研究与应用.中国机械工程,2006,17:278-281.
    [49]王晓东.基于Ontology知识库系统建模与应用研究:[博士学位论文].华东师范大学图书馆,2003.
    [50]化柏林.论知识管理与知识工程的差异性及其发展.图书馆杂志,2008,27(11):2-5.
    [51]李绍彬.基于知识工程的图形化网络拓扑诊断系统.中国机械工程,2006,17:226-229.
    [52]吴芸,周昌乐,张志枫.中医舌诊八纲辨证神经网络知识库构建.计算机应用研究,2006,23(6):188-192.
    [53]郑永煌,李人厚,徐克俊等.基于CLIPS的航天发射决策支持系统.宇航学报,2006,27(1):117-120.
    [54]Richards J A, Jia X.遥感数字图像分析(第四版).张晔,张钧萍,谷延锋等译.:电子工业出版社,2009.
    [55]Hall F G, Strebel D E, Sellers P J. Linking Knowledge among Spatial and Temporal Scales:Vegetation, Atmosphere, Climate and Remote Sensing. Landscape Ecology, 1988,2(1):3-22.
    [56]S.W.Running, D.L.Peterson, M.A.Spanner, et al. Remote Sensing of Coniferous Forest Leaf Area. Ecology,1986,67(1):.273-276.
    [57]Pierce L E, Ulaby F T, Sarabandi K, et al. Knowledge-Based Classification of Polarimetric SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 1994,32(5):1081-1086.
    [58]Xiaowen L, Jindi W, Baoxin H, et al. On Utilization of a Priori Knowledge in Inversion of Remote Sensing Models. Science In China (Series D),1998,41(6): 580-586.
    [59]C.E.Liedtke, Buckner J, Grau O, et al. AIDA:A System for the Knowledge Based Interpretation of Remote Sensing Data. in:the Third International Airborne Remote Sensing Conference and Exhibition:vol.Ⅱ,1997.313-320.
    [60]Bruzzone L, Prieto D F. An Adaptive Semi-Parametric and Context-based Approach to Unsupervised Change Detection in Multitemporal Remote-sensing Images. IEEE Transactions on Image Processing,2002,11(4):452-466.
    [61]Datcu M, Seidel K, D'Elia S, et al. Knowledge-Driven Information Mining in Remote-Sensing Image Archives. in. ESA Bulletin; 2002.
    [62]Toutin T. Geometric Processing of Remote Sensing Images:Models, Algorithms and Methods. the International Journal of Remote Sensing,2003,25(10):1893-1924.
    [63]Cohen Y, Shoshany M. Analysis of Convergent Evidence in an Evidential Reasoning Knowledge-Based Classification. Remote Sensing of Environment,2005, (96): 518-528.
    [64]Clouard R, Elmoataz A, Porquet C, et al. Borg:a Knowledge-Based System for Automatic Generation of Image Processing Programs. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(2):128-144.
    [65]Zlatoff N, Tellez B, Baskurt A. Image Understanding and Scene Models:A Generic Framework Integrating Domain Knowledge and Gestalt Theory. in:International Conference on Image Processing:vol.4,2004.2355-2358.
    [66]Inglada J. Automatic Recognition of Man-Made Objects in High Resolution Optical Remote Sensing Images by SVM Classification of Geometric Image Features. ISPRS Journal of Photogrammetry & Remote Sensing,2007,62(3):236-248.
    [67]Zhu C, Wang R. A Fast Automatic Extraction Algorithm of Elliptic Object Groups from Remote Sensing Images. Pattern Recognition Letters,2004,25(13):1471-1478.
    [68]Al-Khatib W, Day Y F, Ghafoor A, et al. Semantic Modeling and Knowledge Representation in Multimedia Databases. IEEE Tansactions on Knowledge and Data Engineering,1999,11(1):64-80.
    [69]Liu Y, Zhang D, Lu G, et al. A Survey of Content-Based Image Retrieval with High-Level Semantics. Pattern Recognition,2007,40(1):262-282.
    [70]曹文君.知识库系统原理及其应用.上海:复旦大学出版社,1995.
    [71]王克宏,汤志忠,胡蓬.知识工程与知识处理系统.北京:清华大学出版社,1994.
    [72]Giarratano J C, Riley G D.专家系统原理与编程.(第二版).印鉴,陈忆群和刘星成译.北京:机械工业出版社,2006.
    [73]蔡自兴,约翰·德尔金,龚涛.高级专家系统:原理、设计及应用.北京:科学出版社,2005.
    [74]石纯一,廖士中.定性推理方法.北京:清华大学出版社,2002.
    [75]徐洁磐,马玉书,范明.知识库系统导论.北京:科学出版社,2000.
    [76]刘蒽葸,桑农,曹治国等.基于上下文的机场目标识别方法.红外与激光工程,2004,33(1):67-70.
    [77]徐刚锋,王平,沈振康.基于骨架特征的机场主跑道识别.红外与激光工程,2006,35(6):717-721.
    [78]叶斌,彭嘉雄.基于结构特征的军用机场识别与理解.华中科技大学学报,2001,29(3):39-42.
    [79]曲延云,郑南宁,李翠华.基于支持向量机的机场检测算法.西安交通大学学报,2006,40(6):709-713.
    [80]中国民用航空局.民用机场工程项目建设标准.中华人民共和国住房和城乡建设部中华人民共和国国家发展和改革委员会,2008.
    [81]中国民用航空总局机场司.民用机场飞行区技术标准.中国民用航空总局,2006.
    [82]Giarratano J C. CLIPS User's Guide (6.20).2002.
    [83]CLIPS Reference Manual---Volume Ⅰ Basic Programming Guide. (6.22).2004.
    [84]CLIPS Reference Manual---Volume Ⅱ Advanced Programming Guide. (6.22).2004.
    [85]CLIPS Reference Manual---Volume Ⅲ Interfaces Guide. (6.22).2004.
    [86]Xiao J, Ding M, Cai C, et al. New Model Of Region Extraction Based on Salient Region Detection And Scale-space Primal Sketch. in:Proc. of SPIE vol.6787,2007.
    [87]冯志勇,李文杰,李晓红.本体论工程及其应用.北京:清华大学出版社,2007.
    [88]邓志鸿,唐世渭,杨冬青等.本体内代数系统之研究.计算机工程与应用,2001,23:7-9.
    [89]陆建江,张亚非,苗壮等.语义网原理与技术.北京:科学出版社,2007.
    [90]W3C. OWL Web Ontology Language Guide Recommendation.2004.
    [91]龚资.基于OWL描述的本体推理研究:[硕士学位论文].吉林大学图书馆,2007.
    [92]李宏伟,蔡畅,李勤超.基于Jena和地理本体的空间查询与推理研究.测绘工程,2009,18(5):5-9.
    [93]李信本,陈仲委.基于Racer和nRQL的本体查询与推理.计算机系统应用,2007:33-36.
    [94]Sirin E, Parsia B, Grau B C, et al. Pellet:A Practical OWL-DL Reasoner. Journal of Web Semantics,2007,5:51-53.
    [95]W3C. SWRL:A Semantic Web Rule Language Combining OWL and RuleML. 2004.
    [96]王欢.基于本体和SWRL的空间关系推理的设计与实现:[硕士学位论文].陕西师范大学图书馆,2007.
    [97]Golbreich C, Imai A. Combining SWRL Rules and OWL Ontologies with Protege OWL Plugin, Jess, and Racer. in:7th International Protege Conference 2004.
    [98]O'Connor M, Knublauch H, Tu S, et al. Writing Rules for the Semantic Web Using SWRL and Jess. in:Protege with Rules Workshop. Madrid:2005.
    [99]戴昌达,姜小光,唐伶俐.遥感图像应用处理与分析.北京:清华大学出版社,2004.
    [100]任智斌,隋永新,杨英慧等.在均匀颜色空间中实现彩色图像的颜色量化.光学精密工程,2002,10(4):340-345.
    [101]薛向阳,罗航哉,朱兴全等.一种新的颜色相似度定义及其计算方法.计算机学报,1999,22(9):918-922.
    [102]钟克洪,丁明跃,周成平等.基于均匀空间的颜色分级方法.中国图像图形学报,2004,9(11):8720-8727.
    [103]林仲贤,孙秀如.视觉及测色应用.北京:科学出版社,1987.
    [104]薛朝华.颜色科学与计算机测色配色实用技术.北京:化学工业出版社,2004.
    [105]Mojsilovic A, Hu J, Soljanin E. Extraction of Perceptually Important Colors and Similarity Measurement for Image Matching, Retrieval, and Analysis. IEEE Transactions on Image Processing,2002,11(11):1238-1248.
    [106]Mojsilovic A, Soljanin E. Color Quantization and Processing by Fibonacci Lattices. IEEE Transactions on Image Processing,2001,10(11):1712-1725.
    [107]Ma W, Deng Y, Manjunath B S. Tools for Texture- and Color- Based Search of Images. in:Proc. SPIE:vol.3016,1997.496-507.
    [108]Maitre H.现代数字图像处理.孙洪译.北京:电子工业出版社,2006.
    [109]He D, Wang L. Texture Unit, Texture Spectrum, and Texture Analysis. IEEE Transactions on Geoscience and Remote Sensing,1990,28(4):509-512.
    [110]Kumar S S, Ganesan L. Texture Classification Using Wavelet Based Laws Energy Measure. International Journal of Soft Computing,2008,3(4):293-296.
    [111]Do M N, Vetterli M. Rotation Invariant Texture Characterization and Retrieval Using Steerable Wavelet-domain Hidden Markov Models. IEEE Transactions on Multimedia,2002,4(4):517-527.
    [112]Guo C, Zhu S, Wu Y. Primal Sketch:Integrating Texture and Structure. in: International Conference on Computer Vision:vol.106,2005.5-19.
    [113]Chen J, Pappas T N, Mojsilovic A, et al. Adaptive Perceptual Color-Texture Image Segmentation. IEEE Transactions on Image Processing,2005,14(10):1524-1536.
    [114]Freeman W, Adelson E. The Design and Use of Steerable Filters. IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(9):891-906.
    [115]赵英时.遥感应用分析原理与方法.北京:科学出版社,2003.
    [116]Chen C, Pau L, Wang P. Texture Analysis. in. The Handbook of Pattern Recognition and Computer Vision (2nd Edition), World Scientific Publishing Co.; 1998.
    [117]Bergen J, Adelson E. Early Vision and Texture Perception. Nature,1988,333(6171): 363-364.
    [118]G Srinivasan, G Shobha. Statistical Texture Analysis. in:Proc. of World Academy of Science, Engineering and Technology:vol.36,2008.1264-1269.
    [119]Jain A K, Farrokhnia F. Unsupervised Texture Segmentation Using Gabor Filters. Pattern Recognition 1991,24(12):1167-1186.
    [120]Manjunath B, Chellappa R. Unsupervised Texture Segmentation Using Markov Random Field Models. IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(5):478-482.
    [121]马莉,范影乐.纹理图像分析.北京:科学出版社,2009.
    [122]Riesenhuber M, Poggio T. Hierarchical Models of Object Recognition in Cortex. Nature Neuroscience,1999,2(11):1019-1026.
    [123]Serre T, Riesenhuber M. Realistic Modeling of Simple and Complex Cell Tuning in the HMAX Model, and Implications for Invariant Object Recognition in Cortex. AI-Memo 2004-017, CBCL Memo 239, MIT 2004.
    [124]Serre T, Wolf L, Poggio T. Object Recognition with Features Inspired by Visual Cortex. in:IEEE Conference on Computer Vision and Pattern Recognition:vol.2, 2005.994-1000.
    [125]Bileschi S, Wolf L. A Unified System for Object Detection, Texture Recognition, and Context Analysis Based on the Standard Model Feature Set. in:British Machine Vision Conference 2005.
    [126]Thomas Serre L W, Stanley Bileschi, Maximilian Riesenhuber, and Tomaso Poggio. Robust Object Recognition with Cortex-Like Mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(3):411-426.
    [127]章海军.视觉及其应用技术.杭州:浙江大学出版社,2004.
    [128]罗四维.视觉感知系统信息处理理论.北京:电子工业出版社,2006.
    [129]Itti L. Visual Attention. University of Southern California Press,2002.
    [130]Torralba A, Murphy K P, Freeman W T, et al. Context-Based Vision System for Place and Object Recognition.in:International Conference on Computer Vision: 2003.273-280.
    [131]Lowe D G Object Recognition from Local Scale-Invariant Features. in: International Conference on Computer Vision:vol.2,1999.1150-1157.
    [132]Rodieck R, Stone J. Analysis of Receptive Fields of Cat Retina Ganglion Cells. Journal of Neurophysiology,1965,28:833-849.
    [133]Jones J P, Palmer L A. An Evaluation of the Two-Dimensional Gabor Filter Model of Simple Receptive Fields in Cat Striate Cortex. Journal of Neurophysiology,1987, 58(6):1233-1258.
    [134]Serre T, Kouh M, Cadieu C, et al. A Theory of Object Recognition:Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex. Cambridge:Massachusetts Inst. of Technology,2005.
    [135]Gabor D. Theory of Communication. J. IEE,1946,93(26):429-457.
    [136]LeCun Y, Huang F J, Bottou L. Learning Methods for Generic Object Recognition with Invariance to Pose and Lighting. in:IEEE Conference on Computer Vision and Pattern Recognition:vol.2,2004.Ⅱ-97-104.
    [137]Fergus R, Perona P, Zisserman A. Object Class Recognition by Unsupervised Scale-Invariant Learning. in:IEEE Conference on Computer Vision and Pattern Recognition:vol.2,2003.Ⅱ-264-Ⅱ-271.
    [138]Bileschi S M. StreetScenes:Towards Scene Understanding in Still Images:[博士学 位论文]. the Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,2006.
    [139]Zhu C, Yang X. Study of Remote Sensing Image Texture Analysis and Classification Using Wavelet. International Journal of Remote Sensing,1998,19(16):3197-3203.
    [140]Carter P. Texture Discrimination Using Wavelet. in:SPIN Application of Digital Image Processing:vol.1567,1991.132-438.
    [141]Lain A, Fan J. Texture Classification by Wavelet Packet Signature. IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(11):1186-1191.
    [142]Hammouda K, Jernigan E, Texture Segmentation Using Gabor Filters, Technical University of Waterloo:Ontario, Canada,2003; p 8.
    [143]汪彪.基于人的视觉系统特性的纹理分割方法研究:[学士学位论文].华中科技大学图书馆,2008.
    [144]Johnson A P, Curtis L. Baker J. First-and Second-Order Information in Natural Images:a Filter-Based Approach to Image Statistics. Journal of the Optical Society of America A,2004,21(6):913-925.
    [145]Curtis L. Baker J, Mareschal I. Processing of Second-Order Stimuli in the Visual Cortex. Progress in Brain Research,2001,134:171-191.
    [146]Daugman J G. Uncertainty Relation for Resolution in Space, Spatial Frequency, and Orientation Optimized by Two-Dimensional Visual Cortical Filters. Journal of the Optical Society of America A,1985,2(7):1160-1169.
    [147]孙即祥.现代模式识别.长沙:国防科技大学出版社,2001.
    [148]Daubechies I.小波十讲.李建平杨万年译.北京:国防工业出版社,2004.
    [149]Han J, Ma K. Rotation-Invariant and Scale-Invariant Gabor Features for Texture Image Retrieval. Image and Vision Computing,2007,25(9):1474-1481.
    [150]Belongie S, Malik J, Puzicha J. Shape Matching and Object Recognition Using Shape Contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(4):509-522.
    [151]孙君顶.基于链码分布特征及相关性的轮廓描述与检索.光电子·激光,2008,19(8):1112-1115.
    [152]任明武,杨静宇,孙涵.一种新的基于链码描述的轮廓填充方法.中国图像图形学报,2001,6(A)(4):348-352.
    [153]刘传才.基于小波与高斯Markov随机场组合的轮廓纹理分割.小型微型计算机系统,2004,25(1):68-71.
    [154]舒慧建.基于生物特征的图形轮廓认知探讨:[硕士学位论文].吉林大学图书馆,2007.
    [155]H Nothdurft, J Gallant, D Vanessen. Response Modulation by Texture Surround in Primate Area V1:Correlates of "Popout" under Anesthesia. Visual Neuroscience,1999, 16:15-34.
    [156]许存禄.图像纹理分析的新方法及其应用:[博士学位论文].复旦大学图书馆,2005.
    [157]Knierim J J, Vanessen D C. Neuronal Responses to Static Texture Patterns in Area V1 of the Alert Macaque Monkey. Journal of Neurophysiology,1992,67(4):961-980.
    [158]Petkov N, Westenberg M A. Suppression of Contour Perception by Band-Limited Noise and its Relation to Non-Classical Receptive Field Inhibition. Biological Cybernetics,2003,88:236-246.
    [159]Papari G, Campisi P, Petkov N, et al. A Multiscale Approach to Contour Detection by Texture Suppression. in:Proc. SPIE:vol.6064,2006.60640D.
    [160]Jones H E, Grieve K L, Wang W, et al. Surround Suppression in Primate V1. Journal of Neurophysiology,2001,86(10):2011-2028.
    [161]Roelfsema P R, Cortical Algorithms for Perceptual Grouping, Technical 2006; 203-227.
    [162]Grigorescu C, Petkov N, Westenberg M. Contour and Boundary Detection Improved by Surround Suppression of Texture Edges. Image and Vision Computing,2004, 22(8):609-622.
    [163]Papari G, Campisi P, Petkov N, et al. Contour Detection by Multiresolution Surround Inhibition. in:International Conference on Image Processing:2006. 749-752.
    [164]Papari G, Campisi P, Petkov N, et al. Contour Detection by Surround Inhibition in the CHF Domain. in:EUSIPCO:2006.
    [165]Mallat S. A Theory for Multiresolution Signal Decomposition:the Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11(7):674-693.
    [166]崔屹.图像处理与分析——数学形态学方法及应用.北京:科学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700