用户名: 密码: 验证码:
毛乌素沙漠风积砂力学特性及复合地基承载力试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Test Study on the Mechanical Property of the Aeolian Sand and the Bearing Capacity of the Aeolian Sand Ground of Mu Us Desert
  • 作者:宋焱勋
  • 论文级别:博士
  • 学科专业名称:地质工程
  • 学位年度:2011
  • 导师:彭建兵
  • 学科代码:081803
  • 学位授予单位:长安大学
  • 论文提交日期:2011-04-15
  • 答辩委员会主席:张家明
摘要
在对毛乌素沙漠自然地理及地质环境条件进行全面研究的基础上,基于一系列试验和测试手段,对毛乌素沙漠风积砂的级配特点、微结构、密度、含水量等物理特性及压缩特性、击实特性、强度特性等岩土力学性质进行了研究,同时探讨了不同密度条件下土水特征曲线的滞回特性及其变化趋势,并对毛乌素风积砂的渗透性进行了测定,研究了渗透系数与密度的变化关系,为有限元数值模拟计算提供了相关计算参数。
     在对常规应力路径应力-应变-强度关系进行研究的基础上,通过改进常规三轴试验设备实现了三轴拉伸应力路径试验,并对该应力路径下应力-应变-强度关系进行了研究,通过相关试验数据确定了D-C非线弹性本构模型和剑桥本构模型的相关参数,为基于这两种本构模型的毛乌素沙漠风积砂工程数值计算提供了相关参数。
     开展了毛乌素沙漠风积砂基于状态的弹塑性本构及其相关的本构参数研究。从毛乌素沙漠风积砂变形特性入手,首先研究了毛乌素沙漠风积砂的状态,并确定了相关模型参数,然后围绕基于状态的风积砂剪胀本构模型理论验证了本构模型。以不同应力路径下的三轴试验结果为基础,模拟了毛乌素沙漠风积砂在不同应力路径下的变形特性,并与试验结果进行比较,探讨了不同应力路径状态下该模型的适用性以及存在的问题。
     在固结不排水(CU)和固结排水(CD)动三轴试验基础上,对毛乌素沙漠风积砂的动力特性进行了研究。对相关动力参数和动强度特性及其影响因素进行了分析,并在此基础上建立了毛乌素沙漠风积砂的等效黏弹性本构和残余应变模型,获取了等效强度参数,并在此基础上建立了等效摩尔库伦强度判据。为毛乌素沙漠风积砂地基在动荷载作用下的变形、强度计算和场地液化势判别提供了试验和理论依据及可供工程直接应用的模型和参数。
     开展了毛乌素沙漠风积砂地基承载力试验工作,研究了毛乌素沙漠风积砂地基的持力特性;针对毛乌素沙漠风积砂地层碎石桩、砂桩及水泥搅拌桩桩体及复合地基的极限承载力开展了大量原位载荷试验及测试等工作,同时研究了桩体复合地基桩土荷载分担特性及单桩有效桩长,为毛乌素沙漠风积砂地基的设计和施工实践提供了重要的试验依据。
Based on the comprehensive study of natural geographical and geological conditions of Mu Us Desert, and a series of tests and test means, this paper studies such physical properties of Mu Us Desert eolian sands as grading characteristics, microstructure, density and water content, and also such rock-soil mechanical properties as compression, compaction and strength. At the same time, this paper discusses the hysteretic properties and change trends of soil-water characteristic curves under different density conditions, measures the permeability of Mu Us eolian sand, studies the changing relationship between osmotic coefficient and density, and provides relevant calculation parameters for the numerical simulation calculation of finite element.
     On the basis of studying the stress-strain-strength relationship under the conventional stress paths, this paper realizes the triaxial stretching stress path test by improving the conventional triaxial test apparatus. In this paper, relevant parameters of D-C non-linear elastic constitutive model and constitutive model of Cambridge have been determined through relevant test data after the study of stress-strain-strength relationship under the stress path, which provides relevant parameters for the numerical calculation of Mu Us Desert eolian sand project based on the two constitutive models above.
     This paper studies the state-based elastoplastic constitutive and related constitutive parameters concerning the Mu Us Desert eolian sand. Starting with the introduction of deformation property of Mu Us Desert eolian sand, this paper first studies its state and determines relevant model parameters, then verifies the constitutive model by focusing on the state-based constitutive model theory of eolian sand dilatancy. Based on the triaxial test results under different stress paths, this paper simulates the deformation properties of Mu Us desert eolian sand under different stress paths, and compares them with experimental results, discussing the applicability of this model and existing problems under different stress paths.
     On the basis of consolidated undrained (CU) and consolidated drained (CD) dynamic triaxial tests, dynamic characteristics of Mu Us Desert eolian sand are studied. Based on the analysis of relevant dynamic parameters, dynamic strength properties and influence factors, this paper establishes the equivalent viscoelastic constitutive and residual strain model of Mu Us Desert eolian sand, obtains the equivalent strength parameters, and makes the criterion for equivalent Mohr-Coulomb strength. This paper provides experimental and theoretical basis, models and parameters directly for engineering applications for the deformation of Mu Us Desert eolian sand foundation under dynamic loads, strength calculation, and site liquefaction potential discrimination.
     This paper carries out the work of testing the bearing capacity of Mu Us Desert eolian sand foundation, and studies its bearing properties. Aiming at the ultimate bearing capacity of gravel piles, sand piles and cement mixing pile bodies on the Mu Us Desert eolian sand layer, and that of composite foundation, this paper carries out lots of in situ load tests and testing work, and equally studying the characteristics of load sharing between piles and soils of pile-body composite foundation, and effective length of single pile, which provides an important test basis for the design and construction of Mu Us Desert eolian sand foundation.
引文
[1]陈晓光,罗俊宝,张生辉.沙漠地区公路建设成套技术[M].北京:人民交通出版社,2006.
    [2]FREDLUND D G, RAHARDJO H.非饱和土土力学[M].陈仲颐,等译.北京:中国建筑工业出版社,1997.
    [3]徐捷.王钊.李未显.非饱和土的吸力量测技术[J].岩石力学与工程学报.2000.19(增刊).905-909.
    [4]吴礼舟.黄润秋.胡瑞林.李志清.熊野生.膨胀土自然边坡吸力和饱和度量测[J].岩土[程学报.2005.27(4).343-346.
    [5]李广信.高等十力学.清华大学出版社,2004
    [6]吴世明等.土动力学[M].北京:中国建筑工业出版社,2000.
    [7]Kondner P L. Hyperbolic stress strain response:cohesive soils [J]. Journal of Soil Mechanics and Foundations, ASCE,1963,(1):115-143.
    [8]Hardin B O, Drnevich V P. Shear Modulus and damping in soils:design equations and curves[J]. Journal of Soil Mechanics and Foundations, ASCE,1972,(7):667-692.
    [9]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [10]Martin P P, Seed H B. One dimensional dynamic ground response analysis[J]. Journal of Geotechnical Engineering, ASCE,1982,(7):935-952.
    [11]陈国兴,庄海洋.基于Davidenkov骨架曲线的土体动力本构关系及其参数研究[J].岩十工程学报.2005.(8):860-864.
    [12]Rollins K, Evans M D, Diehl N B, et al. Shear modulus and damping relationships for gravels[J]. Journal of Geotechnical Engineering and Geoenvironmental Engineering, ASCE,1998,(5):396-405.
    [13]Hardin B O, Black W L. Vibration modulus of normally consoolidated clay[J]. Journal of SMFD. ASCE,1968,(2):353-369.
    [14]Hardin B O. The nature of stress-strain behavior for soils[A]//Proceedings of ASCE Geotechnical Engineering Division Specialty Conference of Earthquake Engineering and Soil Dnamics[C].1978,(1):3-90.
    [15]Seed H B, Idriss I M. Soil moduli and damping factors for dynamic response analysis[R]. Report No EERC70-10, Earthquake Engineering Research Center, University of California. California:Berkely,1970.
    [16]Seed H B. Wong R T. Idriss I M, Et al. Moduli and damping factors fro dynamic analyses of cohesionless soils[J]. Journal of Geotechnical Engineering, ASCE,1986.(11):1016-1032.
    [17]张克绪,谢君斐.土动力学[M].北京:地震出版社,1989.
    [18]Lee K L. Seed H B. Cyclic stress conditions causing liquefaction of sand[J]. Journal of Geotechnical Engineering, ASCE.1976.(1).
    [19]汪闻韶.土工抗震研究进展[J].岩土工程学报,1993,(6):80-82.
    [20]汪闻韶.土的动强度和液化特性[M].北京:中国电力出版社,1997.
    [21]刘颖,谢君斐,等.砂土震动液化[M].北京:地震出版社,1984.
    [22]Peacock W H, Seed H B. Sand liquefaction under cyclic loading simple shear conditions[J]. Journal of Soil Mechanics and Foundations, ASCE,1968(3):689-708.
    [23]Finn W D L, Bansby P L, Pickering D J. Effect of strain history on liquefaction of sands[J]. Journal of Soil Mechanics and Foundations, ASCE,1970.(6):1917-1934.
    [24]Seed H B, Peacock W H. Test procedure for measuring soil liquefaction characteristics[J]. Journal of Soil Mechanics and Foundations, ASCE,1971,(8):1099-1119.
    [25]Yoshimi Y. Liquefaction of saturated sand during vibration under quasi-plane-strain conditions[A]//Proceeding of the 3th Japan Earthquake Engineering Symposium[C].Tokyo.Japan,1970.
    [26]Yoshimi U, Oh-Oka H. A ring torsion apparatus for simple shear tests[A]//Proceedings of the 8th International Conference of Soil Mechanics and Foundation Engineering[C].Moscow. USSR,1973.
    [27]Ishibashi I. Sherif M A. Soil liquefaction by torsional simple shear device [J]. Journal of Geotechnical Engineering. ASCE,1974,(8):871-888.
    [28]Pakash S. Mathur J N. Liquefaction of fine sand under dynamic loads[A]//Proceedings of the 5th Symposium of the Civil and Hydraulic Engineering Departments[C]. Indian Institute of Science. Bangalore. India,1965.
    [29]Fiegel G L. Kutter B L. Liquefaction mechanism for layered soils[J]. Journal of Geotechnical Engineering. ASCE.1994.(4):737-755.
    [30]Martin G B. Finn W D L. Seed H B. Fundamentals of liquefaction under cyclic loading[J]. Journal of Geotechnical Engineering. ASCE.1975.(5):423-438.
    [31]Seed H B. Martin G R. Lysmer J. Pore water pressure changes during soil liquefaction[J]. Journal of Geotechnical Engineering. ASCE.1976.(4):327-346.
    [32]Finn W D L. Liquefaction potential developments since 1976[A]//Proceedings of International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics[C]. 1981:655-681.
    [33]De Alba P. Seed H B.Chang C K. Sand Liquefaction in large-scale simple shear tests[J]. Journal of Geotechnical Engineering, ASCE,1976.(9):909-927.
    [34]Tokimatsu K. Yoshimi Y. Empirical correlation of siol liquefaction based on SPT N-value and fines content[J]. Soils and Foundations.1983.(4):56-74.
    [35]Ishihara K. Yasuda S. Sand liquefaciton in hollow cylinder torsion under irregular excitation[J]. Soils and Foundations.1975,(1):29-45.
    [36]Ishihara K, Yamazaki F. Cyclic simple shear tests on sturated sand in multi-directional loading[J]. Soils and Foundations,1980,(1):45-59.
    [37]Ishihara K. Soil bahaviour in earthquake geotechnics[M]. Oxford:Clarendon Press,1996.
    [38]王洪瑾,沈瑞福,马奇国.双向振动下土的动强度[J]_清华大学学报(自然科学版),1996,(4):93-98.
    [39]Seed H B, Idriss I M, er al. Representation of irregular stress time histories uniform stress series in liquefaction analysis[R]. Report No.EERC72-29,Earthquake Engineering Reasearch Center,University of California, Berkeley,1975.
    [40]Finn W D L. Lee K W, Martin G R. An effective stress model for liquefaction[J]. Journal of Geotechnical Engineering. ASCE,1977.(6):517-533.
    [41]徐志英,沈珠江.地震液化的有效应力二维动力分析方法[J].华东水利学院学报,1981,(3):1-14.
    [42]张建民,谢定义.饱和砂土振动孔隙水压力增长的实用方法[J].水利学报,1991,(8):45-51.
    [43]陈国兴,刘雪珠.南京及其临近地区新近沉积土的动剪切模量和阻尼比试验研究[J].岩石力学与工程学报,2004,(8):167-174.
    [44]Seed H B, Idriss I M. Simplified procedure for evaluating soil liquefaction potential [J]. Journal of Geotechnical Engineering, ASCE,1971,(9):1249-1273.
    [45]Seed H B, Tokimatsu K. Harder L F. et al. Influence of SPT procedures in soil liquefaciton resistance evaluations[J]. Journal of Geotechnical Engineering, ASCE,1985.(12):1425-1445.
    [46]Youn T L, Idriss I M, Ronald D. et al. Liquefaction resistance of soils:Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on ecaluation of liquefaction resisitance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering. ASCE.2001. (10):817-833.
    [47]张克绪.饱和砂土的液化应力条件[J].地震工程与工程振动,1984,(1):99-109.
    [48]Seed H B. Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes[J]. Journal of Geotechnical Engineering. ASCE.1979,(2):201-255.
    [49]Ishihara K. Liquefaction and flow failure during earrhqueake[J]. Geotechnique, 1993.(3):351-415.
    [50]Liao S S C, Witman R V. Overburden correction factor for SPT in sand [J]. Journal of Geotechnical Engineering. ASCE,1986(3):373-377.
    [51]Seed R B, Cetin K O, Moss R E E, et al. Recent advances in soil liquefaction engineering:A unified and consistent framework [A]//Proceedings of the 26th Annual ASCE Los Angeles Geotechnical Spring Seminar, Keynote Presentation, H. M. S [C]. Queen Mary, Long Beach. California.2003.
    [52]Cetin K O, Seed R B, Kiureghian A D, et al. Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2004, (12):1314-1340.
    [53]龚晓南.广义复合地基理论及工程应用[J].岩土工程学报.2007.29(1).1~13.
    [54]龚晓南.当前复合地基工程应用中应注意的两个问题[J].地基处理.2005.16(2).57~58.
    [55]龚晓南.褚航.基础刚度对复合地基性状的影响[J].工程力学.2003.20(4).67-73.
    [56]赵明华.张玲.刘敦平.散体材料桩复合地基桩土应力比分析[J].中南大学学报(自然科学版).2007.38(3).555-560.
    [57]叶观宝.李志斌.徐超.王森.杨晓明.桩土应力比曲线的机理分析[J].勘察科学技术.2004(3).3.
    [58]徐兵.杜占鹏.曹国福.太浦河泵站水泥搅拌桩复合地基桩土应力比测试研究[J].长江科学院院报.2005.22(3).56-58.
    [59]马时冬.水泥搅拌桩复合地基桩土应力比测试研究[J].土木工程学报.2002.35(2).48~51.
    [60]李志斌.叶观宝.徐超.水泥土搅拌桩复合地基桩土应力比的对比分析[J].地下空间与工程学报.2005.1(3).386-389.
    [61]李国维.杨涛.柔性基础下复合地基桩土应力比现场试验研究[J].岩土力学.2005.26(2).265~269.
    [62]周波.杨庆光.张可能.刚性基础下柔性桩复合地基有效桩长的计算方法[J].中南大学学报(自然科学版).2007.38(1).175~179.
    [63]杨庆光.周波.张可能.刘志明.复合地基内附加应力及有效桩长的探讨[J].勘察科学技术.2006(6).6.
    [64]叶观宝.李志斌.徐超.王森.杨晓明.桩土应力比曲线的机理分析[J].勘察科学技术.2004(3).3.
    [65]徐超.廖星樾.叶观宝.杨晓明.利用载荷试验研究水泥土搅拌桩的有效桩长[J].水文地质工 程地质.2005(3).105~107.
    [66]段继伟.柔性群桩-承台-土共同作用的数值分析[J].浙江工业大学学报.1995.23(4).354~363.
    [67]段继伟.龚晓南.曾国熙.水泥搅拌桩桩土应力比试验研究[J].岩土工程师.1993.5(4).1-7.
    [68]段继伟.龚晓南.曾国熙.水泥搅拌桩的荷载传递规律[J].岩土工程学报.1994.16(4).1-8.
    [69]段继伟.龚晓南.曾国熙.单桩带台复合地基的有限元分析[J].地基处理.1994.5(2).5-12.
    [70]李万华.杨庆光.搅拌桩复合地基有效桩长的探讨[J].西部探矿工程.2006(增刊).53-54.
    [71]齐伟军.杨海涛.赵艳秋.复合地基有效桩长的计算方法[J].黑龙江科技学院学报.2003.13(4).50-52.
    [72]史三元.王浩然.柔性桩复合地基有效桩长的简化计算方法[J].河北工程大学学报(自然科学版).2007.24(3).1~3.
    [73]潘爱芳.马润勇.黎荣剑.鄂尔多斯盆地深部流体地球化学研究[M].北京:石油工业出版社.2006.
    [74]侯光才.张茂省等.鄂尔多斯盆地地下水勘查研究[M].北京:地质出版社.2008.
    [75]LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J].Geotechnique,2000,50(4): 449-460.
    [76]曹培.蔡正银.砂土应力路径试验的数值模拟[J].岩土工程学报.2008.30(1).133~137.
    [77]蔡正银.李相菘.砂土的剪胀理论及其本构模型的发展[C].第一届中国水利水电岩土力学与工程学术讨论会论文集.2007.48~53.
    [78]蔡正银.李相菘.砂土的变形特性与临界状态[J].岩土L程学报.2004.26(5).697~701.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700