用户名: 密码: 验证码:
富水弱成砂岩隧道力学特性与支护对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
兰渝铁路胡麻岭隧道在穿越富水弱成砂岩施工中出现了隧洞周围岩变形大、钢架扭曲失稳、掌子面易坍塌、突泥涌砂等现象。隧道施工难度大,风险高,成为国内罕见、世界性难题。以此为工程依托,论文围绕该围岩变形特征及控制技术等难题,综合采用理论解析、数值模拟、室内模型试验和现场监测等多种研究手段,对隧道施工影响下富水弱成砂岩力学特性及其控制技术进行了系统深入的研究,取得的研究成果如下:
     (1)通过室内试验得到了富水弱成砂岩的各项物理力学特性参数。结果表明:富水状态的未成砂岩具有较低的粘聚力和渗透性;含水未成砂岩的力学性质与其在干燥情况下极为不同,主要表现为其单轴抗压强度含水后大幅度下降,弹性模量与粘滞系数也随含水量增加而急剧下降。
     (2)开展了荷载作用下的流变试验。结果表明:其流变应变占总应变的40%左右;含水量不同时蠕变曲线中的瞬时应变、初始流变应变比例及总流变比例也不尽相同。干燥状态下,未成砂岩初始流变占总流变变形的比例在53%左右,而含水状态下其比例均在80%以上。基于以上试验结果拟合了广义开尔文蠕变方程各系数与含水量的关系;推导了弱成砂岩隧道围岩与支护相互作用力的表达式。
     (3)隧道施工影响下富水弱成砂岩容易出现严重的围岩变形破坏。通常具有变形量大、变形发展快、持续时间长,在时空效应上具有明显的不对称性和不均匀性等特征。对同一断面来说,开挖进程中围岩变形具有明显的阶段性,按变形速率可划分为3个阶段:急剧变形阶段、稳定变形阶段和流变阶段。隧道开挖后围岩变形具有明显时空效应。时间效应主要发生在流变阶段;空间效应通常发生在围岩变形的急剧变形阶段;稳定变形阶段则是两者的过渡段。
     (4)采用地震折射层析法确定隧道施工影响下富水弱成砂岩松动范围。分析得出:表层波速值低于1000m/s的低速带划为松弛带;中部波速值在1000m/s-2500m/s的渐变区划为松动带;底部波速值低于2500m/s的相对稳定区为未扰动带;各分带之间的界限划分主要以速度梯度带为依据,兼顾波射线的滑行界面位置。
     (5)基于胡麻岭富水弱成砂岩的特殊力学特性确定了运用超前支护和加固措施。减小或避免围岩变形、尽快使支护结构闭合、按分部顺序采取分割式逐块开挖,并要求边挖边撑以求安全,并辅以监控量测措施。采用数值模拟和工程类比方法确定了胡麻岭隧道主洞的开挖方案和斜井进入正洞挑高段的施工方案,并进行了优化分析。
     (6)利用有限元对大断面富水弱成砂岩隧道初期支护施作时机进行研究。分析得出:施工中应该以控制围岩变形为核心,在初支结构安全的前提下,强调初期支护施作的及时性;选取富水弱成砂岩隧道典型断面进行现场监测,得出初支、围岩接触压力具有显著时间效应,支护结构设计应考虑其长期流变荷载;在空间规律上,压力分布呈现不均匀性。初期支护与二次衬砌之间的接触压力随时间变化存在一个先增大后减小再增大,并不断趋于稳定的发展过程。初期支护与二次衬砌之间的接触压力分布并不对称,总体上由拱顶→拱肩→拱腰→拱墙-上部→拱墙下部逐渐增大,但拱脚及拱底测值相对较小。
     (7)胡麻岭隧道富水弱成砂岩具有强度低,遇水的情况下围岩快速软化,自稳能力极差,易坍塌;洞身穿越处水位高经常出现涌砂、突水,沉降大、初支变形等现象;围岩颗粒细小,具有水敏性,富水未固结的情况下具有振动液化现象等工程特性。通过大量的方案论证、工艺试验,最后形成以台阶分部轻型井点降水、深孔负压降水为主的综合降水技术,鉴于水通道或局部囊状流塑状围岩采用双液回退劈裂注浆技术。经过工程现场实践,两种辅助施工技术基本上解决了该套地层围岩稳定问题,有效的控制了围岩变形,在确保施工安全前提下保证了施工进度。
During the crossing poorly cemented and water-rich sandstone in Humaling tunnel of Lanzhou-Chongqing railroad, there are big deformation of tunnel surrounding rock,distortion and instability of steel frame, being easy to collapse of tunnel face, burst mud and sand gushing, and so on.Because of tunneling difficult and tremendous construction risk, it is rare in China and be a worldwide problem. Base on this project, this paper research around the surrounding rock deformation features and its control technology by means of theoretical analysis, numerical simulation, indoor model test and field monitoring, then further and systematiac studies the mechanical properties of poorly cemented and water-rich sandstone and its control technology. The several main achievements in the research are as follow:
     (1) It obtains parameters of physical properties for poorly cemented and water-rich sandstone from indoor experiments, and interactional relationship among them, which is a basis for numerical simulation and the support structure design. The results showed that the poorly cemented and water-rich sandstone have a weak cohesion force and permeability; there are much difference between water-cut poorly cemented sandstone and dry poorly cemented sandstone, which uniaxial compressive strength of water decrease sharply, and the elastic modulus and coefficient of viscosity decreases sharply with the increasing of water content.
     (2) Through the rheological test of weakly consolidated sandstone which is under load, we found the rheological strain is accounted for40%of the total strain, and when the moisture contents are not the same, the instantaneous strain, the initial rheological strain and the total rheological proportion of the creep curves are also different. In dry surrounding, the initial rheological of unconsolidated sandstone accounts for about53%of the total rheological deformation, and it would be over80%in moisture surrounding. Based on the above test results, the relationship between each coefficients of the general kelvin creep equation and moisture content is fitted, and the creep equation which contains the w coefficient is also derived, the equation aimed at describing the change of the unconsolidated sandstone creep property along with the moisture content; at the same time, the expression of the interaction between weakly consolidated sandstone surrounding rock and supporting is deduced, and through the related expression, the stress, strain and deformation of supporting structure which is under released load are also got.
     (3) The watery weakly consolidated sandstone prones to heavily deformation failure duced by the influence of tunnel construction, and the failure always has the characteristics of large deformation, quickly deformation development, long lasting time and the distinctly asymmetry and inhomogeneity in time-space effect. For the same cross section, the periodicity of the surrounding rock deformation with the excavation can be obviously divided to three stage by deformation rate: the sharp deformation stage, the stable deformation stage and the rheological stage. After the excavation of tunnel, the surrounding rock deformation has the distinctly time-space effect, the time effect mainly occurs in the rheological stage, the space effect mainly occurs in the sharp deformation stage, while the stable deformation stage is the transition period between the two above.
     (4) The loose range of watery weakly consolidated sandstone under the influence of tunnel construction can be confirm by the seismic refraction layer analysis method. This method firstly estimate an initial model by the time field method and the delay time method, based on this model, modeling analysis adopts the minimum travel time tree method, inversion analysis adopts the damping least square method, this paper has calculated the ray path through several times of iteration based on the initial model, the fitter the calculation time-distance curve and the measured curve, the better it is, the best velocity model can be the explanation result. The relaxation zone is the low velocity zone which the surface wave velocity value is less than1000m/s; the loose zone is the gradient zone which the central wave velocity value is between1000m/s and2500m/s; the undisturbed zone is the relative stable zone which the bottom wave velocity value is less than2500m/s; the basis of the boundaries among each zone is the speed gradient and the slide interface position of the wave radiation.
     (5) Based on the special mechanical properties of Humaling with watery weakly consolidated sandstone, advanced support and reinforcements measures are adopted to avoid the deformation of surrounding rock. Support structures are closed as soon as possible. Tunnel is excavated one block with another by step. And the concept of monitoring measurement is also used. Numerical simulation and engineering analogy method are used to ensure the excavation method of the Humaling tunnel and the construction method of the inclined hole to the tunnel. And also some optimization analysis is conducted.
     (6) The finite element method is used to analysis the application time of primary liner of the watery weakly consolidated sandstone tunnel. We can conclude that the deformation control of surrounding rock should be the center of construction. The timeliness of primary liner should be emphasized under the premise of the safety of the primary liner. With the field monitoring of the typical section of watery weakly consolidated sandstone tunnel, we can conclude that the pressure between primary liner and rock mass has great time effect. So the design of support should consider the long-term rheological effect. The distribution of pressure presents the heterogeneity in spatial regularities. The contact pressure between primary liner and rock mass increases at first and decreases later, and trend to be stabilize at last. The factors that caused the change include the strength and stiffness variation after the form removal, the compactness of the concrete, stress release after the form removal and also the influence of the shrinkage and creep of the concrete. The contact pressure between the primary and secondary liner is asymmetry. It gradually increased from crown, to spandrel, to haunch, to the top of arch-wall and to the bottom of the arch-wall as a whole. But the measure value is relatively small for the springing and invert of the tunnel.
     (7) The Humaling tunnel with watery weakly consolidated sandstone has a lower strength, it will be soften with water and has a bad stability, and it also can easily collapse. The tunnel often appears the trouble of sand gushing, water burst, large settlement, the deformation of primary liner, etc. The rock mass has the engineering properties of little particle, water sensitivity and also has the liquidation effect with watery unconsolidated conditions. This article intensively studies the physical and mechanical properties of this kind of ground, and forms the technologies of mild type well point dewatering based and deep negative pressure precipitation on step method. Dual fluid back fracturing grouting technology is adapted based on aquaporin and local plastic clay rock mass. The auxiliary construction technologies help to solve the stability problem of the rock mass and control the deformation of the ground effectively, and also guarantee the project schedule.
引文
[1]付迎春.胡麻岭隧道大变形力学行为及控制技术研究[J].铁道建设,2011(5),56-59.
    [2]张建法.圆梁山隧道粉细砂充填型溶洞钻孔注浆快速施工技术[J],隧道建设,2009,29(1):88-92.
    [3]孙国庆,张民庆.圆梁山隧道粉细砂充填型溶洞注浆技术探讨[J],探矿工程(岩土钻掘工程),2005(1):58-65.
    [4]刘娟,王海江.水平旋喷桩在酸刺沟隧道拱顶支护中的应用[J],山西建筑,2009,35(28):318-319.
    [5]张经双,吴金荣.人工冻结法在地铁隧道施工中的应用与发展[J],工程建设,2007(2):30-32.
    [6]史文杰.饱和粉质砂土内浅埋暗挖法施工降水技术[J].隧道建设,2005,25(2):34-35.
    [7]邹正盛,章银祥.北京大北窑地铁隧道粉细砂层顶板注浆加固研究[J].中国地质灾害与防治学报,1998,9(4):65-69.
    [8]李冬杰,纪海荣,朱学洲.粉砂地层浅埋隧道施工技术[J].西部探矿工程,2001,03:103-104.
    [9]黄德华.粉砂地层小间距浅埋暗挖隧道穿越铁路施工技术[J].隧道建设.2004.2,24(1):40-43.
    [10]孙钧.地下工程设计理论与实践[M].上海:上海科学技术出版社,1996.
    [11]胡夏嵩,赵法锁低地应力区地下洞室围岩变形破坏有限元数值模拟研究[J].岩石力学与工程学报,2005,24(10):1708-1714.
    [12]莫阳春,周晓军.侧部岩溶隧道围岩变形特征数值模拟分析[J].水文地质工程地质,2008,2:0030-0034.
    [13]王建宇.隧道工程的技术进步[M].北京:中国铁道出版社,2004.
    [14]赵瑜,李晓红,顾义磊,等.低地应力区地下洞室围岩变形破坏有限元数值模拟研究[J]岩土力学,2007,28(10):0393-0397.
    [15]贾善坡,陈卫忠,于洪丹,等.泥岩大变形隧道盾构施工法的围岩稳定性分析[J].岩石力学与工程学报,2007,26(增2):3897-3903.
    [16]王其胜,李夕兵,李地元深井软岩巷道围岩变形特征及支护参数的确定[J].煤炭学报,2008,33(4):0364-0367.
    [17]张宏伟.深圳地铁浅埋暗挖法隧道洞外降水施工[J].山西建筑,2011(3):165-166
    [18]吴全立,刘招伟,张文强.富水粉砂土层超浅埋近距离双洞隧道施工[J].施工技术,2004,33(10):18-20.
    [19]张帆.富水砂层隧道围岩止水施工技术[J],石家庄铁道学院学报,2005,18(1):99-102.
    [20]李迎春.富水砂层大跨度平顶浅埋暗挖隧道施工技术[J],国防交通工程与技术,2007,4:61-63.
    [21]任伟新.二重管无收缩双液注浆在饱和动态含水砂层浅埋暗挖隧道中的应用[J],施工技术,2009,38(6):84-87.
    [22]彭振华,闫朝涛,孟庆军.井点降水在富水粉砂地层隧道施工中的应用[J],西部探矿工程,2004,12:118-120.
    [23]朱维申,李术才,白世伟,刘泉声.施工过程力学原理的若干发展和工程实例分析[J].岩 石力学与工程学报,2003,10,22(10):1586-1591.
    [24]梁云生.城市地铁旋喷桩施工技术[J].隧道建设,2007,27(3):84-87.
    [25]吴全立,刘招伟,张文强.富水粉砂土层超浅埋近距离双洞隧道施工[J].施工技术,2004,33(10):18-20.
    [26]石雷.超浅埋暗挖大跨度隧道过饱和富水砂层开挖与支护[J],铁道建设,2006,4:61-63.
    [27]任伟新.二重管无缩放双液注浆在饱和动态含水砂层浅埋暗挖隧道中的应用[J].施工技术,2009,38(6):84-87.
    [28]彭振华,闫朝涛,孟庆军.井点降水在富水粉砂地层隧道施工中的应用[J].西部探矿工程,2004(12):118-121.
    [29]李德章.复杂环境下超浅埋地下通道施工技术研究[J].安徽建筑工业学院学报,2009,17(2):1-3.
    [30]石雷.中深孔注浆技术在饱和富水砂层暗挖地道中的应用[J].隧道建设,2005(2):19-23.
    [31]张龙.兴旺峁隧道施工关键技术[J].隧道建设,2009,29(3):342-346.
    [32]朱新华.中深孔注浆技术在饱和富水砂层浅埋暗挖地道中的应用[J].铁道标准设计,2005(4):56-58.
    [33]南深,张民庆.饱和动态含水砂层浅埋隧道施工中的注浆技术[J].世界隧道,2000,1:14-18.
    [34]杨米加,陈明雄,贺永年.注浆理论的研究现状及发展方向[J].岩石力学与工程学报,2001,20(6):839-841.
    [35]张景秀.坝系防渗及灌浆技术[M].北京:水利电力出版社,1992.
    [36]何修仁.注浆加固与堵水[M].沈阳:东北工学院出版社,1990.
    [37]周维匡,杨若琼.二滩拱坝注浆电镜扫描结果及分析[A].北京:中国建筑工业出版社,1997.
    [38]陈奕柏,李勇.帷幕注浆可靠性分析[J].岩石力学与工程学报,1998,17(增):956-960.
    [39]张民庆,张文强,孙国庆.注浆效果检查评定技术与应用实例[J].岩石力学与工程学报,2006,25(增2):3909-3918.
    [40]彭振华,闫朝涛,孟庆军.井点降水在富水粉砂地层隧道施工中的应用[J].西部探矿工程,2004,12:118-120.
    [41]彭斌,攸巧仙.深圳地铁香车区间富水砂层施工[J],山西建筑,2003,29(1):94-95.
    [42]海军.象山隧道富水围岩段施工方法[J],山西建筑,2009,35(3):316-317.
    [43]吴生金,等.厦门翔安海底隧道穿越富水砂层施工技术[J].岩石力学与工程学报,2007,26(2):3816-3821.
    [44]钟茂华,王金安,史聪灵,符泰然,等.地铁施工围岩稳定性数值分析[M].北京:科学出版社,2006.
    [45]张友葩,吴顺川,方祖烈.土体注浆后的性能分析[J].北京科技大学学报,2004,26(3):240-243.
    [46]王瑞金,王凯,王刚Fluent技术基础与应用实例[M].北京:清华大学出版社,2007.
    [47]李华哗.地下洞室围岩稳定性分析[M].北京:中国水利水电出版社,1999.
    [48]王梦恕.地下工程浅埋暗挖技术通论[M].安徽:安徽教育出版社,2004.
    [49]李建军,谢应爽.隧道超前支护管棚工法设计与计算研究[J].公路交通技术,2008,3:140-142.
    [50]李宁,张平.灌浆的数值仿真分析模型探讨[J].岩石力学与工程学报,2002,21(3):326-332.
    [51]王军保,张乔,等.一元非线性回归分析在隧道监控中的应用[J].贵州工业大学学报(自然科学版),2007,36(6):63-66.
    [52]田盛鼎.隧道围岩周边位移的非线性回归分析[J],贵州工业大学学报(自然科学版),2008,37(5):257-259.
    [53]卫军,杨磊,林大能等.松散破碎围岩两部祸合注浆技术与浆液扩散规律[J].中国矿业,2006,15(3):70-73
    [54]雷雳鸣,张诚,赵美华.太祁高速公路采空区处治监理[J].山西交通科技,2001,145(5):49-52.
    [55]张顶立,王梦恕,高军.复杂围岩条件下大跨隧道修建技术研究[J].岩石力学与工程学报,2003,22(2):290-296.
    [56]何永年.巷道滞后注浆加固与滞后时间分析[J].煤炭学报,1996,(3):240-244.
    [57]王志伟,张淑杰.饱和砂土和粉土振动液化的危害与防治[J].青岛远洋船员学院学报,2003(2):56-61.
    [58]钟贻军,牟崇元.砂土振动液化危险性分析方法比较研究[J].岩石力学与工程学报,2001,20(1):87-89.
    [59]高金川,孙亮,刘超庆.武汉市饱和粉、砂土的振动液化性分析研究[J].探矿工程(岩土钻掘工程),2008(6).
    [60]史振宇.包家山隧道大断面斜井进正洞进正洞挑顶技术.隧道建设,2010(6),30(3),313-316.
    [61]初厚永.大断面黄土隧道斜井进入正洞挑顶施工技术.铁道建筑技术,2010(12),44-49.
    [62]原郭兵.函谷关隧道斜井进入正洞施工方案.铁道标准设计,2006(9),73-75.
    [63]戚乐方.汉邑村隧道斜井进入正洞挑顶法施工技术.科学之友,2011(6),40-42.
    [64]黎冬来.横洞进正洞挑顶技术在新关坡隧道施工中的应用.铁道建筑技术,2011(S),140-142.
    [65]武晓东等.块石土隧道斜井进正洞挑顶施工技术.山西建筑,2010(9),36(27):344-345.
    [66]陈党辉,刘绪全.秦东隧道斜井进入正洞交叉口施工技术.铁道标准设计,2007(S2):34-35.
    [67]汶文钊.软弱隧道围岩斜井进入正洞喇叭口段施工方法.铁道标准设计;2007(S1):136-137.
    [68]王勇.隧道斜井进正洞挑顶方案比选及优化[J].陕西科技,2010,25(5):108-109
    [69]付艳丽.隧道斜井进正洞挑顶施工技术[J].铁道建筑,2011(6):83-85.
    [70]肖永华.乌鞘岭隧道1号斜井进正洞施工技术[J].铁道标准设计,2004(8):59-60.
    [71]周文静.西秦岭隧道店子坪一号斜井进正洞施工方案[J].山西建筑,2010(4):341-342.
    [72]廖利宏.斜井进正洞交叉口过渡段施工方案[J].山西建筑,2010,36(26):325-326.
    [73]刘保国,杜学东.圆形洞室围岩与结构相互作用的粘弹性解析[J].岩石力学与工程学报,2004,23(4):561-564.
    [74]焦春茂,吕爱钟.粘弹性圆形巷道支护结构上的荷载及其围岩应力的解析解[J].岩土力学,2004,25(增刊):103-106.
    [75]王华宁,曹志远.无限粘弹性平面中孔洞扩展的时变力学解析解[J].固体力学学报,2006,27(3):319-322.
    [76]贾剑青,王宏图,李晓红等.复杂条件下隧道支护体系时效可靠性探讨[J].岩土工程学报,2008,30(3):390-393.
    [77]王者超,陈卫忠,乔丽苹,等.地下工:程应力松弛效应的初步理论界[J].岩石力学与工程程学报,2010,29(增2):4096-4101.
    [78]董志宏,丁秀丽,邬爱清,陈炳瑞.地下洞室软岩流变参数反分析[J].矿山压力与顶板管 理,2005(3):60-62.
    [79]赵延林,曹平,陈沅江,李江腾,袁海平.分级加卸载下节理软岩流变试验及模型[J].煤炭学报,2008(7):748-753.
    [80]赵旭峰,孙钧.挤压性软岩流变参数反演与本构模型辨识[J].铁道工程学报,2008(5):5-8.
    [81]王永岩,李剑光,魏佳,王皓,王志学.黏弹性有限元反分析方法及其在软岩流变问题中的应用[J].煤炭学报,2007(11):1162-1165.
    [82]胡洲,等.浅谈软岩流变性的研究[J].江西科学,2006(3):309-313.
    [83]赵法锁,张伯友,彭建兵,等..仁义河特大桥南桥台边坡软岩流变性研究[J].岩石力学与工程学报,2002(10):1527-1532.
    [84]陈沅江,谢本贤,曹平,史秀志.软岩流变的尺寸效应[J].北京科技大学学报,2008(5):468-472.
    [85]朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报,2002,21(12):1791-1796.
    [86]荣耀,许锡宾,靖洪文,赵明阶.不同含水岩石蠕变试验电磁辐射频谱分析[J].东北岩石力学与工程分会学术讨论会论文集,2005:69-74.
    [87]杨彩红,王永岩,李剑光,高菲.含水率对岩石蠕变规律影响的试验研究[J].煤炭学报,2007,(7):695-699.
    [88]李建中,徐力生.低含水量粘土的加载速率效应与蠕变变形[J].煤田地质与勘测,2008(1):41-44.
    [89]李鹏,刘建,朱杰兵,等.软弱结构面剪切蠕变特性与含水率关系研究[J],岩土力学,2008,29(7):1865-1871.
    [90]韩琳琳,徐辉,李男.干燥与饱水状态下岩石剪切蠕变机理研究[J].人民长江,2010,41(15):71-75.
    [91]郭小红.厦门翔安海底隧道风化槽衬砌结构稳定性研究[D].北京:北京交通大学博士学位论文,2011.
    [92]谷兆祺,彭守拙,李仲奎.地下洞室工程[M].北京:清华大学出版社,1994.
    [93]夏熙伦.工程岩石力学[M].武汉:武汉工业大学出版社,1998
    [94]乔春生.岩石力学[M].北京:北京交通大学内部讲义,2010.
    [95]罗平.含水弱胶结砂岩隧道地层特性及施工技术研究[D].北京:北京交通大学硕士学位论文,2011.
    [96]唐炫.武广客运专线路基沉降规律试验研究[D].长沙:中南大学硕士论文,2010.
    [97]刘保国,杜学东.圆形洞室围岩与结构相互作用的粘弹性解析[J].岩石力学与工程学报,2004.
    [98]李文桦.佛岭隧道衬砌结构耐久性研究[D].北京:北京交通大学硕士学位论文,2011.
    [99]贾伟.佛岭隧道破碎带围岩蠕变变形规律研究[D].北京:北京交通大学硕士学位论文,2010.
    [100]崔少东,刘保国,刘开云.基于新型蠕变仪下的泥岩力学参数时效性研究[J].工程地质学报,2010.
    [101]高文华,朱建群,张志敏.软质岩石地基承载力试验研究[J].岩石力学与工程学报,2008.
    [102]刘运生.复杂地质条件下偏压连拱隧道围岩长期稳定性研究[D].北京:北京交通大学硕士学位论文,2006.
    [103]刘栋.深部围岩蠕变特性试验研究[D].湖南科技大学硕士论文,2011.
    [104]王绍君.洞桩法及CRD工法地铁施工对地表沉降影响研究[D].哈尔滨:哈尔滨工业大学博士论文,2007.
    [105]丁玉乔.深埋基岩巷道锚喷支护设计与参数研究[D].成都:四川大学硕士论文,2006.
    [106]李平.圆拱直墙式隧道的内力分析[D].西安:西安建筑科技大学硕士论文,2009.
    [107]唐雄俊.隧道收敛约束法的理论研究与应用[D].武汉:华中科技大学博士论文,2009.
    [108]陈辉.厚煤层开采煤柱力学响应与蠕变特征数值模拟研究[D].青岛:青岛理工大学硕士论文,2008.
    [109]张涛.软弱围岩隧道锁脚锚杆(管)支护特性研究[D].西安:长安大学硕士论文,2011.
    [110]赵勇,刘建友,田四明.深埋隧道软弱围岩支护体系受力特征的试验研究[J].岩石力学与工程学报,2011,30(8):1663-1670.
    [111]张翾.大断面黄土隧道支护结构力学特性研究[D].北京交通大学硕士学位论文,2010.
    [112]李鹏飞,张顶立,赵勇,等.大断面黄土隧道二次衬砌受力特性研究[J].岩石力学与工程学报.2010,29(8):1690-1696.
    [113]高亮.浅埋及软弱破碎围岩条件下大跨度隧道施工关键技术研究[D].北京交通大学硕士学位论文,2010.
    [114]刘佳宝.铁路隧道结构设计系统的研究与开发[D].北京交通大学硕士学位论文,2010.
    [115]刘佳宝.铁路隧道结构设计系统的研究与开发[D].北京交通大学硕士学位论文,2010.
    [116]徐冲.分岔隧道设计施工优化与稳定性评价[D].北京交通大学博士学位论文,2011.
    [117]关宝树.隧道力学概论[M].成都:西南交通大学出版社,1993.
    [118]关宝树.隧道工程设计要点集[M].北京:人民交通出版社,2004.
    [119]关宝树.隧道工程施工要点集[M].北京:人民交通出版社,2003.
    [120]贺少辉,项彦勇,李兆平.地下工程(修订本)[M].清华大学出版社,北京交通大学出版社,2008.
    [121]庞建勇.软弱围岩隧道新型半刚性网壳衬砌结构研究及应用[D].南京:东南大学博士学位论文,2005.
    [122]久武胜保.软岩隧道的非线性弹塑性状态[J].隧道译丛,1992(1):11-18.
    [123]赖应得.能量支护学[M].北京:煤炭工业出版社,2010,35-50.
    [124]赖应得,钱佩.用能量支护理论设计井巷锚喷支护[J].煤炭设计,1993,(4):10-15.
    [125]赖应得.用能量支护理论设计条带碹[J].山西煤炭,1995,(3):45-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700