用户名: 密码: 验证码:
双馈型风力发电机励磁控制与优化运行研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着常规能源短缺和环境污染问题加剧,风能作为可再生绿色能源,对其开发利用十分必要。变速恒频双馈型风力发电系统具有转子励磁变频器容量小、成本低,机电系统柔性连接,风能捕获能力强等特点,成为目前风电开发的主流机型,其交流励磁控制技术也成为重要的研究方向。受国家自然科学基金项目“大型变速风力发电混杂系统全工况优化运行控制策略研究(项目号: 50677021)”的资助并作为该课题部分内容,本论文在广泛分析国内外有关资料的基础上,重点研究了变速恒频双馈型风电机交流励磁控制和优化运行技术,并在网侧变换器控制方案、最大风能追踪控制方案、变频器系统建模方法等方面进行了改进,主要研究内容及创新成果如下:
     1.分析了风电用交直交变频器的系统结构、控制目标和数学模型。为提高有功电流的实际响应速度,增强母线电压抗扰动能力,在传统的网侧变换器直接电流控制方案的基础上,创新的提出了一种应用模糊控制器将单位功率因数和母线电压稳定综合考虑作为无功电流参考设定的方案。仿真表明新方案有效。
     2.分析了双馈发电机的运行原理、等值电路、功率特性和数学模型。为研究变速恒频运行中双馈发电机稳定性变化规律,应用小扰动分析法,得到发电机对象在典型工况点上的线性模型加以分析,结果表明双馈发电机对象在正常工作转速范围内都具有稳定性,并且在由亚同步或超同步向同步速变化的过程中,稳定性变化趋势一致。
     3.分析了风力机的功率特性和风力发电系统运行区域及控制目标。建立了双馈发电机双闭环矢量控制系统,研究了功率控制模式和转速控制模式下发电机系统的调节原理和动态特性。针对已有的最大风能追踪方案在稳态和动态性能上存在的问题以及风速测量的不准确性,创新的提出了一种新型模糊最优转速追踪控制方案,将转速、功率和风速变化量都作为模糊控制器输入,以增强模糊推理应对渐变风速的能力。模拟自然风速激励下的仿真结果表明,新方案提高了机组低风速运行区域风能捕获能力。此后,为实现发电机最低损耗运行,根据双馈发电机损耗特性与无功功率的关系,提出了一种应用模糊控制器进行最优无功设定的方案,仿真结果表明此方案能够自适应发电机系统参数摄动而保持最低损耗运行,提高了发电机的运行效率。
     4.结合风力机变桨距控制,分析了双馈风电机准同期并网、自同期并网和零功率解列控制策略。仿真验证了机电系统协调工作对提高机组并网和解列控制水平的作用。
     5.分析总结了常规风电机组对象建模仿真方法。针对应用Matlab/Simulink/PSB对交直交变频器建模仿真存在运算量大、耗时长的问题,创新的提出了一种交直交变频器系统简化模型,既能够合理反映变频器系统工作原理和外部特性,又具备运算简洁高效的特点,适合于风电机组系统级控制策略的仿真研究。接下来,研究了双馈发电机跨并网全过程建模仿真方法,为并网控制策略有效性验证提供了仿真平台。
Due to continually diminishing reserves of normal energy sources and environment pollution, it is very necessary to develop wind power as its renewable and clean characteristic. Variable-speed constant-frequent (VSCF) wind power generation system with doubly-fed induction generator (DFIG), that excited by inverter located at rotor loop, possesses characteristics of smaller capacity, lower cost, flexible connection of mechanical-electric system, higher wind power capturing capability. Therefore, it becomes the mainstream developing type, and its AC-excitation control technology becomes an important research direction. Supported by the National Science Foundation of China Project 'Research on optimizing control strategy overall operating condition for variable wind turbine hybrid system (NO: 50677021)' and as a part of it, this thesis studies AC-excitation control and optimal operation technology for VSCF doubly-fed wind turbine based on the full analysis on the references from domestic and aboard. Improvements on net-side converter control strategy, the maximum wind energy capturing control strategy and converter system modeling method are taken; primary contents and original contributions of this thesis can be summarized as follows:
     Firstly, system structure, control targets and mathematic model of AC/DC/AC converter employed by wind power generation are analyzed. Aimed at improving active current tracking speed and enhancing DC-bus anti-disturbance ability and based on the ordinary direct current control strategy for net-side inverter, a novel control strategy with a comprehensive reactive current adjusting target of both power factor keeping and DC-bus voltage maintaining, using fuzzy logic controller, is originally proposed. Simulation results indicate its efficiency.
     Secondly, operation function, equivalent-circuit model, power relation and mathematic model of DIFG are analyzed. In order to study DIFG stability characteristic during VSCF operation, the small disturbance analysis method is adopted to establish and study DIFG linear models on several typical operating points. Results show that DIFG is stable in normal operating speed range, and has the same stability varying trends as operating from sub-synchronize or sup-synchronize to synchronize speed.
     Thirdly, power characteristic, operating field and control target of wind turbine are analyzed. DIFG double closed-loop vector control strategy is established; regulating principle and dynamic characteristic in active power control mode or speed control mode is discussed. To solve the problems of stable and dynamic control ability excited in the normal maximum wind energy capturing strategies, and wind velocity measuring inaccuracy, a novel fuzzy optimal speed tracking strategy is originally proposed, in which variations of rotating speed, generation power and wind velocity are input into fuzzy logic controller together, in order to enhance fuzzy deduction efficiency for wind that gradually changed. Simulation results with natural wind model indicate the wind generation capturing ability improvement of the novel strategy, during the operating field that below rated wind velocity. After that, aimed at the lowest loss operation for DIFG, an optimal reactive power reference control strategy using fuzzy logic controller is presented, based on relation between loss characteristic and reactive power of DIFG. Simulation results indicate its effectiveness for adopting DIFG characteristic varying, maintaining lowest loss and improving operating efficiency
     Fourthly, considered with wind turbine pitch control strategy, cutting-in and cutting-out control strategies for DIFG are analyzed. Simulation results validate the effect on improving operating performance by mechanical and electric corresponding action.
     Fifthly, normal modeling methods for wind power generation system simulation are summarized and analyzed. As AC/DC/AC converter model built by Matlab/Simulink/PSB library blocks needs lots of time for calculation during simulating, a novel simplified model of AC/DC/AC converter system is originally proposed. It can not only discribe the work principle and outer characteristics of the converter system reasonablely, but also save calculating time, which is suitable for simulation in wind power generation system level. After that, a modeling method for DIFG whole process simulation across cutting-in operation is discussed and accomplished, which supplied a simulating platform for cutting-in control strategy validation.
引文
[1]王承煦,张源.风力发电[M].北京:中国电力出版社, 2002.
    [2]李俊峰.风力12在中国[M].北京:化学工业出版社, 2005.
    [3]刘万琨,张志英,李银凤,等.风能与风力发电技术[M].北京:化学工业出版社, 2007.
    [4]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社, 2006.
    [5]金玉洁,毛承雄,王丹,等.直驱式风力发电系统的应用分析[J].能源工程,2006,3:29~33.
    [6]李晶,宋家骅,王伟胜.大型变速恒频风力发电机组建模与仿真[J].中国电机工程学报, 2004,24(6):100-105.
    [7]金曾,包能胜,陈庆新,等.风力机系统的神经网络模型辨识[J].太阳能学报,1998,19(2): 206~211.
    [8] X.F.Zhang, D.P.Xu, Y.B.Liu. Adaptive Optimal Fuzzy Control for Variable Speed Fixed Pitch Wind Turbines[C]. The 5th WCICA Proceedings, China, 2004: 2481~2485.
    [9] Ph.Delarue, A.Bouscayrol, A.Tounzi,X.Guillaud. Modelling, control and simulation of an overall wind energy conversion system[J]. Renewable Energy, 2003,28(8):1169~1185.
    [10] C.Brune, R.Spee, A.K.Wallace. Experimental evaluation of a variable-speed doubly-fed wind-power generation system[C]. IAS Annual Meeting (IEEE Industry Applications Society), 1993:480~487.
    [11] A. E.Feijoo, J. Cidras. Modeling of wind farms in the load flow analysis[J]. Trans on Power Systems, 2000,15(1): 110~115.
    [12] J.B.Ekanayake, L.Holdsworth, N.Jenkins. Comparison of 5th order and 3rd order machine models for doubly fed induction generator (DFIG) wind turbines[J]. Electric Power Systems Research, 2003, 67(3): 207~215.
    [13] R.Pena, J.C.CIare,G.M.Asher. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation[J]. IEE Proc-Electr.Power Appl., 1996, 143(3): 231~241.
    [14] Green AW, Boys J T, Gates G F. 3-phase voltage sourced reversible rectifier[J]. IEE proceedings, 1988,6(B5): 362~370.
    [15] Wu R, Dewan S B, Slemon G R. Analysis of an ac to dc voltage source converter using PWM with phase and amplitude control[J]. IEEE Trans Ind Appl, 1991,27: 355~364.
    [16] Wu R, Dewan S B, Slemon G B. A PWM AC-to-DC converter with fixed switching frequency[J]. IEEE Trans Ind Appl, 1990,26: 880~885.
    [17] Chun T Rim, Dong Y hu, Gyu Hcho. Transformers as equivalent circuits for switches: General Proofs and D-Q Transformation-Based Analyses[J]. IEEE Trans Ind Appl,1990,26(4): 777~785.
    [18] Hengchun Mao, Dushan Boroyerich, Fred C Y lee. Novel reduced-order small signal model of a three-phase PWM rectifier and its application in control design and system analysis[J]. IEEE Trans Power Electronics, 1998,13(3): 511~521.
    [19] Dixon J W, Ooi B T. Indirect current control of a unity power factor sinusoidal current boost type three-phase[J]. IEEE Trans Power Electrol, 1998,35: 508~515.
    [20] Marian P.Kazmierkowski, Luigi Malesani. Current control techniques for three-phase voltage-source PWM converters: A Surrey[J]. IEEE Trans Ind Electronics, 1998,45(5): 691~703.
    [21] Vanja, Rastko, David. Direct Currect Control-A New Current Regulation Principle[J]. IEEE Trans.Power Electron., 2003,18(1): 495-503.
    [22] Ooi B T, Salmon J C, Dixon J W. A three phase controlled current PWM converter with leading power factor[J]. IEEEE Trans Ind Appl, 1987, IA-23: 78~84.
    [23] Dixon J W, Kullcarni A B, Nishimato M. Characteristics of controlled-current PWM rectifier-inverter link[J]. IEEE Trans Ind Appl, 1987,IA-23: 1022~1028.
    [24]张兴,张崇巍. PWM可逆变流器空间电压矢量控制技术的研究[J].中国电机工程学报,2001(10):102~105.
    [25]杨德刚,刘润生,赵良炳.三相高功率因数整流器的电流控制[J].电工技术学报, 2000(2):83~87.
    [26] M.Malesani, L.Rossetto, P.Tomasin. AC/DC/AC PWM converter with reduced energy storage in the DC link[J]. IEEE Trans. Ind. Applicat., 1995,31:287–292.
    [27] Gu B G,Nam K.A DC link capacitor minimization method through direct capacitor current control[J]. IEEE Trans. Ind .Applicat, 2006, 42(2):573-581.
    [28] Jong-Woo Choi, Seung-Ki Sul. New current control concept - minimum time current control in the three-Phase PWM converter[J]. IEEE Trans Power Electronics, 1997,12(1): 124~131.
    [29] Jong-Woo Choi, Seung-Ki Sul. Fast Current Controller in Three-phase AC/DC Boost Converter using d-q Axis Crosscoupling[J]. IEEE Trans. On PE, 1998,13(1):179~185.
    [30] Habetler T G. A space vector-based rectifier regulator for AC/DC/AC converters[J]. IEEE Trans Power Electron, 1993, 8:30~36.
    [31]吴烽.风力发电并网技术综述[J].风力发电,1992,1:5~8.
    [32]刘其辉,贺益康,汴松江.变速恒频风力发电机空载并网控制[J].中国电机工程学报,2004,24(3):6-11.
    [33]刘其辉.变速恒频风力发电系统运与控制研究[D]: [博士论文].浙江杭州:浙江大学电气工程学院,2005.
    [34]李亚西,王志华,赵斌.大功率双馈发电机“孤岛”并网方式[J].太阳能学报, 2006.27(1)1~6.
    [35]邹旭东.变速恒频交流励磁双馈风力发电系统及其控制技术研究[D]:[博士论文].湖北武汉:华中科技大学电气工程学院, 2006.
    [36] T. Thiringer, J. Linders. Control by variable rotor speed of a fixed-pitch wind turbine operating in a wide speed range[J]. IEEE Trans on Energy Conversion, 1992,8(3): 520~526.
    [37] A.S.Neris, N.A.Vovos, G.B.Giannakopoulos. A variable speed wind energy conversion scheme for connection to weak ac system[J]. IEEE Trans on Energy Conversion, 1999,14(1):122~127.
    [38] D. S.Zinger, E. Muljadi, A. Miller. A simple control scheme for variable speed wind turbines[J]. IEEE 31st IAS Annual Meeting on Industry Applications Conference, 1996:1613~1618.
    [39] M.Yamamoto, O.Motoyoshi. Active and reactive power control for doubly-fed wound rotor induction generator[J]. IEEE Trans on Power Electronics, 1991,6(4):624~629.
    [40] Y.f. Tang, L.y. Xu. A flexible active and reactive power control strategy for a variable speed constant Frequency generating system[J]. IEEE Trans on Power Electronics, 1995,10(4): 472~478.
    [41]廖勇,杨顺昌.交流励磁发电机励磁控制[J].中国电机工程学报,1998,18(2): 87~90.
    [42] A. Tapia, G. Tapia, J.X. Ostolaza. Modeling and control of a wind turbine driven doubly fed induction generator[J]. IEEE Trans on Energy Conversion, 2003,18(2): 194~204.
    [43] R. Datta, V.T.Rangnathan. Method of tracking the peak power points for a variable speed wind energy conversion system[J]. IEEE Trans on Energy Conversion, 2003,18(1): 163~168.
    [44]孙茂相,杨继华.风电系统最大功率捕获的研究[J].沈阳工业大学学报,2003, 25(1): 40~42.
    [45]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制[J].电力系统自动化,2003, 27(20): 62~67.
    [46]许洪华,倪受元.独立运行风电机组的最佳叶尖速比控制[J].太阳能学报,1998, 19(1) : 30~35.
    [47]黄明川,高衡初.变速恒频交流励磁风力发电机系统研究[J].合肥工业大学学报, 2000,23(2): 255~258.
    [48] B. Malinga, J. E.Sneckenberger, A. Feliachi. Modeling and control of a wind turbine as a distributed resource[C]. Proceedings of the 35th Southeastern Symposium on System Theory,2003: 108~112.
    [49] Hand.M.M. Variable speed wind turbine controller systematic design methodology: A comparison of non-linear and linear model-based designs[R]. Technical Report, NREL/TP一500-25540, 1999.
    [50] C. G.Anderson, J.-B. Richon,T. J.Cambell. An aerodynamic moment controlled surface for gust load alleviation on wind turbine rotors[J]. IEEE Trans on Control Systems Technology, 1998, 6(5): 577~595.
    [51] R.Cardenas-Dobson, G.M.Asher. Power limitation in variable speed wind turbines using pitch control and a mechanical torque observer[J]. Wind Engineering, 1996, 20(6): 363~387.
    [52] K. A.Stol. Time-varying control of wind turbines[C]. Proceedings of the American Control Conference, Denver Colorado, 2003:3796~3793.
    [53] M. J. Balas, A. Wright, K. Stol. Dynamics and control of horizontal axis wind turbines[C]. Proceedings of the American Control Conference, Denver, 2003:3781~3793.
    [54] J.N.Fodalgo, J.A.P. Lopes, V. Miranda. Neural networks applied to preventive control measures for the dynamic security of isolated power systems with renewable[J]. IEEE Trans on Power Systems, 1996,11(4): 1181~1186.
    [55] Y.D.Song, H.Dhinakaran, X.Y.Bao. Variable speed control of wind turbines using nonlinear and adaptive algorithms[J]. Wind Engineering and Industrial Aerodynamics, 2000, 85(3): 293~308.
    [56] Y.D.Song. Control of wind turbines using memory-based method[J]. Wind Engineering and Industrial Aerodynamics, 2000,85(3): 263~275.
    [57] X.F.Zhang, D.P.Xu, Y.B.Liu. Predictive Functional Control of a Doubly Fed Induction Generator for Variable Speed Wind Turbines[C]. The 5th WCICA Proceedings, 2004:3315~3319.
    [58] A.Dadone, L.Dambrosio. Estimator based adaptive fuzzy logic control technique for a wind turbine-generator system[J]. Energy Conversion and Management, 2003,44(1): 135~153.
    [59] R.Spee, S.Bhowmlk, J.H.R.Enslin. Adaptive control strategies for variable-speed doubly-fed wind power generation system[C]. Industry Applications Society Annual Meeting. Conference Record of the 1994, 1994: 545~552.
    [60] Y.F.Tang, L.Y.Xu. Fuzzy logical application for intelligent control of a variable speed drive[J]. IEEE Trans on Energy Conversion, 1994,94(41): 679~685.
    [61] S. Peresada, A. Ti11i,A. Tonieili. Robust output feedback control of a doubly-fed induction machine[C]. The 25th Annual Conference of the IEEE Industrial Electronics Society, IECON'99 Proceedings, 1999:1348~1354.
    [62] R.Chedid, F.Mrad, M.Basma. Intelligent control of a class of wind energy conversion systems[J]. IEEE Trans on Energy Conversion, 1999,14(4): 1597~1604.
    [63]张新房,徐大平,吕跃刚.大型变速风力发电机组的自适应模糊控制[J].系统仿真学报, 2004,16(3): 573~577.
    [64]马昕霞,宋明中,李永光.风力发电并网技术及其对电能质量的影响[J].上海电力学院学报, 2006, 22(3): 283~286.
    [65]李建林,赵栋利,李亚西,等.几种适合变速恒频风力发电机并网方式对比分析[J].电力建设, 2006,27(5): 8~10.
    [66]付旺保,赵栋利,潘磊,等.基于自抗扰控制器的变速恒频风力发电并网控制[J].电机工程学报,2006,26(3): 13~18.
    [67]雄健,张凯,裴雪军.一种改进的PWM整流器间接电流控制方案仿真[J].电工技术学报, 2003,18(1): 57~63.
    [68] Jung J,Lim S K,Nam K.A feedback linearizing control scheme for a PWM converter-inverter having a very small DC-link capacitor[J].IEEE Trans. Ind . Applicat,1999,35(5):1124~1131.
    [69] Vladimir Blasko, Vikram kaura. A New Mathematical Model and Control of a Three-Phase AC-DC Voltage Source Converter[J]. IEEE Trans.Power Electron., 1997, 12(1):116~123.
    [70] Nambo H,Jinhwan J,Kwanghee N.A fast dynamic dc-link power-balancing scheme for a PWM converter-inverter system[J].IEEE Trans. Ind. electron., 2001,48(4):794~803.
    [71]赵仁德,贺益康,刘其辉.提高PWM整流器抗负载扰动性能研究[J].电工技术学报, 2004,19(8): 67~72.
    [72]郭可忠,黄宏亮,莫春霞.交流励磁发电机稳态运行的研究[J].上海交通大学学报,2002,36(2): 251~254.
    [73]肖强辉,姚若萍,许善椿.交流励磁发电机的励磁稳态分析[J].清华大学学报(自然科学版),1997,37(1): 45~47.
    [74]韦忠朝,黄声华,陶醒世,等.变速恒频双馈发电机运性原理及稳态性能分析[J].华中理工大学学报,1996,24(5): 34~37.
    [75]陈坚.交流电机数学模型及调速系统[M].北京:国防工业出版社,1989.
    [76]李发海,朱东起.电机学[M].北京:科学出版社,2001.
    [77]李华德.交流调速控制系统[M].北京:电子工业出版社,2004.
    [78]谢庆国,赵金,万淑云.三相感应电机的稳定性分析[J].控制理论与应用,2002,9(5): 919~922.
    [79]赵荣祥,尹强,朱振东.自控式交流励磁变速电机的稳定性分析[J].电工技术学报,1998,13(4): 5~9.
    [80]颜湘武,于世涛,朱凌.异步化同步电机的静态稳定性研究[J].中国电机工程学报,2002,22(9):89~93.
    [81] M.G.Ioannides. Doubly Fed Induction Machine State Variables Model and Dynamic Response [J]. IEEE Trans on Energy Conversion, 1991,6(1): 55~61.
    [82] M.G.Ioannides. State Space Formulation and Transient Stability of the Double Output Asynchronous Generator[J]. IEEE Trans on Energy Conversion, 1993, 8(4): 732~738.
    [83]李晶,王伟胜,宋家骅.双馈感应发电机的线性化动态模型及运行特性分析[J].电网技术,2004,28(13):13~17.
    [84]汤宏,吴俊玲,周双喜.包含风电场电力系统的小干扰稳定性分析建模和仿真[J].电网技术,2004,28(1): 38~41.
    [85]赵阳,邹旭东,康勇,等.变速恒频双馈风力发电系统的速度模式控制[J].武汉大学学报(工学版),2007,40(1): 114~119.
    [86] SIMOES M G, BOSE B K, SPIEGEL R J. Fuzzy Logic Based Intelligent Control of a Variable Speed Cage Machine Wind Generation System[J]. IEEE Trans on Power Electronics, 1997,12(1): 87~ 95.
    [87] SIMOES M G, BOSE B K, SPIEGEL R J. Design and Performance Evaluation of a Fuzzy-Logic-Based Variable-Speed Wind Generation System[J]. IEEE Trans on Industry Application, 1997,33(4): 956~965.
    [88]胡家兵,贺益康,刘其辉.基于最佳功率设定的最大风能追踪策略[J].电力系统自动化,2005,29(24):32~38.
    [89]刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机的最优功率控制[J].太阳能学报,2006,27(10):1014~1020.
    [90]王秋瑾,张新房.基于WLS-SVM的变速风力机有效风速估计[J].系统仿真学报,2005,17(7): 1590~1593.
    [91]张新房,徐大平.柳亦兵,等.大型变速风力发电机组的风速软测量[J].太阳能学报,2006,27(4): 321~325.
    [92]向大为.双馈感应风力发电机特殊运行工况下励磁控制策略的研究[D]:[博士论文].重庆:重庆大学电气工程学院, 2006.
    [93]刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机并网控制策略[J].电力系统自动化,2006,30(3):51~55.
    [94]苑国锋,柴建云,李永东.变速恒频风力发电机组励磁变频器的研究[J].中国电机工程学报, 2005,25(8):90~94.
    [95]刘其辉,贺益康,张建华.并网型交流励磁变速恒频风力发电系统控制研究[J] .中国电机工程学报, 2006,26(23):109-114.
    [96]洪乃刚.电力电子电力拖动控制系统的MATLAB仿真[M].北京:机械工业出版社, 2006.
    [97]张兴华.基于Simulink/PSB的异步电机仿真变频调速系统的建模与仿真[J].系统仿真学报, 2005,17(9): 2099~2103.
    [98]王锋,姜建国,颜天佑.基于Matlab的异步电动机建模方法的研究[J].系统仿真学报, 2006,18(7): 1733~1735.
    [99]李晶,宋家骅,王伟胜.考虑变频器特性的变速恒频双馈风力发电机组控制策略的研究与仿真[J].电网技术, 2004,(21): 11~16.
    [100]汴松江,吕晓美,相会杰.交流励磁变速恒频风力发电系统控制策略的仿真研究[J].中国电机工程学报, 2005,25(16):57~62.
    [101]刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机的运行控制及建模仿真[J].中国电机工程学报, 2006,26(5):43~50.
    [102]李灰,何蓓.转子侧交-直-交变频器的双馈水轮发电机系统的建模与仿真[J].系统仿真学报, 2006,18(7): 1736~1741.
    [103] D. Graovac, V.Katic. Method of PWM rectifier control in voltage linked AC/DC/AC converter[C]. Proceedings of the Mediterranean Electrotechnical Conference, 1998: 1032~1036.
    [104] Lee, B.K, Ehsani, M. A simplified functional simulation model for three-phase voltage-source inverter using switching function concept[J]. IEEE Transactions on Industrial Electronics, 2001,48(2): 309~321.
    [105] Nikkhajoei, Hassan. Dynamic model and control of AC-DC-AC voltage-sourced converter system for distributed resources[J]. IEEE Trans on Power Delivery, 2007,22(2): 1169~1178.
    [106]徐艳平,钟彦儒.基于空间矢量PWM的新型直接转矩控制系统仿真[J].系统仿真学报, 2007,19(2): 344~347.
    [107]姜旭,肖湘宁,赵洋.改进的多电平SVPWM及其广义算法研究[J].中国电机工程学报, 2007,27(4): 90~95.
    [108]周浩敏.信号处理技术基础[M].北京:北京航空航天大学出版社, 2001.
    [109]刘凤君.现代逆变技术及应用[M].北京:电子工业出版社, 2006.
    [110] Xu Jinbang, Zhao Jin, Luo Ling, ect. A new control strategy of unity power factor for three-phase PWM rectifier system[C]. Proceedings of IECON, 2004: 709~714.
    [111] Skandari R, Rahmati A, Abrishamifar A, ect. A fuzzy logic controller for direct power control of PWM rectifiers with SVM[C]. Proceedings of 2006 International Conference on Power Electronics, Drives and Energy Systems, 2006: 41~47.
    [112]魏欣,陈大跃,赵春宇.基于空间矢量调制的异步电机直接转矩控制[J].系统仿真学报, 2006,18(2):405~408.
    [113]宋强,刘钟淇,张洪涛.大功率电力电子装置实时仿真的研究进展[J].系统仿真学报, 2006,18(12): 3329~3333.
    [114] Boldea I,Tutelea L,Serban I.Variable speed electric generators and their control: an emerging technology[J]. Journal of Electrical Engineering, 2002,l(3):20~28.
    [115] Lie Xu.Fault ride through of DFIG based on wind turbines[J]. IEE Proc., Electrical Power Application, 2003,143(3): 1~8.
    [116] Mohamed A.Z, Eskander M.N, Ghali F.A. Fuzzy logic control based maximum power tracking of a wind energy system[J]. Renewable Energy, 2001,23(2): 235~245.
    [117] Neammanee B,Krajangpan K,Sirisumrannukul S,ect. Maximum peak power tracking-based control algorithms with stall regulation for optimal wind energy capture[C]. Proceeding of The 4th Power Conversion Conference, 2007: 1424~1430.
    [118]王群京,陈权,姜卫东,等.中点钳位型三点平逆变器通态损耗分析[J].电工技术学报, 2007,22(3): 67~71.
    [119]梅杨,孙凯,黄立培,等.基于逆阻式IGBT的三项/单相矩阵式变换器[J].电工技术学报,2007, 22(3): 91~96.
    [120]马小亮,刘志强.双馈电动机直接转矩控制技术的研究[J].电工技术学报,2003,18(5): 63~68.
    [121]赵仁德.变速恒频双馈风力发电机交流励磁电源研究[D]: [博士论文].浙江杭州:浙江大学电气工程学院,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700