用户名: 密码: 验证码:
大豆肽美拉德反应体系中色泽抑制及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
美拉德反应广泛存在于各类食品加工中,因产生诱人的色泽、浓郁的芳香及醇厚的滋味而受到人们的关注。但褐色物质的形成有时也制约美拉德产物作为风味增强剂在食品中的应用范围,研究美拉德反应过程中的色泽调控就显得十分必要。本论文通过研究大豆肽-木糖美拉德热反应体系中色泽形成的影响因素,制备浅色型美拉德产物,考察其感官特性、相对分子质量分布及抗氧化活性,并研究各属性之间的相互关系。进一步探讨色泽抑制机理,提出高效制备肉香气浓郁、醇厚感饱满,且兼具抗氧化活性的浅色型美拉德风味增强肽的新方法。具体研究内容及结果如下:
     选取赖氨酸-木糖为模式体系,以A420、L*、a*、b*、ΔE及C*为指标研究了几种食品体系中广泛存在的几类物质对美拉德反应体系色泽形成的影响,结果表明具有酚羟基的化合物芦丁对色泽形成抑制作用不显著;茶多酚、NaCl以及维生素类化合物L-抗坏血酸、核黄素、硫胺素对色泽形成具有一定的抑制作用;L-半胱氨酸具有显著抑制色泽形成的作用。
     通过研究大豆肽-木糖美拉德色泽风味的影响因素,获得五种色泽较浅、风味协调的大豆肽美拉德增强肽(MRPs)的制备方法。通过凝胶过滤液相色谱对MRPs的相对分子质量分布分析结果显示相对分子质量分布具有显著性差异。与未添加抑制剂的体系PX相比,相对分子质量小于500的产物含量显著增大。相对分子质量500-1000的产物含量降低。产物相对分子质量1000-5000的片段含量减少,相对分子质量>5000的产物含量大幅减少。通过SPME-GC-MS对MRPs的挥发性成分进行分析,结果显示,与PX相比,除PXCC外含氮化合物含量均明显减少;呋喃类含量除PXCB、PXCN减少外,其它体系均有不同程度增加;PXCB、PXCR的酮类化合物含量显著增加,其它无显著性差异;PXC、PXCN中的醛类化合物含量显著增加,PXCB、PXCC中较低,PXCR无明显变化;酯类化合物含量除PXC外其余均不同程度地减小;PXCC的醇类含量远远高于PX,而PXCN、PXCR远低于PX,其它无显著性差异;5种风味增强肽中的含硫化合物含量均远远高于PX,酸类化合物含量PXCB、PXCC、PXCR远高于PX,其余无显著性差异。五种MRPs的感官特性具有不同的特点,5种MRPs的醇厚味、焦甜香比PX弱,肉香、持续性、鲜味及整体接受性均比PX强。PXC整体接受性及持续性都最强。PXCC体系的鲜味最强,PXCN咸味最强,PXCB具有突出的焦甜香,最强的肉香气。通过考察MRPs的DPPH自由基清除能力、抑制脂质过氧化能力、还原能力、螯合能力发现添加抑制剂的五种体系均具有较强的抗氧化活性,因此可根据MRPs的不同风味特点及抗氧化活性特征将其应用于不同食品体系中。
     采用PLSR对MRPs的感官指标、挥发性成分、相对分子质量分布和抗氧化活性数据的相关性进行分析,结果显示,肉香和含硫化合物具有很强的正相关性;含氮化合物、呋喃类、醛类、酯类、相对分子质量>5000的产物含量、相对分子质量1000-5000产物的含量与整体接受性呈显著性正相关;相对分子质量1000-5000段和醇厚味、持续性也具有较强的正相关性;含氮化合物、呋喃类、醛类、酯类、醇类、相对分子质量<1000的产物含量对螯合能力和DPPH清除活性成正相关;含氮化合物、酯类、醇类、含硫化合物、相对分子质量<1000的产物含量对还原能力都成正相关;呋喃类、醛类、酯类、相对分子质量>5000的产物含量对脂质过氧化能力呈正相关;含硫化合物、酸类、相对分子质量<1000的产物含量对脂质过氧化能力呈负相关。
     对半胱氨酸抑制大豆肽-木糖体系中颜色变化动力学进行了研究,结果表明, A420,L*,a*均符合零级反应动力学,b*和ΔE经非线性拟合符合指数方程,木糖剩余量的变化符合二级反应动力学方程,且木糖剩余量与A420,b*之间均极显著相关(p<0.01)。
     进一步研究半胱氨酸抑制大豆肽-木糖体系色泽形成机理结果表明,半胱氨酸是通过与氨基化合物和还原糖缩合重排形成的Amadori化合物相互作用,进而有效阻止Amadori化合物的进一步生成脱氧还原酮以及环化,抑制了呈色物质的产生。基于半胱氨酸和Amdori化合物相互作用理论,提出了一种控制色泽形成的新方法-二阶段变温美拉德反应,即在80 oC下反应60 min后添加半胱氨酸,迅速升温至120 oC反应110 min。同时比较了变温美拉德反应产物MRP-60和恒温美拉德产物PXC的相对分子质量分布、挥发性成分、感官特性及抗氧化活性(还原能力、螯合能力、脂质过氧化能力、DPPH自由基清除能力),结果显示,MRP-60的相对分子质量与PXC之间无显著性差异、香气柔和,具有更好的整体接受性,且抗氧化活性优于PXC。该方法可用于工业化生产兼具抗氧化活性、香气浓郁、滋味醇厚的浅色型美拉德风味增强肽。
Maillard reaction widely present in food processing is popular with producing attractive color, aroma and taste. However, formation of browning compounds is sometimes limited to the application in food as flavor enhancers. Therefore, it is necessary to control the color formation during Maillard reaction. In this study, light-colored Maillard reaction product (MRP) was prepared through the influencing factors of color formation in soybean peptide-xylose system. Sensory properties, molecular weight distribution (MWD), antioxidant activity of MRPs and their relationship were also investigated. Furthermore, a novel method to producing light-colored MRPs with meaty aroma, mouthfulness and antioxidant activity was proposed based on mechanism of inhibiting color formation. The main content and results are as follows:
     Effect of few substances such as phenols, vitamins and sulfur-containing compounds on color formation was investigated in lysine-xylose model Maillard reaction system as the index of A420, L*, a*, b*,ΔE and C*. Rutin has not remarkable effect on color formation inhibition. L- ascorbic acid, riboflavin, thiamine, tea polyphenol and NaCl was effective in some extent. L-cysteine had significant effect on color formation inhibition.
     Through research, the influencing factors of flavor and color in soybean peptide-xylose Maillard reaction system, five light-colored MRPs with harmonious flavor was prepared. The MWD of MRPs determined using gel filter liquild chromatograph presented siginificant difference. Comparing with PX, the fraction content below 500 Da MRPs was noticeably increased. The fraction content of 500-1000Da MRPs was significantly decreased. The fraction content between 1000-5000 Da MRPs was also decreased. The fraction content above 5000Da MRPs was sharply decreased. The result of the volatile compounds of MRPs analyzed by SPME-GC-MS showed that the content of nitrogen-containing compounds was increased in PXCC, while distinctly decreased in other MRPs compared with PX. Furans content was increased in PXCC, PXCR and PXC while decreased in PXCB and PXCN. Ketones content in PXCB and PXCR was significantly increased, while that of other MRPs was not siginificantly different. Aldehydes content was remarkably increased in PXC and PXCN, decreased in PXCB and PXCC, but no changes in PXCR. Esters content was decreased in all MRPs except for that of PXC. Alcohols content in PXCC was much higher than that of PX, while that of PXCN and PXCR were much lower. Sulfur-containing compounds in five MRPs were much greater than in PX. Acids content in PXCB, PXCC and PXCR were much higher than in PX. Five MRPs has different sensory characteristics. Mouthfulness and sweetness of five MRPs were the poorest than in PX. Meaty, continuity, umami and overall acceptance were better than in PX. Overall acceptance, mouthfulnedss and continuity of PXC was the best in five MRPs. Umami of PXCC was the best. Saltiness of PXCN was the best. PXCB had prominent burnt and meaty. Five MRPs showed high antioxidant activity by DPPH scavenging activity, inhibiting lipid peroxidation activity, reducing power and chelating activity. Therefore, it might be applicable to special food according to their sensory characteristics.
     Analyzing the correlation of sensory characteristics, volatile compounds, MWD and antioxidant activity by PLSR, meaty and sulfur-containing compounds showed highly positive correlation. Nitrogen- containing compounds, furans, aldehydes, esters, content of above 5000 Da MRPs and between 1000-5000 Da MRPs fractions were siginificantly positive with overall acceptability. The fraction between 1000-5000 Da MRPs, mouthfulness and continuity presented highly positive correlation. Nitrogen-containing compounds, furans, aldehydes, esters, alcohols of the MRPs fraction below 1000 Da were positively correlated to chelating activity and DPPH scavenging activity. Nitrogen-containing compounds, esters, alcohols, sulfur-containing compounds and content of below 1000 Da MRPs were positively correlated to reducing power. Furans, aldehydes, esters of the fraction above 5000 Da MRPs were positively correlated to inhibiting lipid peroxidation activity. However, sulfur-containing compounds, acids of the fraction below 1000 Da MRPs were negatively correlated to inhibiting lipid peroxidation activity.
     Kinetics of color development on cysteine was investigated. The result indicated that A420, L*, a* followed the zero-order kinetics. b* andΔE followed exponential kinetics by non-linear fitness. Changes of xylose content followed second-order kinetics. Moreover, xylose content was extremely correlated with A420,b*.
     The color-inhibiting mechanism of cysteine in soybean peptide-xylose system was further investigated. Cysteine reacted with Amadori compounds formed by condensation and rearrangement between anion compounds and reducing sugar, which effectively interrupted further deoxydization and cyclization of Amadori compounds. Thus, the brown compounds formation was inhibited. Based on reaction mechanism of cysteine and Amadori compounds, a novel method to prepare light-colored MRPs by controlling color formation was proposed, namely, two stages gradient temperature-elevating Maillard reaction. The MRP-60 with light color was prepared by initially heated at 80 oC for 60 min, after added cysteine, raising temperature to 120 oC immediately and held for 110 min. Volatile compounds, MWD, sensory characteristics and antioxidant activity of MRP-60 and PXC were also compared. MWD of MRP-60 was not significant with PXC. Furthermore, MRP-60 has better overall acceptance and antioxidant activity. Therefore, it can be useful for industries in production of light-colored MRPs with attractive taste, aroma and antioxidant activity.
引文
1张鑫.美拉德增香调味料的应用[J].江苏调味副食品. 2005, 22(1): 37-40.
    2 Ogasawara M, Yamada Y, Egi M. Taste enhancer from the long-term ripening of miso (soybean paste)[J]. Food Chemistry. 2006, 99(4): 736-741.
    3 Ogasawara M, Katsumata T, Egi M. Taste properties of Maillard-reaction products prepared from 1000 to 5000Da peptide[J]. Food Chemistry. 2006, 99(3): 600-604.
    4余勃.枯草芽孢杆菌发酵豆粕生产大豆活性多肽的研究[D]:[博士学位论文],南京,南京农业大学; 2006.
    5冯永财,赵晓丹,刘涛.大豆肽的生理及加工特性分析[J].哈尔滨商业大学学报. 2003, 19(1): 90-92.
    6杜文群.豆粕水解与复合氨基酸铁络合物的研制[D]:[硕士学位论文],无锡,无锡轻工大学; 1992.
    7 Shahidi F. Flavor of meat, meat products, and Seafoods[J]. Blackie Academic & Professional. 1998, (5): 15.
    8 Stark T, Hofmann, T. Structures, sensory activity, and dose/response functions of 2,5-diketopipera zines in roasted cocoa nibs (Theobroma cacao) [J]. Journal of Agriculture and Food Chemistry. 2005, (53): 7222-7231.
    9 Katsumata T, Nakakuki H, Tokunaga C et al. Effect of Maillard Reacted Peptides on Human Salt Taste and the Amiloride-Insensitive Salt Taste Receptor (TRPV1t)[J]. Chemical Senses. 2008, 33(7): 665-680.
    10 Yamasaki Y. MK. A Peptide with delicious taste[J]. Agricultural and Biological Chemistry. 1978, ( 42): 1761-1765.
    11潘丽红,周光宏,徐幸莲,彭增起.美拉德反应在肉味香精生产中的应用[J].肉类工业. 2007, (8): 29-31.
    12赵谋明,曾崔春,刘通讯,张春晖,吴进卫.不同鸡肉蛋白肽在美拉德反应中的降解趋势研究[J].食品工业科技. 2007, (2): 92-95.
    13 Parker JK, Hassell GME, Mottram DS et al. Sensory and Instrumental Analyses of Volatiles Generated during the Extrusion Cooking of Oat Flours[J]. Journal of Agricultural and Food Chemistry. 2000, 48(8): 3497-3506.
    14 Oh YC, Shu CK, Ho CT. Some volatile compounds formed from thermal interaction of glucose with glycine, diglycine, triglycine, and tetraglycine[J]. Journal of Agricultural and Food Chemistry. 1991, 39(9): 1553-1554.
    15 Lieske B, & Konrad, G. Protein hydrolysis: The key to meat flavoring systems[J]. Food reviews international. 1994, 10(3): 287-312.
    16 Hofmann T, Bors W, Stettmaier K. Studies on Radical Intermediates in the Early Stage of the Nonenzymatic Browning Reaction of Carbohydrates and Amino Acids[J]. Journal of Agricultural and Food Chemistry. 1999, 47(2): 379-390.
    17 Hofmann T. Identification of Novel Colored Compounds Containing Pyrrole and Pyrrolinone Structures Formed by Maillard Reactions of Pentoses and Primary Amino Acids[J]. Journal of Agricultural and Food Chemistry. 1998, 46(10): 3902-3911.
    18 Mundt S, Wedzicha BL. Comparative Study of the Composition of Melanoidins from Glucose and Maltose[J]. Journal of Agricultural and Food Chemistry. 2004, 52(13): 4256-4260.
    19 Horvat ?, Jakas A. Peptide and amino acid glycation: new insights into the Maillard reaction[J]. Journal of Peptide Science. 2004, 10(3): 119-137.
    20 Smaniotto Anna, Bertazzo Antonella, Comai Stefano, Traldi Pietro. The role of peptides and proteins in melanoidin formation[J]. Journal of Mass Spectrometry. 2009, 44(3): 410-418.
    21 Fenaille F PV, Visani P, et al. . Modifications of milk constitutents during processing: a preliminary benchmarking study[J]. Int Dairy J. 2006, (16): 728-739.
    22 Scaloni A PV, Franco P, et al. Characterization of heat-induced lactosylation products in caseins by immunoenzymatic and mass spectrometric methodologies[J]. Biochim Biophys Acta. 2002, (1598): 30-39.
    23 Ames JM, Guy RCE, Kipping GJ. Effect of pH, Temperature, and Moisture on the Formation of Volatile Compounds in Glycine/Glucose Model Systems[J]. Journal of Agricultural and Food Chemistry. 2001, 49(9): 4315-4323.
    24 Dai Z, Nemet I, Shen W et al. Isolation, purification and characterization of histidino-threosidine, a novel Maillard reaction protein crosslink from threose, lysine and histidine[J]. Archives of Biochemistry and Biophysics. 2007, 463(1): 78-88.
    25 Wu Y-F. Development and characterization of meat-like process flavorings from enzyme-hydrolyzed soybean meal[D]: Mississippi State University; 1998.
    26 Spanier AM, Edwards, J. V., & Dupuy, H. P. The warmed-over flavor process in beef: a study of meat proteins and peptides[J]. Food Technology. 1988, 42(1): 110-118.
    27 Kochhar S, Hansen, C. E., & Juillerat, M. A., inventor Flavor-active peptides[P]. US. 2004.
    28 Jakas A, Vinkovi? M, Smre?ki V et al. Fructose-induced N-terminal glycation of enkephalins and related peptides[J]. Journal of Peptide Science. 2008, 14(8): 936-945.
    29 Totlani VM. Reactivity of epicatechin in Maillard chemistry[D]: The Pennsylvania State University; 2008.
    30 Bailey RG, Ames JM, Mann J. Identification of New Heterocyclic Nitrogen Compounds from Glucose-Lysine and Xylose-Lysine Maillard Model Systems[J]. Journal of Agricultural and Food Chemistry. 2000, 48(12): 6240-6246.
    31 Hofmann T, Schieberle P. Formation of Aroma-Active Strecker-Aldehydes by a Direct Oxidative Degradation of Amadori Compounds[J]. Journal of Agricultural and Food Chemistry. 2000, 48(9): 4301-4305.
    32 Hofmann T, Münch P, Schieberle P. Quantitative Model Studies on the Formation of Aroma-Active Aldehydes and Acids by Strecker-Type Reactions[J]. Journal of Agricultural and Food Chemistry. 2000, 48(2): 434-440.
    33 Rainer Cremer D, Eichner K. The reaction kinetics for the formation of Strecker aldehydes in low moisture model systems and in plant powders[J]. Food Chemistry. 2000, 71(1): 37-43.
    34 Rizzi GP. Electrochemical Study of the Maillard Reaction[J]. Journal of Agricultural and Food Chemistry. 2003, 51(6): 1728-1731.
    35 Shu C-K. Pyrazine Formation from Amino Acids and Reducing Sugars, a Pathway Other than Strecker Degradation[J]. Journal of Agricultural and Food Chemistry. 1998, 46(4): 1515-1517.
    36 Hofmann T. Characterization of the Chemical Structure of Novel Colored Maillard Reaction Products from Furan-2-carboxaldehyde and Amino Acids[J]. Journal of Agricultural and Food Chemistry. 1998, 46(3): 932-940.
    37 Mottram DS, Whitfield FB. Volatile Compounds from the Reaction of Cysteine, Ribose, and Phospholipid in Low-Moisture Systems[J]. Journal of Agricultural and Food Chemistry. 1995, 43(4): 984-988.
    38 Zheng Y, Brown S, Ledig WO et al. Formation of Sulfur-Containing Flavor Compounds from Reactions of Furaneol and Cysteine, Glutathione, Hydrogen Sulfide, and Alanine/Hydrogen Sulfide[J]. Journal of Agricultural and Food Chemistry. 1997, 45(3): 894-897.
    39 Zhang Y, Dorjpalam B, Ho CT. Contribution of peptides to volatile formation in the Maillard reaction of casein hydrolysate with glucose[J]. Journal of Agricultural and Food Chemistry. 1992, 40(12): 2467-2471.
    40 Martins S. A kinetic model for the glucose/glycine Maillard reaction pathways[J]. Food Chemistry. 2005, 90(1-2): 257-269.
    41 Umano K, Hagi Y, Nakahara K et al. Volatile Chemicals Formed in the Headspace of a Heated D-Glucose/L-Cysteine Maillard Model System[J]. Journal of Agricultural and Food Chemistry. 1995, 43(8): 2212-2218.
    42 Hofmann T, Schieberle P. Identification of Potent Aroma Compounds in Thermally Treated Mixtures of Glucose/Cysteine and Rhamnose/Cysteine Using Aroma Extract Dilution Techniques[J]. Journal of Agricultural and Food Chemistry. 1997, 45(3): 898-906.
    43 Hofmann T, Schieberle P. Evaluation of the Key Odorants in a Thermally Treated Solution of Riboseand Cysteine by Aroma Extract Dilution Techniques[J]. Journal of Agricultural and Food Chemistry. 1995, 43(8): 2187-2194.
    44 Yaylayan VA, Mandeville S. Stereochemical Control of Maltol Formation in Maillard Reaction[J]. Journal of Agricultural and Food Chemistry. 1994, 42(3): 771-775.
    45 Solms J. Taste of amino acids, peptides, and proteins[J]. Journal of Agricultural and Food Chemistry. 1969, 17(4): 686-688.
    46 Wasserman HH, Lu TJ. The oxazole-triamide rearrangement. Application to peptide synthesis[J]. Tetrahedron Letters. 1982, 23(37): 3831-3834.
    47 Kenji Maehashi mm, Yasushi Yamamoto and Shigezo Udaka. Isolation of Peptides from an Enzymatic Hydrolysate of Food Proteins and Characterization of Their Taste Properties[J]. Bioscience, Biotechnology, and Biochemistry. 1999, 63: 555-559.
    48 Gartenmann K, Kochhar S. Short-Chain Peptide Analysis by High-Performance Liquid Chromatography Coupled to Electrospray Ionization Mass Spectrometer after Derivatization with
    9-Fluorenylmethyl Chloroformate[J]. Journal of Agricultural and Food Chemistry. 1999, 47(12): 5068-5071.
    49 Hofmann T. Taste-Active Maillard Reaction Products: The“Tasty”World of Nonvolatile Maillard Reaction Products[J]. Annals of the New York Academy of Sciences. 2005, 1043(1): 20-29.
    50 Ottinger H, Soldo T, Hofmann T. Discovery and Structure Determination of a Novel Maillard-Derived Sweetness Enhancer by Application of the Comparative Taste Dilution Analysis (cTDA)[J]. Journal of Agricultural and Food Chemistry. 2003, 51(4): 1035-1041.
    51 Soldo T, Blank I, Hofmann T. (+)-(S)-Alapyridaine—A General Taste Enhancer?[J]. Chemical Senses. 2003, 28(5): 371-379.
    52 Villard R, Robert F, Blank I et al. Racemic and Enantiopure Synthesis and Physicochemical Characterization of the Novel Taste Enhancer N-(1-Carboxyethyl)-6-(hydroxymethyl)pyridinium-3-ol Inner Salt[J]. Journal of Agricultural and Food Chemistry. 2003, 51(14): 4040-4045.
    53 Frank O, Ottinger H, Hofmann T. Characterization of an Intense Bitter-Tasting 1H,
    4H-Quinolizinium-7-olate by Application of the Taste Dilution Analysis, a Novel Bioassay for the Screening and Identification of Taste-Active Compounds in Foods[J]. Journal of Agricultural and Food Chemistry. 2000, 49(1): 231-238.
    54 Frank O, Hofmann T. Reinvestigation of the Chemical Structure of Bitter-Tasting Quinizolate and Homoquinizolate and Studies on Their Maillard-Type Formation Pathways Using Suitable
    13C-Labeling Experiments[J]. Journal of Agricultural and Food Chemistry. 2002, 50(21): 6027-6036.
    55 Tomoyuki OKUMURA RYaTN. Sourness-suppressing Peptides in Cooked Pork Loins[J]. Biosci. Biotechnol. Biochem. 2004, 68: 1657-1662.
    56 Lioe HN, Apriyantono A, Takara K et al. Low Molecular Weight Compounds Responsible for Savory Taste of Indonesian Soy Sauce[J]. Journal of Agricultural and Food Chemistry. 2004, 52(19): 5950-5956.
    57 Shima K, Yamada N, Suzuki E-i et al. Novel Brothy Taste Modifier Isolated from Beef Broth[J]. Journal of Agricultural and Food Chemistry. 1998, 46(4): 1465-1468.
    58 Yen GC, Chau CF, Lii JD. Isolation and characterization of the most antimutagenic Maillard reaction products derived from xylose and lysine[J]. Journal of Agricultural and Food Chemistry. 1993, 41(5): 771-776.
    59 Brownlee M VH, Cerami A. Nonenzymatic Glycosylation and the Pathogenesis of Diabetic Complications[J]. Ann Intern Med. 1984, 101: 527-537.
    60 Wijewickreme AN, Kitts DD, Durance TD. Reaction Conditions Influence the Elementary Composition and Metal Chelating Affinity of Nondialyzable Model Maillard Reaction Products[J]. Journal of Agricultural and Food Chemistry. 1997, 45(12): 4577-4583.
    61 Delgado-Andrade C, Seiquer I, Navarro MP. Comparative effects of glucose-lysineversus glucose-methionine Maillard reaction products consumption:in vitro andin vivo calcium availability[J]. Molecular Nutrition & Food Research. 2005, 49(7): 679-684.
    62 Delgado-Andrade C, Seiquer I, Haro A et al. Development of the Maillard reaction in foods cooked by different techniques. Intake of Maillard-derived compounds[J]. Food Chemistry. 2010, 122(1): 145-153.
    63 Delgado-Andrade C, Seiquer I, García MM et al. Increased intake of Maillard reaction products reduces phosphorous digestibility in male adolescents[J]. Nutrition. 2011, 27(1): 86-91.
    64 Delgado-Andrade C, Seiquer I, Navarro MaP. Maillard reaction products consumption: Magnesium bioavailability and bone mineralization in rats[J]. Food Chemistry. 2008, 107(2): 631-639.
    65 Delgado-Andrade C, Morales FJ, Seiquer I et al. Maillard reaction products profile and intake from Spanish typical dishes[J]. Food Research International. 2010, 43(5): 1304-1311.
    66 Yilmaz Y, Toledo R. Antioxidant activity of water-soluble Maillard reaction products[J]. FoodChemistry. 2005, 93(2): 273-278.
    67 Chevalier F CJM, Genot C, et al. Scavenging of free radicals, antimicrobial, and cytotoxic activities of the Maillard reaction products of beta-lactoglobulin glycated with several sugars [J]. J Agric Food Chem. 2001, 49: 5031-5038.
    68 Amigo-Benavent M, Silván JM, Moreno FJ et al. Protein Quality, Antigenicity, and Antioxidant Activity of Soy-Based Foodstuffs[J]. Journal of Agricultural and Food Chemistry. 2008, 56(15): 6498-6505.
    69 Oliver CM, Melton LD, Stanley RA. Glycation of caseinate by fructose and fructo-oligosaccharides during controlled heat treatment in the‘dry’state[J]. Journal of the Science of Food and Agriculture. 2006, 86(5): 722-731.
    70 Kanatt SR, Chander R, Sharma A. Chitosan glucose complex– A novel food preservative[J]. Food Chemistry. 2008, 106(2): 521-528.
    71 Chiu WKT, M.; Nagashima, Y.; Taguchi, T. Prevention of sardine lipid oxidation by antioxidative Maillard reaction products prepared from fructose-tryptophan[J]. Nippon Suisan Gakaishi. 1991, 57: 1773-1781.
    72 Tanaka M, Chiu, W. K., Nagashima, Y., Taguchi, T. Inhibitory effect of the Maillard reaction products towards lipid oxidation[J]. Tokyo Univ. Fish. . 1992, 79: 135-141.
    73 Maillard M, Billaud C, Chow Y et al. Free radical scavenging, inhibition of polyphenoloxidase activity and copper chelating properties of model Maillard systems[J]. LWT - Food Science and Technology. 2007, 40(8): 1434-1444.
    74 Amarowicz R. Antioxidant activity of Maillard reaction products[J]. Eur. J. Lipid Sci. Technol. 2009, 111: 109-111.
    75 Mendel Friedman and IM-P. Inhibition of browning by sulfur amino acids. 1. Heated amino acid-glucose systems[J]. Journal of Agricultural and Food Chemistry 1990, 38 (8): 1642-1647.
    76 Nakamura S, Suzuki Y, Ishikawa E et al. Reduction of in vitro allergenicity of buckwheat Fag e 1 through the Maillard-type glycosylation with polysaccharides[J]. Food Chemistry. 2008, 109(3): 538-545.
    77 Mastrocola D, Munari M. Progress of the Maillard Reaction and Antioxidant Action of Maillard Reaction Products in Preheated Model Systems during Storage[J]. Journal of Agricultural and Food Chemistry. 2000, 48(8): 3555-3559.
    78张凌燕,李倩,尹姿,景浩. 3种氨基酸和葡萄糖美拉德产物的物理化学特性及抗氧化活性的研究[J].中国食品学报. 2008, 8(3): 12-22.
    79 Eiserich JP, Macku C, Shibamoto T. Volatile antioxidants formed from an L-cysteine/D-glucose Maillard model system[J]. Journal of Agricultural and Food Chemistry. 1992, 40(10): 1982-1988.
    80 Yanagimoto K, Lee K-G, Ochi H et al. Antioxidative activity of heterocyclic compounds formed in Maillard reaction products[J]. International Congress Series. 2002, 1245(0): 335-340.
    81 Yanagimoto K, Lee K-G, Ochi H et al. Antioxidative Activity of Heterocyclic Compounds Found in Coffee Volatiles Produced by Maillard Reaction[J]. Journal of Agricultural and Food Chemistry. 2002, 50(19): 5480-5484.
    82 Eiserich JP, Shibamoto T. Antioxidative Activity of Volatile Heterocyclic Compounds[J]. Journal of Agricultural and Food Chemistry. 1994, 42(5): 1060-1063.
    83 Fuster MD, Mitchell AE, Ochi H et al. Antioxidative Activities of Heterocyclic Compounds Formed in Brewed Coffee[J]. Journal of Agricultural and Food Chemistry. 2000, 48(11): 5600-5603.
    84 Morales F, Jiménez-Pérez S. Peroxyl radical scavenging activity of melanoidins in aqueous systems[J]. European Food Research and Technology. 2004, 218(6): 515-520.
    85 Morales FJ, Somoza V, Fogliano V. Physiological relevance of dietary melanoidins[J]. Amino Acids. 2010. DOI: 10.1007/s00726-010-0774-1.
    86 Rufián-Henares JA, Morales FJ. Angiotensin-I Converting Enzyme Inhibitory Activity of Coffee Melanoidins[J]. Journal of Agricultural and Food Chemistry. 2007, 55(4): 1480-1485.
    87 Rurián-Henares JA, Morales FJ. Antimicrobial Activity of Melanoidins against Escherichia coli Is Mediated by a Membrane-Damage Mechanism[J]. Journal of Agricultural and Food Chemistry. 2008, 56(7): 2357-2362.
    88 Rufián-Henares JA, de la Cueva SP. Antimicrobial Activity of Coffee Melanoidins A Study of Their Metal-Chelating Properties[J]. Journal of Agricultural and Food Chemistry. 2009, 57(2): 432-438.
    89 Yaylayan VA, Kaminsky E. Isolation and structural analysis of maillard polymers: caramel and melanoidin formation in glycine/glucose model system[J]. Food Chemistry. 1998, 63(1): 25-31.
    90 Jennifer M. Ames AW, Andrea Hofmann, Saskia Plos and Glenn R. Gibson. The effect of a model melanoidin mixture on faecal bacterial populations in vitro[J]. British Journal of Nutrition 1999, 82: 489-495.
    91 Jing H, Kitts DD. Redox-Related Cytotoxic Responses to Different Casein Glycation Products inCaco-2 and Int-407 Cells[J]. Journal of Agricultural and Food Chemistry. 2004, 52(11): 3577-3582.
    92 Delgado-Andrade C, Rufian-Henares JA, Morales FJ. Assessing the Antioxidant Activity of Melanoidins from Coffee Brews by Different Antioxidant Methods[J]. Journal of Agricultural and Food Chemistry. 2005, 53(20): 7832-7836.
    93 Tressl R, Wondrak GT, Krüger R-P et al. New Melanoidin-like Maillard Polymers from
    2-Deoxypentoses[J]. Journal of Agricultural and Food Chemistry. 1998, 46(1): 104-110.
    94 Morales FJ, Fernández-Fraguas C, Jiménez-Pérez S. Iron-binding ability of melanoidins from food and model systems[J]. Food Chemistry. 2005, 90(4): 821-827.
    95 Wen X, Enokizo A, Hattori H et al. Effect of Roasting on Properties of the Zinc-Chelating Substance in Coffee Brews[J]. Journal of Agricultural and Food Chemistry. 2005, 53(7): 2684-2689.
    96 K. Cejepek LJ, J. Valísˇek. Antioxidant capacity of Maillard systems with carbonyl products of sugar fragments. [J]. Czech J Food Sci. 2004, 22: 60-63.
    97 Manzocco L, Calligaris S, Mastrocola D et al. Review of non-enzymatic browning and antioxidant capacity in processed foods[J]. Trends in Food Science & Technology. 2000, 11(9-10): 340-346.
    98 Claudio Peteriella SLR, Roberto D. Lozano and Jorige Chirife. Kinetics of Deteriorative Reactions in Model Food Systems of High Water Activity: Color Changes Due to Nonenzymatic Browning[J]. Jounal of Food Science. 1985, 50(3): 622-626.
    99汤仪平.染色过程色差动力学模型及仿真系统研究[D] :[硕士学位论文].厦门,华侨大学; 2007.
    100 Bosch L, Alegria A, Farre R et al. Fluorescence and color as markers for the Maillard reaction in milk–cereal based infant foods during storage[J]. Food Chemistry. 2007, 105(3): 1135-1143.
    101 Baini R, Langrish TAG. Assessment of colour development in dried bananas– measurements and implications for modelling[J]. Journal of Food Engineering. 2009, 93(2): 177-182.
    102 A. Ibarz , J. Pagan, S. Garza. Kinetic models for colour changes in pear puree during heating at relatively high temperatures[J]. Journal of Food Engineering 1999, 39: 415-422.
    103 Rizzi GP. Chemical structure of colored maillard reaction products[J]. Food Reviews International. 1997, 13(1): 1-28.
    104 Hofmann T. Identification of Novel Colored Compounds Containing Pyrrole and Pyrrolinone Structures Formed by Maillard Reactions of Pentoses and Primary Amino Acids[J]. J. Agric. Food Chem. 1998, (46): 3902-3911.
    105 Hofmann T. Studies on the Relationship between Molecular Weight and the Color Potency of Fractions Obtained by Thermal Treatment of Glucose/Amino Acid and Glucose/Protein Solutions by Using Ultracentrifugation and Color Dilution Techniques[J]. Journal of Agricultural and Food Chemistry. 1998, 46(10): 3891-3895.
    106 Hofmann T., Frank O. The“colorful”chemistry of nonenzymatic browning[J]. International Congress Series. 2002, 1245: 37-41.
    107 O. Frank, T. Hofmann. On the influence of the carbohydrate moiety on chromophore formation during food-related Maillard reactions of pentoses, hexoses and disaccharides[J]. Helv. Chim. Acta. 2000, 83(12): 3246-3261.
    108 Hofmann T. Characterization of the most intense coloured compounds from Maillard reactions of pentoses by application of colour dilution analysis[J]. Carbohydrate Research. 1998, 313: 203-213.
    109 Oliver Frank, Thomas Hofmann. On the Influence of the Carbohydrate Moiety on Chromophore Formation during Food-Related Maillard Reactions of Pentoses, Hexoses, and Disaccharides[J]. Helvetica Chimica Acta. 2000, 83 (4): 3246-3261.
    110 Bettina ca mmerer wj, & Lothar w. kroh. Intact Carbohydrate Structures as Part of the Melanoidin Skeleton[J]. J. Agric. Food Chem. 2002, 50: 2083-2087.
    111 C?mmerer B, Kroh LW. Investigation of the influence of reaction conditions on the elementary composition of melanoidins[J]. Food Chemistry. 1995, 53(1): 55-59.
    112 Laroque D, Inisan C, Berger C et al. Kinetic study on the Maillard reaction. Consideration of sugar reactivity[J]. Food Chemistry. 2008, 111(4): 1032-1042.
    113 Xu H, Gao Y, Liu X et al. Effects of supercritical carbon dioxide on volatile formation from Maillard reaction between ribose and cysteine[J]. Journal of the Science of Food and Agriculture. 2008, 88(2): 328-335.
    114 Cerny C, Guntz-Dubini R. Role of the Solvent Glycerol in the Maillard Reaction of d-Fructose and l-Alanine[J]. Journal of Agricultural and Food Chemistry. 2005, 54(2): 574-577.
    115 Rizzi GP. Role of Phosphate and Carboxylate Ions in Maillard Browning[J]. Journal of Agricultural and Food Chemistry. 2004, 52(4): 953-957.
    116 Rizzi GP. On the Effect of Tetraborate Ions in the Generation of Colored Products in Thermally Processed Glycine?Carbohydrate Solutions[J]. Journal of Agricultural and Food Chemistry. 2007, 55(5): 2016-2019.
    117 Ramonaityt? DT, Ker?ien? M, Adams A et al. The interaction of metal ions with Maillard reactionproducts in a lactose–glycine model system[J]. Food Research International. 2009, 42(3): 331-336.
    118 Wedzicha Aseabl. Uptake of thiol anti-browning agents by cabbage on blanching and reactivity during dehydration[J]. Food Chemistry. 1997, 59(3): 453-457.
    119 Song P-S, Chichester CO. Kinetic Behavior and Mechanism of Inhibition in the Maillard Reaction. IV. Mechanism of the Inhibition[J]. Journal of Food Science. 1967, 32(1): 107-115.
    120 Montgomery MW. Cysteine as an Inhibitor of Browning in Pear Juice Concentrate[J]. Journal of Food Science. 1983, 48(3): 951-952.
    121 Arnold RG. Inhibition of heat-induced browning of milk by L-cysteine[J]. J. Dairy Sci.,. 1969, 52: 1857-1859.
    122 Kato S, Yano, N., Suzuki, I., Ishii, T., Kurata, T. & Fujimaki,M. Effect of cysteine on browning of egg albumen[J]. Agric. Biol. Chem. 1974, 38: 2425-2430.
    123 Wedzicha BLE, A. S. Kinetics of the reaction of 3-deoxyhexosulose with thiols[J]. Food Chem. 1991, 40: 71-86.
    124 Edwards AS, Wedzicha, B. L. & Khandelwal, G. D. Synthesis of some sulphydryl dipeptides with novel antibrowningproperties[J]. Food Chem. 1994, 51: 389-394.
    125 Wang Y. Effects of naturally occuring phenolic compounds on the formation of Maillard aromas[D]. New Brunswick: Rutgers State University; 2000.
    126 Friedman M. Food Browning and Its Prevention An Overview[J]. J. Agric. Food Chem. 1996, 44(3): 631-653.
    127 J.E.Hodge. Chemistry of browning reactions in model systems[J]. J. Agric Food Chem. 1953, 1: 928-943.
    128 Zhang Y, Zhang Y. Formation and Reduction of Acrylamide in Maillard Reaction: A Review Based on the Current State of Knowledge[J]. Crit Rev in Food Sci Nutri. 2007, 47: 521-542.
    129 Martins S I F S, Jongen W M F, van Boekel M A. A review of Maillard reaction in food and implications to kinetic modelling[J]. Trends Food Sci Technol. 2000, 11: 364-373.
    130 Ledl F, Schleicher E. New aspects of the Maillard reaction in foods and in the human body[J]. Angew Chem Int Ed Engl. 1990, 29: 565-594.
    131 Jakas A, Kati? A, Bionda N et al. Glycation of a lysine-containing tetrapeptide by d-glucose and d-fructose—influence of different reaction conditions on the formation of Amadori/Heyns products[J]. Carbohydrate Research. 2008, 343(14): 2475-2480.
    132 Anet E F J L, Reynolds T M. Reactions between amino acids,organic acids, and sugars in freeze-dried apricots and peaches[J]. Aust J Chem. 1957, 10: 193-197.
    133 Krause R, Schlegel K, Schwarzer E, Henle T. Formation of Peptide-Bound Heyns Compounds[J]. J Agric Food Chem. 2008, 56(7): 2522-2527.
    134 Saraiva Marco A., Borges Carlos M., Florêncio M. Helena. Towards the control and inhibition of glycation—the role of the guanidine reaction center with aldehydic and diketonic dicarbonyls. A mass spectrometry study[J]. Journal of Mass Spectrometry. 2006, 41(10): 1346-1368.
    135 Ahmed N, Argirov OK, Minhas HS, Cordeiro CAA, Thornalley PJ. Assay of advanced glycation endproducts (AGEs): surveying AGEs by chromatographic assay with derivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and application to Nε-carboxymethyl-lysine- and Nε-(1-carboxyethyl)lysine-modified albumin[J]. Biochem. J. 2002, 264: 1-14.
    136 Hofmann T. Quantitative studies on the role of browning precursors in the Maillard reaction of pentoses and hexoses with l-alanine[J]. Eur Food Res Technol. 1999, 209: 113-121.
    137 Susie J. Meade, Antonia G. Miller,Juliet A. Gerrard. The Role of Dicarbonyl Compounds in Non-enzymatic Crosslinking: A Structure-Activity Study[J]. Bioorganic & Medicinal Chemistry. 2003, 11: 853-862.
    138 Jan Hirsch, Valeri V. Mossine, Milton S. The detection of some dicarbonyl intermediates arising from the degradation of Amadori compounds (the Maillard reaction)[J]. Feather Carbohydrate Research. 1995, 273 171-177.
    139刘红.抗氧化剂对美拉德反应的影响[D]:[硕士学位论文].广州:暨南大学食品学院; 2007.
    140 Rozycki S D, Buera M P, Piagentini A M, Costa S C, & Pauletti M S. (2010). Advances in the study of the kinetics of color and fluorescence development in concentrated milk systems. Journal of Food Engineering, 101(1), 59-66.
    141 Kato S, Yano N, Suzuki I, Ishii T, Kurata T, & Fujimaki M. (1974). Effect of cysteine on browning of egg albumen. Agric. Biol. Chem., 38, 2425-2430.
    142 Wedzicha B L, & Edwards A S. (1991). Kinetics of the reaction of 3-deoxyhexosulose with thiols. Food Chemistry, 40(1), 71-86.
    143 Edwards A S, Wedzicha, B. L. & Khandelwal, G. D. (1994). Synthesis of some sulphydryl dipeptides with novel antibrowningproperties. Food Chem., 51, 389-394.
    144 Wang Y, Rodolfo Juliani H, Simon J E, & Ho C-T. (2009). Amino acid-dependent formation pathwaysof 2-acetylfuran and 2,5-dimethyl-4-hydroxy-3[2H]-furanone in the Maillard reaction. Food Chemistry, 115(1), 233-237.
    
    1陈海燕,姜梅.美拉德反应及其在咸味香精生产中的应用[J].中国调味品. 2008, 10: 355-359.
    2 Popoff T, Theander O. Formation of Aromatic Compounds from Carbohydrates : Part 1. Reaction of d-glucuronic Acid, d-glacturonic Acid, d-xylose, and l-arabinose in slightly acidic, aqueous solution[J]. Carbohydrate Research. 1972, 22(1): 135-149.
    3 Mastrocola D, Munari M. Progress of the Maillard Reaction and Antioxidant Action of Maillard Reaction Products in Preheated Model Systems during Storage[J]. Journal of Agricultural and Food Chemistry. 2000, 48(8): 3555-3559.
    4 Mastrocola D MM. Progress of the Maillard reaction and antioxidant action of Maillard reaction products in preheated model systems during storage[J]. J Agric Food Chem. 2000, 48: 3555-3559.
    5 Nakamura S KA, Kobayashi K. Bifunctional lysozyme-galactomannan conjugates having excellent emulsifying properties and bactericidal effect[J]. J Agric Food Chem. 1992, 40: 735-739.
    6 Shepherd R RA, Ofman D. Dairy glycoconjugate emulsifiers: casein-maltodextrins[J]. Food Hydrocolloids. 2000, 14(4): 281-286.
    7李林,卢家炯.美拉德反应的抑制及消除方法[J].广西轻工业. 2000, 4: 16-19.
    8黄梅桂,汪剑,张晓鸣,刘平,宋诗清,夏书芹,贾承胜.芦丁对大豆肽美拉德反应色香味的影响[J].食品与发酵工业. 2010, 36(12): 31-36.
    9 ?zo?lu H BA. Inhibition of enzymic browning in cloudy apple juice with selected antibrowning agents[J]. Food Control. 2002, 13: 213-221.
    10 C. Malien-Aubert OD, and M. J. Amiot. Color Stability of Commercial Anthocyanin-Based Extracts in Relation to the Phenolic Composition. Protective Effects by Intraand Intermolecular Copigmentation[J]. J. Agric. Food Chem. 2001, 49: 170-176.
    11 Beck J. LF, Seng M., et al. . Formation of acids, lactones and esters through the Maillard Reaction[J]. Zeitschrift Fur Lebensmitteluntersuchung und Forschung A. 1990, 190(3): 190-212.
    12 Hodge JE. Dehydrated foods, Chemistry of browning reactions in model systems[J]. J. Agric Food Chem. 1953, 1(15): 928-943.
    13 Serratosa Map, Marquez A, Lopez-Toledano A et al. Changes in Hydrophilic and Lipophilic Antioxidant Activity in Relation to their Phenolic Composition during the Chamber Drying of Red Grapes at a Controlled Temperature[J]. Journal of Agricultural and Food Chemistry. 2011, 59(5): 1882-1892.
    14林春绵,徐明仙,陶雪文.食品添加剂[M].北京:化学工业出版社; 2004.
    15 Gola-Goldhirsh A, Whitaker, J.R. and Kahn, V. Relation between structure of polyphenol oxidase and prevention of browning[J]. Adv. Exp. Med. Biol. 1984, 1777: 43-51.
    16刘红.抗氧化剂对美拉德反应的影响[D], [硕士学位论文].广州:暨南大学食品学院; 2007.
    17渡辺寛人.メイラード反応抑制剤及びメイラード反応の抑制方法[P].日本专利. P2004-31950, 2005-08-18.
    18赵旭.肉品风味形成与美拉德反应[J].肉类工业. 2006, 1: 14-18.
    19 Freidman M, & Molnar-Perl, I. Inhibition of food browning by sulfur amino acids.1. Heated amino acids-glucose systems[J]. Journal of Agriculture and Food Chemistry. 1990, 38: 1642-1647.
    20 Friedman M. Improvement in the safety of foods by sulfhydryl-containing amino acids and peptides. A review[J]. J. Agric. Food Chem. 1994, 1084( 42): 3-20.
    21 Tai C-Y, Ho C-T. Influence of Cysteine Oxidation on Thermal Formation of Maillard Aromas[J]. Journal of Agricultural and Food Chemistry. 1997, 45(9): 3586-3589.
    22 David B. Volkin, Alexander M . Klibanov. Thermal Destruction Processes in Proteins Involving Cystine Residues[J]. The journal of biologic of biological chemistry. 1987, 262(7): 2945-2950.
    1阎晶辰,欧阳杰,武张.酶法水解植物蛋白制备肉味香精的研究[J].食品工业科技. 2003, 23(3): 53-56.
    2 Daglia M, Papetti A, Gregotti C et al. In Vitro Antioxidant and ex Vivo Protective Activities of Green and Roasted Coffee[J]. Journal of Agricultural and Food Chemistry. 2000, 48(5): 1449-1454.
    3 Borrelli RC, Visconti A, Mennella C et al. Chemical Characterization and Antioxidant Properties of Coffee Melanoidins[J]. Journal of Agricultural and Food Chemistry. 2002, 50(22): 6527-6533.
    4 Wagner K H DS, Herr M. Antioxidative potential of melanoidins isolated from a roasted glucose–glycine model[J]. Food Chem. 2002, 78: 375-382.
    5 Morales F, Jiménez-Pérez S. Peroxyl radical scavenging activity of melanoidins in aqueous systems[J]. European Food Research and Technology. 2004, 218(6): 515-520.
    6 Maria D Del Castillo AF, I Acampa, Rosa C Borrelli, A Olano, Adolfo Martinez-Rodriguez, V Fogliano. In vitro release of angiotensin-converting enzyme inhibitors, peroxyl-radical scavengers and antibacterial compounds by enzymatic hydrolysis of glycated gluten[J]. Journal of Cereal Science. 2007, 45(3): 327-334.
    7 Rufián-Henares J A, Morales F. A new application of a commercial microtiter plate-based assay for assessing the antimicrobial activity of Maillard reaction products[J]. Food Res Int. 2006, 39: 33-39.
    8 Rufianhenares J, Morales F. Functional properties of melanoidins: In vitro antioxidant, antimicrobial and antihypertensive activities[J]. Food Research International. 2007, 40(8): 995-1002.
    9 Daglia M, Tarsi R, Papetti A et al. Antiadhesive Effect of Green and Roasted Coffee on Streptococcus mutans' Adhesive Properties on Saliva-Coated Hydroxyapatite Beads[J]. Journal of Agricultural and Food Chemistry. 2002, 50(5): 1225-1229.
    10 Tan B K HND. Maillard reaction products inhibit apple polyphenoloxidase[J]. Food Chemistry. 1995, 53: 267-273.
    11 Borrelli R C FV. Bread crust melanoidins as potential prebiotic ingredients[J]. Mol Nutr Food Res. 2005, 49: 673-678.
    12吴金鸿.丝胶肽的制备及其生物活性功能和结构的研究[D], [博士学位论文].无锡:江南大学食品学院; 2008.
    13 Eiserich JP, Macku C, Shibamoto T. Volatile antioxidants formed from an L-cysteine/D-glucose Maillard model system[J]. Journal of Agricultural and Food Chemistry. 1992, 40(10): 1982-1988.
    14 Ogasawara M, Katsumata T, Egi M. Taste properties of Maillard-reaction products prepared from 1000 to 5000Da peptide[J]. Food Chemistry. 2006, 99(3): 600-604.
    15 Gu F, Kim JM, Hayat K et al. Characteristics and antioxidant activity of ultrafiltrated Maillard reaction products from a casein–glucose model system[J]. Food Chemistry. 2009, 117(1): 48-54.
    16 Huang M, Liu P, Song S et al. Contribution of sulfur-containing compounds to the colour-inhibiting effect and improved antioxidant activity of Maillard reaction products of soybean protein hydrolysates[J]. Journal of the Science of Food and Agriculture. 2011, 91(4): 710-720.
    17 Hodge JE. Dehydrated foods, Chemistry of browning reactions in model systems[J]. J. Agric Food Chem. 1953, 1(15): 928-943.
    18 Wedzicha A, Seab L. Uptake of thiol anti-browning agents by cabbage on blanching and reactivity during dehydration[J]. Food Chemistry. 1997, 59(3): 453-457.
    19 Mendel Friedman, Ibolya Molnar-Perl. Inhibition of browning by sulfur amino acids. 1. Heated amino acid-glucose systems[J]. Journal of Agricultural and Food Chemistry 1990, 38 (8): 1642-1647.
    20 Zheng Y, Brown S, Ledig WO et al. Formation of Sulfur-Containing Flavor Compounds from Reactions of Furaneol and Cysteine, Glutathione, Hydrogen Sulfide, and Alanine/Hydrogen Sulfide[J]. Journal of Agricultural and Food Chemistry. 1997, 45(3): 894-897.
    21 Schr?dter R, W?lm G, Schliemann J. Characterization of meat aroma concentrates with different aroma notes[J]. Food / Nahrung. 1982, 26(7-8): 625-631.
    22 Schutte L. Precursors of sulfur-containing flavor compounds[J]. CRC Crit. Rev. Food Technol. 1974, 4: 457-505.
    23 Shankaranarayana MLR, B.; Abraham, K. 0.; Natarajan, C. P. Volatile sulfur compounds in food flavors[J]. CRC Crit. Rev. Food Technol. 1974, 4: 395-435.
    24 Cerny C, Guntz-Dubini Re. Identification of 5-Hydroxy-3-mercapto-2-pentanone in the Maillard Reaction of Thiamine, Cysteine, and Xylose[J]. Journal of Agricultural and Food Chemistry. 2008, 56(22): 10679-10682.
    25 Cerny C. Origin of carbons in sulfur-containing aroma compounds from the Maillard reaction of xylose, cysteine and thiamine[J]. LWT - Food Science and Technology. 2007, 40(8): 1309-1315.
    26 Martins S I F S, Jongen W M F, van Boekel M A. A review of Maillard reaction in food and implications to kinetic modelling[J]. Trends Food Sci Technol. 2000, 11: 364-373.
    27 Molero-Vilchez D, Wedzicha BL. A new approach to study the significance of amadori compounds in the Maillard reaction[J]. Food Chem. . 1997, 58: 249-254.
    28 E.-J. Kwak, S.-I. Lim. The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control[J]. Amino Acids. 2004, 27: 85-90.
    29 Keiko Yamaguchi YN, Katsumi Nakajima, Chiharu Nagatsuka, Haruko Aizawa, Rie Nakawaki, Eri Mizude, Yuzuru Otsuka, Takeshi Homma and Nguyen Van Chuyen. Effects of Salt Concentration on the Reaction Rate of Glc with Amino Acids, Peptides, and Proteins[J]. Bioscience, Biotechnology, and Biochemistry. 2009, 73(11): 2379-2383.
    30 Moreau L, Lagrange J, Bindzus W et al. Influence of sodium chloride on colour, residual volatiles and acrylamide formation in model systems and breakfast cereals[J]. International Journal of Food Science & Technology. 2009, 44(12): 2407-2416.
    31刘红,欧仕益,黄才欢等.抗氧化剂对美拉德反应的影响[J].食品科技. 2007, 5: 194-199.
    32 Dai ZY. Protein crosslinking by the maillard reaction with ascorbic acid and glucose[D]. Cleveland: Case western reserve university; 2007.
    33 Buta JG, Moline, H. E., Spaulding, D. W et al. Extending Storage Life of Fresh-Cut Apples Using Natural Products and Their Derivatives[J]. J Agric Food Chem. 1999, 47: 1-6.
    34 Kacem B, Cornell JA, Marshall MR et al. Nonenzymatic Browning in Aseptically Packaged Orange Drinks: Effect of Ascorbic Acid, Amino Acids and Oxygen[J]. Journal of Food Science. 1987, 52(6): 1668-1672.
    35汪东风,孙丽平,张莉.非酶褐变反应的研究进展[J].农产品加工.学刊. 2006, 10: 9-20.
    36 Wu J, Cheng K, Li E et al. Antibrowning activity of MRPs in enzyme and fresh-cut apple slice models[J]. Food Chemistry. 2008, 109(2): 379-385.
    37 Es-Safi N-E, Fulcrand H, Cheynier V et al. Competition between (+)-Catechin and (?)-Epicatechin in Acetaldehyde-Induced Polymerization of Flavanols[J]. Journal of Agricultural and Food Chemistry. 1999, 47(5): 2088-2095.
    38 Saucier C, Bourgeois G, Vitry C et al. Characterization of (+)-Catechin?Acetaldehyde Polymers:
    39 Ogasawara M, Yamada Y, Egi M. Taste enhancer from the long-term ripening of miso (soybean paste)[J]. Food Chemistry. 2006, 99(4): 736-741.
    40 Takayuki Shibamoto, Takuya Akiyama. A study of Pyarzine of formation[J]. J Agric Food Chem. 1979, 27: 1027-1031.
    41 Vaorujna AY. Recent advanaces in the chemistry of strecker degradation and amadori rearrangement: implications to aroma and color formation[J]. Food Sci Technol Res. 2003, 9(1): l-6.
    42吴昊.牛肉风味料的香气成分[J].无锡轻工大学学报. 2001, 20(2): 158-163.
    43 Limacher A, Kerler J, Davidek T et al. Formation of Furan and Methylfuran by Maillard-Type Reactions in Model Systems and Food[J]. Journal of Agricultural and Food Chemistry. 2008, 56(10): 3639-3647.
    44 Werkhoff P, Bruening J, Emberger R et al. Isolation and characterization of volatile sulfur-containing meat flavor components in model systems[J]. Journal of Agricultural and Food Chemistry. 1990, 38(3): 777-791.
    45 Feeridoon Shahidi, Leon J.Rubln. Meat flaor volatiles: a review of the composition, techniques of anaylsis,and sensory evaufation[J]. CRC Crit Revs Food Sci Nutri. 1986, 24: 141-243.
    46顾小红,孟绍凤,汤坚,刘杨岷. Maillard模式反应牛肉香精挥发性风味成分分析[J].中国调味品. 2006, 6: 37-41.
    47谭斌. Maillard反应体系制备热加工牛肉风味基料的研究[D:[博士学位论文],无锡:江南大学; 2005.
    48 Hofmann T. Influence of L-Cysteine on the Formation of Bitter-Tasting Aminohexose Reductones from Glucose and L-Proline: Identification of a Novel Furo[2,3-b]thiazine[J]. J. Agric. Food Chem. 1999, 47: 4763-4768.
    49鲁伟,黄筱茜,柯李晶,周建武,饶平凡.美拉德反应产物的抗氧化活性研究[J].食品与机械. 2008, 24(4): 61-65.
    50王延平,赵谋明,彭志英,马志玲.美拉德反应产物抗氧化性能研究进展[J].食品与发酵工业. 2004, 24(1): 70-74.
    51 Eichner K. Antioxidative effect of Maillard reaction intermediates[J]. Prog Food Nutri Sci. 1981, 5: 441-451.
    52 Delgado-Andrade C, Rufian-Henares JA, Morales FJ. Assessing the Antioxidant Activity of Melanoidins from Coffee Brews by Different Antioxidant Methods[J]. Journal of Agricultural and Food Chemistry. 2005, 53(20): 7832-7836.
    53 Yamaguchi N, Koyama Y, Fujimaki M. Fractionation and antioxidative activity of browning reaction products between D-xylose and glycine[J]. Prog Food Nutri Sci. 1981, 5: 429-439.
    54 Benjakul S. Antioxidative activity of caramelisation products and their preventive effect on lipid oxidation in fish mince[J]. Food Chemistry. 2005, 90(1-2): 231-239.
    55 Tan BK, Harris N D. Maillard products inhibit apple polyphenoxidase[J]. Food Chemistry. 1995, 53(3): 267 - 273.
    56 Hofmann T. Studies on melanoidin-type colorants generated from the Maillard reaction of protein-bound lysine and furan-2-carboxaldehyde– chemical characterisation of a red coloured domaine[J]. Zeitschrift für Lebensmitteluntersuchung und -Forschung A. 1998, 206(4): 251-258.
    57 Eiserich JP, Shibamoto T. Antioxidative Activity of Volatile Heterocyclic Compounds[J]. Journal of Agricultural and Food Chemistry. 1994, 42(5): 1060-1063.
    58毛善勇,周瑞宝,马宇翔,张梅.美拉德反应产物抗氧化活性[J].粮食与油脂. 2003, 11: 15-17.
    59 Wayner D D M, Burton G W, Ingold K U, et al., . The relative contributions of vitaminE, urate, ascorbate, andproteinsto the total peroxylradical-trapping antioxidant activity of human blood plasma[J]. Biochim Biophys Acta. 1987, 924: 408-419.
    60 Darkwa J, Mundoma E A. Antioxidant chemistry: reactivity and oxidation of dl-cysteine by some common oxidants[J]. J Chem Soc Faraday Trans. 1998, 94: 1971-1978.
    61 Hofmann T. Studies on the Relationship between Molecular Weight and the Color Potency of Fractions Obtained by Thermal Treatment of Glucose/Amino Acid and Glucose/Protein Solutions by Using Ultracentrifugation and Color Dilution Techniques[J]. Journal of Agricultural and Food Chemistry. 1998, 46(10): 3891-3895.
    62 Alaiz M, Hidalgo FJ, Zamora R. Effect of pH and Temperature on Comparative Antioxidant Activity of Nonenzymatically Browned Proteins Produced by Reaction with Oxidized Lipids and Carbohydrates[J]. Journal of Agricultural and Food Chemistry. 1999, 47(2): 748-752.
    1 Reyes FGR, Poocharoen B, Worlstad RE. Maillard browning reaction of sugar-glycine model systems: changes in sugar concentration, colour and appearance.[J]. Journal of Food Science. 1982, 47: 1376-1377.
    2 Franzen K, Singh RK, Okos MR. Kinetics of nonenzymatic browning in dried skim milk[J]. Journal of Food Engineering. 1990, 11(3): 225-239.
    3 Vernin G, Boniface C, Metzger T et al. Cinetique de formation et degradation thermique des intermediaries Amadori Fruc-Val (glucose+valine) et informatisation des donnees[J]. Bulletin de la Societe Chimique de France. 1987, 125: 681-694.
    4 Martins SIFS, Boekel MAJSV. A kinetic model for the glucose/glycine Maillard reaction pathways[J]. Food Chemistry. 2005, 90(1-2): 257-269.
    5 Martins S. Kinetic modelling of Amadori N-(1-deoxy-fructos-1-yl)-glycine degradation pathways. Part II—Kinetic analysis[J]. Carbohydrate Research. 2003, 338(16): 1665-1678.
    6 Martins S. Kinetic modelling of Amadori N-(1-deoxy-fructos-1-yl)-glycine degradation pathways. Part I—Reaction mechanism[J]. Carbohydrate Research. 2003, 338(16): 1651-1663.
    7 Martins SIFS, Van Boekel MAJS. Kinetics of the glucose/glycine Maillard reaction pathways: influences of pH and reactant initial concentrations[J]. Food Chemistry. 2005, 92(3): 437-448.
    8 Martins SIFS, van Boekel MAJS. Melanoidins extinction coefficient in the glucose/glycine Maillard reaction[J]. Food Chemistry. 2003, 83(1): 135-142.
    9王俊丽,聂国兴,曹香林,张建新,张朋飞.不同DNS试剂测定木糖含量的研究[J].食品研究与开发. 2010, 31(7): 1-4.
    10 Pauletti MS, Matta EJ, Rozycki S. Kinetics of heat-induced browning in concentrated milk with sucrose as affected by pH and temperature[J]. Food Sci. Technol. Int. 1999, 5(5): 407-413.
    11 Buera MdP, Chirife J, Resnik SL et al. Nonenzymatic Browning in Liquid Model Systems of High Water Activity: Kinetics of Color Changes due to Caramelization of Various Single Sugars[J]. Journal of Food Science. 1987, 52(4): 1059-1062.
    12 Ibarz A, Pagan J, Garza S. Kinetic models for colour changes in pear puree during heating at relatively high temperatures[J]. Journal of Food Engineering 1999, 39: 415-422.
    13 Keller C, Wedzicha BL, Leong LP et al. Effect of glyceraldehyde on the kinetics of Maillard browning and inhibition by sulphite species[J]. Food Chemistry. 1999, 66: 495-501.
    14 van Boekel M. Kinetic aspects of the Maillard reaction: a critical review[J]. Nahrung. 2001, 45(3): 150-159.
    15 Morales FJ, van Boekel MAJS. A Study on Advanced Maillard Reaction in Heated Casein Sugar Solutions Fluorescence Accumulation[J]. Int. Dairy J. 1998, (7): 675-683.
    16 Nourian F, Ramaswamy HS, Kushalappa AC. Kinetic changes in cooking quality of potatoes stored at different temperatures[J]. Journal of Food Engineering. 2003, 60(3): 257-266.
    17 Buera MdP, Chirife J, Resnik SL et al. Nonenzymatic Browning In Liquid Model Systems of High Water Activity: Kinetics of Color Changes Due to Reaction Between Glucose and Glycine Peptides[J]. Journal of Food Science. 1987, 52(4): 1068-1070.
    1 Hodge JE. Dehydrated foods, Chemistry of browning reactions in model systems[J]. J. Agric Food Chem. 1953, 1(15): 928-943.
    2 Hofmann T. Quantitative studies on the role of browning precursors in the Maillard reaction of pentoses and hexoses with l-alanine[J]. Eur Food Res Technol. 1999, 209: 113-121.
    3 Hofmann T. 4-Alkylidene-2-imino-5-[4-alkylidene-5-oxo-1,3- imidazol-2-inyl]azamethylidene- 1,3-imidazolidinesA Novel Colored Substructure in Melanoidins Formed by Maillard Reactions of Bound Arginine with Glyoxal and Furan-2-carboxaldehyde[J]. J. Agric. Food Chem. 1998, 46: 3896-3901.
    4 Hofmann T, Frank O. The“colorful”chemistry of nonenzymatic browning[J]. International Congress Series. 2002, 1245(0): 37-41.
    5 Yuan Y, Zhao G, Chen F et al. Correlation of methylglyoxal with acrylamide formation in fructose/asparagine Maillard reaction model system[J]. Food Chemistry. 2008, 108(3): 885-890.
    6 Bettina cM, Walentina J, Lotharw K. Intact Carbohydrate Structures as Part of the Melanoidin Skeleton[J]. J. Agric. Food Chem. 2002, 50: 2083-2087.
    7 Jeri? I, Horvat ?. Screening for glucose-triggered modifications of glutathione[J]. Journal of PeptideScience. 2009, 15(8): 540-547.
    8 Rizzi GP. Chemical structure of colored maillard reaction products[J]. Food Reviews International. 1997, 13(1): 1-28.
    9 Hofmann T. Identification of Novel Colored Compounds Containing Pyrrole and Pyrrolinone Structures Formed by Maillard Reactions of Pentoses and Primary Amino Acids[J]. J. Agric. Food Chem. 1998, (46): 3902-3911.
    10 Susie J. Meade, Antonia G. Miller,Juliet A. Gerrard. The Role of Dicarbonyl Compounds in Non-enzymatic Crosslinking: A Structure-Activity Study[J]. Bioorganic & Medicinal Chemistry. 2003, 11: 853-862.
    11 Frolov A, Hoffmann P, Hoffmann R. Fragmentation behavior of glycated peptides derived from D-glucose, D-fructose and D-ribose in tandem mass spectrometry[J]. Journal of Mass Spectrometry. 2006, 41(11): 1459-1469.
    12 Delgado-Andrade C, Seiquer I, Haro A et al. Development of the Maillard reaction in foods cooked by different techniques. Intake of Maillard-derived compounds[J]. Food Chemistry. 2010, 122(1): 145-153.
    13 Riha W-E, Izzo H-V, Ho C-T. Non-enzymatic deamidation of food protein[J]. Critical Reviews in Food Science and Nutrition. 1996, 36(3): 225-255.
    14 Ajandouz EH, Tchiakpe LS, Ore FD et al. Effects of pH on Caramelization and Maillard Reaction Kinetics in Fructose-Lysine Model Systems[J]. Journal of Food Science. 2001, 66(7): 926-931.
    15 Benjakul S, Lertittikul W , Bauer F. Antioxidant activity of Maillard reaction products from a porcine plasma protein sugar model system[J]. Food Chemistry. 2005, 93(2): 189-196.
    16 Ogasawara M, Yamada Y, Egi M. Taste enhancer from the long-term ripening of miso (soybean paste)[J]. Food Chemistry. 2006, 99(4): 736-741.
    17 Ogasawara M, Katsumata T, Egi M. Taste properties of Maillard-reaction products prepared from 1000 to 5000Da peptide[J]. Food Chemistry. 2006, 99(3): 600-604.
    18 Ho H Y, Kou R, Tseng H K. Semiochemicals from the predatory stink bug Eocantheocona furcella (Woff): Components of metathoracic gland, dorsal abdominal gland, and sternal gland secretions[J]. Journal of Chemical Ecology. 2003, 29: 2101-2114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700