用户名: 密码: 验证码:
高能对撞机单个顶夸克产生过程中的R字称破坏效应的精确研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自标准模型建立以来,几乎所有的高能物理实验结果都验证了标准模型理论的正确性。最近在LHC上的发现的~125GeV玻色子,很有可能就是标准模型中的Higgs粒子。尽管如此,标准模型还存在着种种缺陷,例如等级差问题,中微子振荡现象等等。人们也认识到标准模型的局限性,并开始寻找标准模型以外的新物理。各种对标准模型扩展的新物理模型,例如小Higgs模型,额外维模型,最小超对称模型等,被逐渐提出并建立起来。其中,最小超对称模型因其优美的数学形式和丰富的物理内涵而倍受青睐,被认为是最有希望的新物理模型。因此寻找超对称物理信号成为当今粒子物理实验的重要目标之一。西欧核子中心正在运行中的大型强子对撞机(LHC)和正在筹建中的电子-强子对撞机(LHeC)将为探索和寻找标准模型以外的新物理信号提供一个很好的实验平台。
     R宇称守恒是一种现象学上的假设,R宇称守恒与否并不影响理论上的自洽性。R宇称守恒与R宇称破坏的超对称模型在理论上地位是相同的。最一般的超对称模型应该包含R宇称破坏的部分。由于top夸克是标准模型中最重的费米子,其质量最接近电弱破缺能标,同时其大质量也允许它在新物理中参与新的相互作用,因此top夸克物理一直以来被认为是通向新物理的窗口。由于top夸克的极化可以测量,这也为测量有top夸克参与的新的相互作用的手征性提供了便利。同时单个top夸克产生过程的典型信号特征使其在剔除实验本底,提出实验信号方面具有很大优势。因此单top夸克伴随超对称粒子产生过程是研究R宇称破坏最小超对称模型的一个有力途径。本论文对LHC和LHeC上通过R宇称破缺顶点产生单个超对称粒子的过程进行研究,为实验上寻找超对称信号或者对R宇称破坏耦合系数进行限制提供了理论指导。在论文的第二章和第三章中我们分别介绍了LHC和LHeC上单个top夸克伴随单个超对称粒子产生过程的精确研究工作。在这些工作中我们采用了复质量方案(CMS),两截断相空间方法(TCPSS),两极点减除方案(DPS)和窄宽度近似等手段来处理计算中遇到的各种问题。
     在第二章中我们对LHC上单个top夸克伴随slepton产生过程进行了次领头阶QCD修正计算。探讨了领头阶和次领头阶修正的截面与重整化能标/因子化能标,slepton质量,stop夸克质量以及gluino质量等参数之间的依赖关系。分析了三标量场耦合tj-dκ-ιi对次领头阶QCD修正的影响。我们给出了不同的事例判选方案下次领头阶QCD修正结果的变化,并指出exclusive事例判选方案能保证修正结果的收敛性。我们的研究结果表明,在exclusive事例判选方案下,在某些参数空间中次领头阶QCD修正将大于28%。
     在第三章中我们在最新的实验结果对超对称参数的限制范围内的pMSSM-19模型中,对在LHeC上单个top夸克伴随最轻的neutralino产生过程进行了完整的计算,并给出了该过程的次领头阶QCD修正结果。虽然在多数情况下,由于stop夸克的共振效应,8-道费曼图对总截面的贡献占据了主要部分,但是在实验所允许的某些参数空间(例如slepton质量相对较轻而stop夸克质量相对较重时),t-、u-道的非共振费曼图的贡献是不可忽略的。在次领头阶QCD修正计算中更应该将所有的费曼图的贡献完整地考虑进去。为了更明确地表示出非共振部分对总截面的贡献,我们在领头阶计算中比较了通过三种方法得到的截面:(1)包括所有的树图阶费曼图的贡献,(2)只包含s-道费曼图的贡献,(3)在窄宽度近似下得到的截面。我们发现在我们所选的参数点,相对于按照方法(1)得到的截面,非共振部分的贡献可以达到50%以上。我们分析了相关的超对称参数对该过程截面的影响,给出了领头阶和QCD次领头阶末态top夸克的横动量微分分布。我们发现在大多数情况下次领头阶QCD修正会增加总截面,但是在某些情况下QCD修正效应将很难被实验测量到。
     本论文的创新之处如下:
     ·首次对在LHC上单个slepton伴随top夸克过程的高阶修正效应进行系统研究,对各个超对称参数对该过程的影响进行深入分析。同时我们还研究了该过程中领头阶和次领头阶QCD修正效应对末态top夸克的极化的影响。为了得到更接近实验结果的数据,我们在窄宽度近似下对slepton进行衰变并给出了衰变末态粒子的可观测量微分分布,为实验测量提供了精确的理论依据。
     ·首次在最新的实验参数限制下,对LHeC上通过单top夸克伴随最轻的neutralino产生过程来探测超对称信号或限制R宇称破坏参数进行了完整深入的研究。我们的工作指出在最新的实验参数限制下,该过程的非共振费曼图的贡献是不可忽略的。相对于以往对此过程的分析中只考虑共振部分的贡献,我们的结果更加精确。计算结果表明,次领头阶QCD修正效应在有利的SUSY参数空间下非常明显,尤其是在末态top夸克横动量微分分布上最为明显。
Since the establishment of the Standard Model (SM), almost all of the high-energy physics experimental results have been perfectly consistent with the SM predictions. The new~125GeV boson discovered at the LHC recently is very likely to be the SM Higgs boson. Nevertheless, there are still flaws in the SM, such as the hierarchy problem, neutrino oscillation experiments and so on. People realized the limitations of the SM and began to look for new physics beyond the SM. Various new physics models, such as the Little Higgs models(LH), the Extra Dimension Model(ED) and the Minimal Supersymmetry Standard Model(MSSM), were gradually raised and built up. Among these new models, the MSSM is regarded as one of the most hopeful candidates for the physics beyond the SM because of its elegant mathematical formation and physical meaning. So searching for SUSY will be one of the central focus of the future particle physics experiments. The present running Large Hadron Collider(LHC) and the proposed Large Hadron election Collider(LHeC) at the CERN will provide a good experimental platform for exploring new physics beyond the SM.
     In the MSSM, the R-parity conservation is a phenomenological assumption and the R-parity conservation or not does not affect the self-consistency of the theory. The R-parity violating MSSM and the R-parity conservative MSSM have the same theoretical status. The most general MSSM should contain the R-parity violating part. Top quark is the heaviest elementary fermion in the SM, whose mass is most close to the scale of electroweak spontaneous breeking (EWSB). And the top quark could participate in the interactions of new physics because of it's heavy mass. So the top quark physics is one of the important windows leading to the new physics. The polarization of the top quark can be measured, which also provides a convenient measurement of the interactions involving top quark. What's more, the typical signal feature of the single top quark production processes makes it easier to suppress experimental backgrounds. So the single top quark production in association with a SUSY particle production process is a powerful way to study the R-parity violating MSSM. In this thesis we study the single top quark production associated with a SUSY particle processes through the R-parity violating couplings at the LHC and the LHeC, and provide a theoret-ical guidance to the experiments to find the SUSY signal or to limit the R-parity violating coupling coefficients. In chapter2and chapter3, we provide an accurate calculation of the single top quark production associated with a SUSY particle process at the LHC and LHeC, respectively. In these works, we adopt complex mass scheme(CMS), two cutoff phase space slicing method(TCPSS), dipole sub-straction method(DPS) and narrow-width approximation(NWA) method to deal with the problems we encountered in the calculations.
     In chapter2, we calculate the single top quark production associated with a slepton process at the LHC in NLO QCD. We investigate the dependence of the LO and NLO QCD corrected integrated cross sections on the factoriza-tion/renormalization energy scale, slepton, stop quark and gluino masses. We analyse the impact of the tj-dk-li coupling up to the QCD NLO. We show the numerical results with different jet event selection schemes in the NLO QCD and point out that the exclusive jet event selection scheme can keep the convergence of the perturbative series. The results show that in the exclusive jet selection scheme the NLO QCD correction can be larger than LO results as large as28%in some parameter space.
     In chapter3, we calculate the single top quark production in association with a lightest neutralino process at the LHeC at the LO and the QCD NLO in the pMSSM-19model within the latest experimental constraints on the SUSY parameters. Because of the possible stop quark resonance, the s-channel Feynman diagram is the major contribution to the total cross section in most cases, but we find that the contributions of t-,u-channel Feynman diagrams are not ignorable in some SUSY parameter space (where the slepton is relatively light and the stop quark is relatively heavy) in the allowed SUSY parameter space under the experimental constraints. Therefore, all the Feynman diagrams should be included in the NLO QCD correction calculation. In order to show the contribution of non-resonant part more clearly, we compare the integrated cross sections obtained by using three approaches in the LO calculations:(1) including all the contributions of the tree-level diagrams,(2) including only the contributions of the s-channel diagrams,(3) narrow-width approximation. We find out that the contribution of non-resonant part can reach50%of the cross section obtained by using the approach (1) or more. We investigate the effects of the relevant SUSY parameters on the cross section, and present the transverse momentum distributions of final top quark at both the LO and the QCD NLO. It shows that the NLO QCD corrections increase the LO cross sections in most chosen parameter space, but in some cases the NLO QCD correction is hardly resolvable in high precision measurement.
     The innovative points of this thesis are listed as below:
     ●We firstly studied the NLO QCD correction of the single slepton associated with a top quark production process at the LHC systematically. We analyse the impacts of the SUSY parameters on the integrated cross section and study the top quark polarization effects at the LO and QCD NLO. We consider the subsequential decay of the slepton and show the transverse momentum distributions of final particles. Our study provides a precise theoretical predictions for the experiments.
     ●We provided firstly the full and deep investigations on the single top quark associate with the lightest neutralino production process at the LHeC within the latest experimental limitations on the SUSY parameters. We find that the contribution of the non-resonant diagrams can not be neglected in some SUSY parameter space. Our predictions are more accurate than that in the previous work where only the resonance contribution was considered. The results show that the NLO QCD correction is resolvable, especially in the transverse momentum distributions of the final top quark in the favorable SUSY parameter phase space.
引文
[1]S.L. Glashow, "Partial summetries of weak interactions", Nucl. Phys.22, (1961) 579.
    [2]S. Weinberg, "A model of leptons", Phys. Rev. Lett.19 (1967) 1264.
    [3]A. Salam, "Weak and electromagnetic interactions", Proc.8th Nobel Symposium, Ed. N. Svartholm.
    [4]C.N. Yang, R.L. Mills, "Conservation of isotopic spin and isotopic gauge invariance", Phys. Rev. 96 (1954) 191.
    [5]P.W. Higgs, "Broken symmetries, massless particles and gauge Lelds", Phys. Lett.12 (1964) 132; P.W. Higgs, "Broken symmetries and the masses of gauge bosons", Phys. Rev. Lett.13 (1964) 508.
    [6]F. Englert,R. Brout, "Broken symmetry and the mass of gauge vector mesons", Phys. Rev. Lett. 13 (1964) 321.
    [7]G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, "Global conservation laws and massless particles", Phys. Rev. Lett.13 (1964) 585.
    [8]T.W.B. Kibble, "Symmetry breaking in non-Abelian gauge theories", Phys. Rev.155 (1967) 1554.
    [9]G.'t Hooft, Nucl. Phys. B35 (1971) 167.
    [10]G.'t Hooft, Nucl. Phys. B33 (1971) 173-199.
    [11]H. Fritzsch, M. Gell-Mann, Proc. ⅩⅥ Int. Conf. on High Energy Physics(1972).
    [12]M. Gell-Mann Phys. Lett.8 (1964) 214.
    [13]G. Zweig, CERN report.
    [14]The ATLAS Collaboration, "Observation of a new particle in the search for the Standard Mod-el Higgs boson with the ATLAS detector at the LHC". Phys.Lett. B716 (2012) 1-29[arXive:hep-ex/1207.7214].
    [15]CMS Collaboration, S. Chatrchyan et al., "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC," Phys.Lett. B716 (2012) 30-61,arXiv:hep-ex/1207.7235.
    [16]E. Witten, "Dynamical breaking of supersymmetry", Nucl. Phys., B188, (1981) 513
    [17]H. E. Haber and G. L. Kane. "The search for supersymmetry:Probing physics beyond the standard model", Phys. Rept.,117 (1985) 75.
    [18]M. Chen, C. Dionisi, M. Martinez and X. Tata, "Signals from nonstrongly interacting supersym-metric particles at LEP energies", Phys. Rept.159 (1988) 201.
    [19]Y. Fukuda et al., Super-Kamiokande collaboration, Phys. Lett. B 433 (1998) 9; Phys. Rev. Lett. 81 (1998) 1562;Phys. Lett. B436 (1998) 33;
    [20]M. Apollonio et al., Chooz collaboration, Phys. Lett. B 420 (1998) 397.
    [21]Joel R. Primack, "Cosmological Parameters 2000", [astro-ph/0007187].
    [22]H. P. Nilles Phys. Rep.110, (1984)1.
    [23]H.E. Haber, G.L. Kane, Phys. Rep.117, (1985) 77.
    [24]J.F. Gunion, H.E. Haber, Nucl. Phys. B 272 (1986)1.
    [25]J. Wess, J. Bagger, "SuperSymmetry and Supergravity", Princeton University press.1983.
    [26]张仁友, 《超对称衰变现象研究》,博士论文。
    [27]H. E. Haber, G. L. Kane, Phys. Rep.117 (1985) 75.
    [28]H. Rosiek, Phys. Rev. D41 (1990) 3464.
    [29]J. F. Gunion, H. E. Haber, Nucl. Phys. B272 (1986)1.
    [30]M. Carena, H. E. Haber, S. Heinemeyer, W. Hollik, C. E. M. Wagner and G. Weiglein, Nucl. Phys. B 580,29 (2000). (0612057,23)
    [31]L.E. Ibanez, G.G. Ross, Nucl. Phys. B368 (1992) 3.
    [32]S. Weinberg, Phys. Rev. D26 (1982) 287.
    [33]N. Sakai and T. Yanagida, Nucl. Phys. B197 (1982) 533.
    [34]Herbi Dreiner, "An Introduction to Explicit R-Parity Violation", [arXiv:hep-ph/9707435].
    [35]C. Caso, et al,. Eur. Phys. J. C3 (1998)1.
    [36]J.L. Goity, Marc Sher, Phys. Lett. B 346 (1995) 69, erratum-ibid. B 385 (1996) 500, hep-ph/9412208.
    [37]The Super-Kamiokande Collaboration, Y. Fukuda et al, "Evidence for oscillation of atmospheric neutrinos", Phys. Rev. Lett.81 (1998) 1562-1567.
    [38]R. Barbieri et al., "Report of the GDR working group on the R-parity violation ", hep-ph/9810232.
    [39]B. Allanach, H. Baer, et al., "Searching for R-Parity Violation at Run-Ⅱ of the Tevatron", hep-ph/9906224.
    [40]G. Bhattacharyya, Nucl. Phys. B52 (1993) 83.
    [41]J.L. Goity, M. Sher, Phys. Lett. B 346 (1995) 69.
    [42]R. Godbole, P. Roy, Nucl. Phys. B 401 (1993) 67.
    [43]S. R. Elliott, J. Engel, H. Phys. G30 (2004) R183.
    [44]V. Varger, G. F. Giudice, Phys. Rev. D 40 (1989) 2987.
    [45]F. Deliot et al., Phys. Lett. B 475 (2000) 184; S.Bar-Shalom, et al., Phys. Rev. D64 (2001),095008.
    [46]CDF Collaboration, F. Abe et a.l., Phys. Rev. Lett.74,2626 (1995)
    [47]DO Collaboration, S. Abachi et al., ibid.74,2632 (1995)
    [48]D. O. Carlson and C. P. Yuan, Phys. Lett. B 306 (1993) 386.
    [49]A. Heinson, A. S. Belyaev and E. E. Boos, Phys. Rev. D 56 (1997) 3114 [arXiv:hep-ph/9612424].
    [50]T. Stelzer, Z. Sullivan and S. Willenbrock, Phys. Rev. D 58 (1998) 094021 [arXiv:hep-ph/9807340].
    [51]E. E. Boos and A. V. Sherstnev, Phys. Lett. B 534 (2002) 97 [arXiv:hep-ph/0201271].
    [52]M. Chemtob and G. Moreau, Phys. Rev. D 61 (2000) 116004 [arXiv:hep-ph/9910543].
    [53]K. i. Hikasa, J. M. Yang and B. L. Young, Phys. Rev. D 60 (1999) 114041 [arXiv:hep-ph/9908231].
    [54]P. Y. Li, G. R. Lu, J. M. Yang and H. Zhang, Eur. Phys. J. C 51,163 (2007) [arXiv:hep-ph/0608223].
    [55]M. Arai, K. Huitu, S.K. Rai, K. Rao, J. High Energy Phys.1008,082 (2010).
    [56]M.A. Bernhardt, H.K. Dreiner, S. Grab and P. Richardson, Phys. Rev. D 78,015016 (2008).
    [57]T. Hahn, Comput. Phys. Commun.140,418 (2001).
    [58]T. Hahn, M. Perez-Victoria, Comput. Phys. Commun.118,153 (1999).
    [59]F. Borzumati, J.S. Lee, Phys. Rev. D 66,115012 (2002).
    [60]G. Bhattacharyya, H.V. Klapdor-Kleingrothaus and H. Paes, Phys. Lett. B463,77 (1999).
    [61]A. Denner, Fortschr. Phys.41,307 (1993).
    [62]W.J. Marciano, Phys. Rev. D 29,580 (1984);W.J. Marciano, Phys. Rev. D 31,213 (1984) (E)
    [63]T. Kinoshita, J. Math. Phys.3,650 (1962);T.D. Lee, M. Nauenberg, Phys. Rev. B 133,1549 (1964).
    [64]B.W. Harris, J.F. Owens, Phys. Rev. D 65,094032 (2002)[hep-ph/0102128].
    [65]J. Pumplin, et al., J. High Energy Phys.0207,012 (2002).
    [66]D. Stump, et al., J. High Energy Phys.0310,046 (2003).
    [67]C. Amsler, et al., Phys. Lett. B 667,1 (2008).
    [68]V. Barger, G.F. Giudice, and T. Han, Phys. Rev. D40 (1989) 2987;S. Dimopoulos and L.J. Hall, Phys. Lett. B207 (1988) 210.
    [69]J.A. Aguilar-Saavedra, et al., Eur. Phys. J. C 46,43 (2006).
    [70]http://www.phys.ufl.edu/-jblender/isajet/isajet.html.
    [71]H.K. Dreiner, S. Grab, M. Kramer, M.K. Trenkel, Phys. Rev. D 75,035003 (2007)[arXiv:hep-ph/0611195].
    [72]The LHeC web page, http://www.lhec.org.uk.
    [73]J. L. Abelleira Fernandez et al. "LHeC Study Group Collaboration", J. Phys. G 39,075001 (2012), [arXiv:1206.2913 [physics.acc-ph]].
    [74]CERN-ECFA-NuPECC Workshop on the LHeC, Chavannes, Switzerland, June 2012, see http://cern.ch/lhec.
    [75]J. L. Abelleira Fernandez et al. "LHeC Study Group Collaboration", [arXiv:1211.4831 [hep-ex].
    [76]A. N. Akay, H. Karadeniz, and S. Sultansoy, Int. J. Mod. Phys. A 25,4589 (2010).
    [77]Jonathan L. Feng, "Naturalness and the Status of Supersymmetry", [arXiv:1302.6587vl [hep-ph]].
    [78]CMS Collaboration, "Search for gluino-mediated bottom- and top-squark production in pp collisions at 8 TeV", CMS PAS SUS-12-024, CERN.
    [79]CMS Collaboration, "Interpretation of searches for supersymmetry with simplified models", CMS-SUS-11-016, CERN.
    [80]The ATLAS Collaboration, "Search for direct production of the top squark in the all-hadronic tt+ETmiss final state in 21 fb-1 of p-p collisions at (?)= 8TeV with the ATLAS detector" ATLAS-CONF-2013-024, CERN 2013.
    [81]The ATLAS Collaboration, "Search for direct top squark pair production in final states with one isolated lepton, jets, and missing transverse momentum in (?)= 8TeV pp collisions using 21fb-1 of ATLAS data", ATLAS-CONF-2013-037, CERN 2013.
    [82]The ATLAS Collaboration, "Search for strongly produced supersymmetric particles in final states with two same-sign leptons and jets with the ATLAS detector using 21fb-1 of proton-proton collisions at (?)=8TeV", ATLAS-CONF-2013-007, CERN 2013.
    [83]CMS Collaboration, "Search for direct EWK production of SUSY particles in multilepton modes with 8TeV data," Tech. Rep. CMS-PAS-SUS-12-022, CERN, Geneva,2012.
    [84]The ATLAS Collaboration, "Search for electroweak production of supersymmetric particles in final states with at least two hadronically decaying taus and missing transverse momentum with the ATLAS detector in proton-proton collisions at (?)=8TeV", ATLAS-CONF-2013-028, CERN, 2013.
    [85]The ATLAS Collaboration, "Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 21fb-1 of pp collisions at (?)=8TeV with the ATLAS detector", ATLAS-CONF-2013-035, CERN,2013.
    [86]T. Kon, T. Kobayashi, S. Kitamura, Phys. Lett. B333,263 (1994).
    [87]T. Kobayashi, S. Kitamura, T. Kon, Int. J. Mod. Phys. All,1875 (1996).
    [88]T. Kon, T. Kobayashi, S. Kitamura, Phys. Lett. B376,227 (1996).
    [89]T. Kon, T. Kobayashi, Phys. Lett. B409,265 (1997).
    [90]H. Dreiner, P. Morawitz, Nucl. Phys. B503,55 (1997).
    [91]Jihn E. Kim, P. Ko, Phys. Rev. D57,489 (1998).
    [92]J. Ellis, S. Lola, K. Sridhar, Phys. Lett. B408,252 (1997).
    [93]Z. Kunszt, W. J. Stirling, Z. Phys. C75,453 (1997).
    [94]Wei Hong-Tang, Zhang Ren-You, Guo Lei, Han Liang, Ma Wen-Gan, et al., JHEP 1107 003(2011)
    [95]M. Arai, K. Huitu, S.K. Rai, K. Rao, JHEP 1008,082 (2010).
    [96]M.A. Bernhardt, H.K. Dreiner, S. Grab and P. Richardson, Phys. Rev. D78,015016 (2008).
    [97]M. Chemtob, G. Moreau, Phys. Rev. D61,116004 (2000).
    [98]Siba Prasad Das, Amitava Datta, Monoranjan Guchait, Phys. Rev. D70,015009 (2004).
    [99]W. Beenakker, R. HAopker and P. M. Zerwas, Phys. Lett. B378 (1996) 159; W. Beenakker, R. HAopker, T. Plehn and P.M. Zerwas, Z. Phys. C75 (1997) 349.
    [100]A. Denner, S. Dittmaier, M. Roth, L.H. Wieders, Nucl. Phys. B724,247 (2005).
    [101]A. Denner, S. Dittmaier, M. Roth, D. Wackeroth, Nucl. Phys. B560,33 (1999).
    [102]A. Denner, S. Dittmaier, Nucl. Phys. B844,199 (2011).
    [103]G. t'Hooft and M. Veltman, Nucl. Phys. B153,365 (1979).
    [104]A. Denner, U. Nierste and R. Scharf, Nucl. Phys. B367,637 (1991).
    [105]A. Denner, S. Dittmaier, Nucl. Phys. B658,175 (2003).
    [106]P.F. Duan, R.Y. Zhang, W.G. Ma, L. Guo, Y. Zhang, J. Phys. G39,105002 (2012).
    [107]Stefano Catani, Michael H. Seymour, Nucl.Phys. B 485,291-419 (1997).
    [108]J. Beringer, et al., Phys. Rev. D 86,010001 (2012); http://pdglive.lbl.gov/listingsl.brl?quickin=Y.
    [109]R. Barbier, C. Berat, M. Besancon, et al., Phys. Rept.420,1 (2005).
    [110]Manimala Chakrabortil, Utpal Chattopadhyay and Rohini M. Godbole, Phys. Rev. D 87,035022 (2013); Howard Baer, et al, Phys. Rev. D 87,035017 (2013); Gautam Bhattacharyya and Tirtha Sankar Ray, Phys. Rev. D 87,015017 (2013); Motoi Endo, et al, Phys. Rev. D 85,095006 (2012); E. Gabrielli, K. Kannike, B. Mele, A. Racioppi, and M. Raidal, Phys. Rev. D 86,055014 (2012); Pran Nath, arXiv:hep-ph/1210.0520.
    [111]Ernesto Arganda, J. Lorenzo Diaz-Cruz, Alejandro Szynkman, arXiv:hep-ph/1211.0163. Wolf-gang Altmarnnshofer, Marcela Carena, et al., arXiv:hep-ph./1211.1976; Stephen F. King, Margarete Muhlleitner, et al., arXiv:hep-ph/1211.5074.
    [112]F. Mahmoudi, A. Arbey, M. Battaglia, arXiv:hep-ph/1211.2795.
    [113]Alex Drlica-Wagner, arXiv:astro-ph.HE/1210.5558.
    [114]D. P. Roy., arXiv:hep-ph/1211.3510.
    [115]Leszek Roszkowski, Enrico Maria Sessolo, Yue-Lin Sming Tsai, Phys.Rev. D86 095005 (2012).
    [116]C. Strege, et al, arXiv:1112.4192 [hep-ph].
    [117]F. Mahmoudi, T. Hurth., arXiv:hep-ph/1211.2796.
    [118]A. Arbey, et al, Phys. Rev. D 87,035026 (2013).
    [119]Jonathan L. Feng, Konstantin T. Matchev, and David Sanford, Phys. Rev. D 85,075007 (2012).
    [120]A. Arbey, M. Battaglia, Eur. Phys. J. C 72 1906 (2012).
    [121]M.W. Cahill-Rowley, J. L. Hewett, A. Ismail, and T. G. Rizzo, arXiv:1211.1981.
    [122]B. C. Allanach, Comput. Phys. Commun.143,305 (2002).
    [123]A. Djouadi, M.M. Muhlleitner, M. Spira, Acta Phys. Polon. B38,635 (2007).
    [124]R. Frederix, T. Gehrmann, N. Greiner, JHEP 1006,086 (2010); R. Frederix, T. Gehrmann, N. Greiner, JHEP 0809,122 (2008).
    [125]S. Catani, S. Dittmaier, M. H. Seymour, Z. Trocsanyi, Nucl. Phys. B627,189 (2002).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700