用户名: 密码: 验证码:
离心压气机三维流场数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
增压技术不仅是强化内燃机的最有效手段,而且对降低内燃机的污染、噪声和提高经济性也有积极的影响。但随着柴油机强化程度的提高,要求涡轮增压器的压比进一步提高,提高压比的主要方法之一是提高压气机的性能。而现有的柴油机涡轮增压器,一般都采用离心式压气机。因此充分理解离心压气机内部三维流场的物理现象是设计高效率的压气机的前提。
     根据某型涡轮增压器的离心压气机叶型和通流几何的原始测量数据,用三维建模软件UG建立实体模型;利用流体分析软件NUMECA模拟了离心压气机内部的流场,对其不同转速和流量下的变工况性能进行了数值模拟;得到了离心压气机的特性曲线和各通流部件中的流场结构,分析了叶轮和扩压器内部的流动,着重讨论了造成严重损失及使流场趋于复杂紊乱的原因,包括尾迹、二次流、分离流等。
     本文研究了相同转速下,不同的叶顶间隙对离心压气机内部流动的影响。结果表明,随着叶顶间隙的增大,主流射流流动受影响愈发严重,流动的不均匀性增加。此外,通过改变叶轮子午流道的形状,与原子午流道进行了对比计算,结果表明扩压段渐缩型子午流道的流动状况要优于扩压段平行的子午流道。
     最后,讨论了在其他条件不变的情况下,改变叶轮叶片数目和叶片扩压器的数目对压气机性能影响。通过分析得出,叶轮叶片数较多时流动的阻塞比较大,叶片数较少时叶片的升压能力较差。叶片扩压器数目减少后的最大优点是压气机的特性变得较为平坦,工作范围扩大。扩压器数目增多,会引起较大的流阻损失。
Turbocharging is not only an effective way to strengthen the engine, but also plays an important role in reducing the emission and the noise of the engine. Also, it can improve the efficiency of the engine.But with the improvement of the diesel engine's strengthened degree, the pressure ratio of the turbocharger is required to further improve.To improve the pressure ratio, one of the main methods is to improve the compressor performance.And the existing diesel engine turbochargers generally used centrifugal compressor. Therefore, fully understanding the internal three-dimensional flow field of the physical phenomena of the centrifugal compressor is the premise of the designed highly efficient compressor.
     According to the original geometric measurement data of the blade type and through-flow of a certain type of turbocharger's centrifugal compressor, established the Solid model by using three-dimensional modeling software of Unigraphics and simulated the internal flowfield of the centrifugal compressor by NUMECA.The three-dimensional numerical study and analysis were also done respectively under Variable conditions with different rotational speeds and mass flow.got the characteristic map of centrifugal compressor and the flow field structure of the flow passage components, analyzed the internal flow of the impeller and diffuser; and focused on the reasons which caused bad aerodynamic losses and made the flowfield complicated, including wake, secondary flow, separated flow.
     In this paper, the impact on the internal flow of the centrifugal compressor was studied with different tip clearance at the same speed. The results showed that with the increasement of tip clearance, the mainstream and jet flows were affected more severely, the inhomogeneity of the flow was increased. In addition, this paper changed the shape of meridional flow channel, compared to the preliminary meridional flow channel by the computation; the flow of diffuser Paragraph of the meridian flow channel which type was tapered was superior to the parallel.
     Finally, in the other conditions remaining unchanged, while changed the nu mber of impeller blades and Vaned diffuser, the impact on the compressor' Performance was also discussed. To the Conclusion, The flow resistance was larger than when the number of impeller blades was more. The capacity of boost was poor when the number of impeller blades was less. The biggest advantage was that the compressor characteristic had become smoother and extended the scope of operation after decreasing the number of Vaned diffuser, increasing the number of vaned diffuser would cause a greater loss of flow resistance.
引文
[1]Hikosaka N. A view of the future of automotive diesel engines. In:SAE transactions.New York:Society of Automotive Engineers,1997:2071-2081P
    [2]苏石川.影响增压柴油机性能与排放主要因素的理论与试验研究.浙江大学博士学位论文.2003:1-10页
    [3]Schindler K P. Why do we need the diesel In:SAE transactions. New York: Society of Automotive Engineers,1997:2105-2113P
    [4]张晋东.我国车用增压器产品现状及发展趋势.柴油机.2005,27(4):33-35页
    [5]陆家祥.柴油机涡轮增压技术.机械工业出版社.2004:1-55页
    [6]张文俊.旋转机械强度校核系统的开发与应用.华中科技大学硕士论文.2005:8-12页
    [7]张俊红,李志刚,王铁宁.车用涡轮增压技术的发展回顾、现状及展望.小型内燃机与摩托车.2007,36(1):67-69页
    [8]施新,马朝臣.车用涡轮增压器混流涡轮的设计.工程热物理学报.2002,23(1):35-38页
    [9]张晋东,李洪武.车用柴油机祸轮增压技术的新发展.车用发动机.2002,(2):1-4页
    [10]吕伟.可调涡轮增压器控制技术的研究.中国农业大学硕士学位论文.2003:11-13页
    [11]廖爱华.增压器的非线性力学分析.大连理工大学博士学位论文.2007:1-6页
    [12]Mark. Gee. Cost and Performance Enhancements for a PEM Fuel Cell Turbocompressor.2004 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Review Presentation, Honeywell Engines, Systems & Services, Philadelphia Marriott, Philadelphia, PA, May 26,2004,1-3P
    [13]王仲奇,秦仁.透平机械原理.机械工业出版社.1985:309-344页
    [14]Acosta A J,Bowerman R D. A Experimental Study of Centrifugal Pump Impeller.Trans.of ASME,1957,79:1821-1839P
    [15]Dean R C, Senoo Y. Rotating wakes in vaneless diffuser. ASME Journal of Basic Engineering,1960,88:49-60P
    [16]Eckardt,D."Instantaneous measurements in the Jet-Wake discharge flow of a centrifugal compressor impeller." Journal of Engineering for Power, Trans.ASME,Series A Vol.97,No.3 July 1975,337-346P
    [17]M.W.Johnson and J.Moore,1980, "The Development of wake Flow in a Centrifugal Impeller", Journal of Engineering for Power, rVol.102, PP.382-390P
    [18]Hamkins, C.P and Flack, R.D. Laser velocimeter measurements in shrouded and unshrouded radial flow pump impellers. ASME Journal of turbomachinery,Vol.109,1987/70-76P
    [19]Krain,H.Swirling impeller flow. ASME Journal of Turbomachinery,1988
    [20]Hathaway,M.D.Chriss,R.M.,Wood,J.R,Strazisar,A.J,1992,Experimental and computational investigation of the NASA Low-Speed centrifugal compressor flowfield, ASME Journal of Turbomachinery.Vol.115, No.3,527-542P
    [21]刘正先等.离心叶轮内三维湍流流场的实验研究.工程热物理学报.1999,20:558-562页
    [22]马宏伟等.离心压气机转子内近端壁区三维紊流流场.航空动力报.2000,15(4):342-346页
    [23]C. H. Wu. A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial-, Radial-, and Mixed-Flow Types. ASME Paper 50-A-79,1950
    [24]C. Hirsch, J. D.Denton. Through flow Calculations in axial turbomachines. AGARD AR 175,1981
    [25]S. J. Gallimore. Viscous Through flow Modeling of Axial CompressorBlade Rows Using a Tangential Blade Force Hypothesis. ASME Paper 97-GT-415, 1997
    [26]V. J. Neumann, R. D. Richtmyer. A Method for the Numerical Calculation of Hydrodynamic shocks. Journal of Applied Physics.1950,21:232-257P
    [27]J. D. Denton. A Time Matching Method for Two-and Three-Dimensional Blade to Blade Row. ARCR&M 3775,1974
    [28]陈懋章.风扇/压气机技术发展和对今后工作的建议.航空动力学报.2002,17(1):1-15页
    [29]J. D. Denton. The Calculation Three-Dimensional Viscous Flow through Multistage Turbomachines. ASME Journal of Turbomachinery,1992, 114(2):18-26P
    [30]J. J. Adamczyk. Model Equation for Simulating Flows in Multistage Turbomachines. NASA TM-86869.1985
    [31]J. D. Denton. Lessons from Rotor 37. Journal of Thermal Science.1997, Vol.6(1):1-13P
    [32]D. J. Dorney, O. P.Sharma. Evaluation of Flow Field Approximations for Transonic Compressor Stages. ASME Paper 96-GT-371,1996
    [33]J. I. Erdos, E. Alzner. Computation of Unsteady Transonic Flows Through Rotating and Stationary Cascades. NASA CR-2900.1977
    [34]季路成,周盛.一个跨音风扇级转/静干扰流动的时间精确模拟.工程热物理学报.1999,20(4):426-430页
    [35]邹正平,徐力平.双重时间步方法在非定常流场模拟中的应用.航空学报.2000,21(4):318-321页
    [36]A. Jameson. Time Dependent Calculations Using Multigrid with Applications to Unsteady Flows Pase Airfoils and Wings. AIAA Paper 1591-1596,1991
    [37]M. Aube, C. Hirsch. Numerical Investigation of a 1-1/2 Axial Turbine Stage at Quasi-Steady and Fully Unsteady Conditions. ASME Paper 2001-GT-0309, 2001
    [38]M. M. Rai, N. K. Madavan. Multi-Airfoils Navier-Stakes Simulations of Turbine Rotor-Stator Interaction. AIAA Paper 88-0361,1988
    [39]W. N. Dawes. A Numerical Study of the Interaction of a Transonic Compressor Rotor Over tip Leakage Vortex with the Following Stator Blade Row. ASME Paper 94-GT-156,1994
    [40]J. P. Clark, G. M. Stetson, S. S. Magge, et al. The Effect of Airfoil Scaling on the Predicted Unsteady Loading on the Blade of a 1-1/2 Stage Transonic Turbine and a Comparison with Experimental Results. ASME Paper 2000-GT-0446,2000
    [41]A. Arnone, R. Pacciani, Rotor-Stator Interaction Analysis Using the Navier-Stokes Equations and a Multigrid Method. ASME Paper 95-GT-177, 1995
    [42]J. I. Erdos, E. Alzner. Computation of Unsteady Transonic Flows Through Rotating and Stationary Cascades. NASA CR-2900.1977
    [43]M. B. Giles. Numerical Methods for Unsteady Turbomachinery Flow. Von Karman Institute for Fluid Dynamics, Vol.2,1989
    [44]M.B. Giles. Stator/Rotor Interaction in a Transonic Turbine. AIAA Journal of Propulsion and Power.1990,6(5):621-627P
    [45]张健.计算流体力学在航空叶轮机设计中的应用.航空科学技术.1999,4:19-22页
    [46]徐忠.离心式压缩机原理.机械工业出版社.1990:88-90页
    [47]Eckardt D. Instantaneous measurements in the Jet-Wake discharge flow of a centrifugal compressor Impeller. ASME Journal of Engineering for Power,1975,337-345P
    [48]Krain H. Swirling impeller flow. ASME Journal of Turbomachinery, 1988,110:122-128P
    [49]FaganJ R.A n investigation o f the three-dimensional flow field in a centrifugal compressor. Ph.D.Thesis, Purdue University,1989
    [50]Inoue M, Cumpsty N A. Experimental study of centrifugal impeller discharge flow in vaneless and vaned diffusers. ASME Journal of Engineering for Gas Turbine sandPower,1984,106:455-467P
    [51]Dawes W N. Toward improved through flow capability:the use of three-dimensional viscous flow solver signal multistage environment of Turbomachinery,1992,114(1):8-17P
    [52]刘小民,席光,王尚锦等.叶片扩压器内跨盘一盖流场的实验研究.流体机械.1997,25(12):6-10页
    [53]Deniz S.Greitzer E M,Cumpsty N A.Efects of inlet flow field conditions on the performance of centrifugal compressor d ifusers:P art2 straight-channel diffuser.ASME Journal of Turbomachinery,Ja n.2000,122:11-21P
    [54]Filipenco V G Deniz S, Johnston J M et. al. Efects of inlet flow field conditions on the performance of centrifugal compressor difusers:P artl discrete-passage difuser.ASME Journal of T urbomachinery,2000,122: 1-10P
    [55]KangS, HirsehCh. Numerieal Investigation of the Three Dimensional Flow in NASA Low Speed Centrifugal Compressor Impeller, International SymPosiumonaero thermodynamics Internal Flows,Dresden,1999
    [56]Hirseh.Ch.,Kang.S.and Pointet.G,1996a, A Numerical Supported Investigation the 3D Flow in Centrifugal Impellers, Part 1 The Validation Base,ASME,96-G-T15
    [57]Hirseh,Ch.,Kang.S.andPointet.G,1996bA Numerieal SPuPorted Investigation on the 3D Flow in Centrifugal Impellers, Partll Secondary Flow Structure, ASME96-GT152
    [58]赖焕新、康顺等.有无叶顶间隙条件下斜流风机叶轮内部三维流动的数值研究,航空动力学报.2002,115(11):17-21页
    [59]刘瑞韬.离心压缩机内部三维复杂流动的数值模拟及PIV实验研究.西安交通大学博士学位论文.2004:23-28页
    [60]NUMECA International, NUMECA Manual,2006
    [61]康顺等.一个高压比离心叶轮的CFD分析和结果确认第一部分:结果确认.中国工程热物理学会2004年会议论文,论文号:042070
    [62]姚征,陈康民.CFD通用软件综述.上海理工大学学报.2002,24(2):137-144页
    [63]Hirsh C, etc. An Integrated CFD System for 3D Turbomachinary Applications.ADARD-CP-510,1992
    [64]FINE User Manual. FINE Version 7.4.2006
    [65]Chu W, Jiang T. Experimental investigation of rotating stall in a centrifugal compressor with vaneless diffuser. Journal of Aerospace Power/Hang kong Dong li Xuebao,5(2):163-165,1990
    [66]Baldwin B., Lomax H. Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows. AIAA-78-257,1978
    [67]C.J. Chen, S.Y. Jaw. Fundamentals of Turbulence Modeling. Taylor& Francis, Washington.1998
    [68]Minsuk Choi, Junyoung Park, Jehyun Baek. Effects of the Inlet Boundary Layer Thickness on the Flow and Loss Characteristics in an Axial Compressor. ASME Paper No.GT2005-68580
    [69]M.G.Turner, I.K.Jennions. An Investigation of Turbulence Modeling in Transonic Fans Including a Novel Implementation of an Implicit k-ε Turbulence Model. ASME 92-GT-308
    [70]O.Nozaki, K.Kikuchi, Tnishizawa, Y.matsuo, etal.Unsteady Three-Dimensional Viscous Flow Computations of Multiple-Blade-Row Interactions. IS ABE 99-7032, Florence
    [71]Lauder B.E., Spalding D.B. The numerical calculation of turbulent flows.Computational Methods in Applied Mechanic and Engineering.1974, 3(1):269-289P
    [72]CebeciT, Smith A. M. O. Analysis of Turbulent Boundary Layers.Acad.Press,1974
    [73]朱自强,李津,张正科等.计算流体力学中的网格生成方法及其应.航空学报.1998,(19):152-158页
    [74]周孝天,白文.CFD多块网格生成新进展.力学进展.1998,29(3):344-358页
    [75]陈皓辉,刘华明,李刚等.复杂曲面叶轮CAD/CAM一体化系统开发.航天制造技术.2003,(2):26-291页
    [76]李群,陈五一.基于UG的发动机整体叶轮三维造型研究.设计与研究.2005,9:5-8页
    [77]庄伟娜,周来水,安鲁陵,姬俊峰.基于UG整体叶轮实体造型研究.现代设计与先进制造技术.2008,37:35-42页
    [78]Rezayat M. Knowledge-based product development using XML and KCS.Computer-Aided Design,2000, (32):299-309P
    [79]蔡兆麟,罗晟.流体机械叶轮内二次流及尾迹发展.华中科技大学学报.2001,29:7-9页
    [80]贾希诚,王正明.叶轮机械中间隙流与通道二次流相互作用的数值研究.航空动力学报,2002,(17):399-403页
    [81]康顺,陈党慧.用CFD研究高压比离心叶轮内二次流动.航空动力学报.2005,20(6):1056-1060页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700