用户名: 密码: 验证码:
隧道管棚超前支护技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管棚超前支护技术作为隧道开挖的一种辅助工法,在防止隧道塌方、抑制地层位移、控制地表沉降等方面发挥着重要作用,它能够有效地解决隧道在穿越浅埋大偏压、软弱破碎、流泥等特殊地质条件隧道开挖问题,此外,管棚超前支护技术还具有超前加固距离长、可靠性高、工期短等优点,因此管棚工法正得到越来越多的应用。本论文以管棚超前支护技术为研究对象,运用理论分析、数值模拟等研究手段,主要做了以下工作:
     (1)在常用围岩压力理论的基础上,综合考虑了隧道埋深、围岩条件、开挖条件以及管棚作为超前支护结构的特点等因素,得出了深、浅埋隧道管棚受力荷载的计算公式,并基于弹性地基梁理论建立了管棚的力学分析模型,采用解析解得到了管棚支护结构的挠度、转角及弯矩方程。
     (2)应用土拱效应原理得出了管棚环向最大容许间距的计算公式。
     (3)应用三维有限差分软件(FLAC3D)对管棚超前支护结构进行了数值模拟,对管棚布置型式、支护长度的改变、注浆与否以及注浆厚度的改变对隧道开挖的影响进行了分析,计算结果表明:管棚存在最佳布置型式;管棚支护长度的增大对隧道位移的影响不大;注浆厚度的增大对隧道位移的控制作用并不显著,并存在最佳注浆厚度。
     以上研究成果对于管棚支护设计理论和施工实践都具有重大的借鉴意义。
Pipe roof pre-support technology, as an auxiliary technique in tunnel excavation, has important function on preventing tunnel collapse, restraining ground movement and controlling ground surface settlement. It can solve the tunnel excavating problem effectively when the tunnel is constructed in soft or weak strata, such as shallow buried, crashed soft surrounding rock and abundant underground water. Furthermore, Pipe Roof Method has been widely applied because it has long pre-reinforce distance, high reliability, short construction period and other relative advantages. Taking pipe roof pre-support technology as the object to be investigated, using theory analysis and numerical simulation, a series of results were obtained.
     (1) Pre-supports and protections mechanism of shed-pipe technology is explored. Considering with the effects of the tunnel cover depth, the geological conditions and manners of excavation on the surrounding rock pressure, the equations for pipe roof reinforcement loading were proposed according to Terzaghi theory. Considering the delay effect of initial lining, an analytical approach based on Winkler elastic foundation beam theory for pipe roof reinforcement was put forward. The analytical solution obtained the deflection of pipe roof supporting structure, corner and bending moment equation.
     (2) The design parameters of Pipe roof supporting structure are systematically summarized. Application of soil arching effect principle obtains the maximum allowed to pipe roof ring spacing of calculation formula.
     (3) Taking a tunnel engineering for example, 3-d finite difference numerical simulation software was used to simulate advanced pipe roof supporting structure. Scope of pipe roof length, support arrangement for the change, grouting thickness of tunnel excavation were investigated. The calculation results show that: when using fan-shaped symmetrical arrangement type, when central angle equal to 120 degrees, it is the best arrangement type. Shed-pipe grouting for tunnel displacement control also have more significant effect of the tunnel, up to 45%, the horizontal displacement control also reached to 30%. Don't shed-pipe grouting for tunnel vertical displacement control also have more significant effect of the tunnel, up to 30%, the horizontal displacement control also reached to 20%. The selection of the length of pipe roof supporting structure need combining geology condition of the strata and the precision of displacement control, then we can achieve economic and security purposes . When grouting thickness changes between 0.3 m to 0.6 m, the change of the tunnel grouting thickness is not significant for the control of the displacement. It shows that there is a value which causes the accuracy of the control of displacement and security and economic to obtain some balance , namely the best grouting thickness.
     Above research results for pipe roof supporting design theory and construction practice are of great significance.
引文
[1]王梦恕.21世纪我国隧道及地下空间发展的探讨[J].铁道科学与工程学报,2004,1(1): 7-9.
    [2]杨明举.浅埋偏压隧道地表预加固及施工影响分析[J].公路,2008,10:270-272.
    [3]张明聚,张斌,黄明琦等.厦门翔安隧道穿越风化深槽施工效应及技术措施[J].北京工业大学学报,2008,34(2):155-158.
    [4]姜子良.国道306线经棚隧道穿越风积砂地层的综合施工技术探讨[J].水利与建筑工程学报,2008,6(4):67-73.
    [5]安刘生.隧道洞口施工地表预加固技术及应用[J].北京工业大学学报,2007,33(3):278- 282.
    [6]周顺华,张先锋,佘才高等.南京地铁软流塑地层浅埋暗挖法施工技术的探讨[J].岩石力学与工程学报,2005,24(3):526-531.
    [7]刘招伟,张顶立,张民庆.圆梁山隧道毛坝向斜高水压富水区注浆施工技术[J].岩石力学与工程学报.2005,24(10):1728-1734.
    [8]陈宇,曾建雄,刘建国等.既有公路下超浅埋软弱土层四车道隧道施工技术研究[J].铁道标准设计,2005,10:89-92.
    [9]周希圣,习哲,罗志阳等.南京地铁l#线隧道典型区间施工技术[J].岩石力学与工程学报,2004,23(20):3523-3528.
    [10] IBRAHIM O. Control of surface settlements with umbrella arch method in second stage excavations of Istanbul Metro[J]. Tunnelling and Underground Space Technology,2008, 23(6):674-681.
    [11] MIWA M,OGASAWARA M. Tunnelling through an embankment using all ground fasten method[J].Tunneling and Underground Space Technology,2005,20(2):121-127.
    [12]黎荐.高速公路隧道浅埋段特大塌方的综合处置技术[J].地下空间与工程学报,2008, 4(3):591-594.
    [13]李力.粉细砂地层大跨浅埋隧道注浆管棚数值分析[J].隧道建设,2008,28(6):656-659.
    [14]饶为国.管棚——大断面箱涵暗顶技术在下穿公路工程中的应用及分析[J].土木工程学报,2008,41(4):106-111.
    [15]夏才初,龚建伍,陈佑新等.滑行道下超长管棚——箱涵顶进地表沉降分析[J].岩石力学与工程学报,2008,27(4):676-702.
    [16]苟德明,阳军生,张戈等.浅埋暗挖隧道管棚变形监测及受力机制分析[J].岩石力学与工程学报,2007,26(6):1258-1264.
    [17]董新平,周顺华.管棚法在东部城市软弱地层中应用前景综述.现代隧道技术,2004,增:212-215.
    [18]王伟锋.软岩偏压双连拱隧道管棚预支护参数研究[D].北京:北京交通大学,2006.
    [19]周顺华,董新平.管棚工法的计算原理及其应用[M].上海:同济大学出版社,2007.
    [20]毕俊丽.管棚预支护机理及数值模拟[D].北京:北京交通大学,2006.
    [21]董新平,周顺华,胡新朋.软弱地层管棚法施工中管棚作用空间分析[J].岩土程学报,2006,28(7):841-846.
    [22]伍振志,傅志锋,王静等.浅埋松软地层开挖中管棚注浆法的加固机理及效果分析[J].岩石力学与工程学报,2005,24(6):1026-1029.
    [23] IBRAHIM O.Control of surface settlements with umbrella arch method in second stage excavations of Istanbul Metro[J].Tunnelling and Underground Space Technology, 2008,23(6):674-681.
    [24] HISATAKE M,OHNO S. Effects of pipe roof supports and the excavation method on the displacements above a tunnel face[J].Tunnelling and Underground Space Technology, 2008,23(2):120-127.
    [25] KAMATA H,MASHIMO H. Centrifuge model test of tunnel face reinforcement by bolting[J].Tunnelling and Underground Space Technology,2003,18(2):205-212.
    [26] YOO C S.Finite-element analysis of tunnel face reinforced by longitudinal pipes[J].Computers and Geotechnics,2002,29(1):73-94.
    [27] YOO C S,Shin H K. Deformation behaviour of tunnel face reinforced with longitudinal pipes-laboratory and numerical investigation[J].Tunnelling and Underground Space Technology,2003,18(4):303-319.
    [28] PEILA D. A theoretical study of reinforcement influence on the stability of a tunnel face[J].Geotechnical and Geological Engineering,1994,12:145-168.
    [29] SHIN J H,CHOI Y K,KWON O Y,eta1. Model testing for pipe-reinforced tunnel heading in a granular soil[J].Tunnelling and Underground Space Technology,2008,23(3): 241-250.
    [30] KAMATA H,MASHIMO H. Centrifuge model test of tunnel face reinforcement by bolting[J].Tunnelling and Underground Space Technology,2003,18(2):205-212.
    [31]周顺华.软弱地层浅埋暗挖施工中管棚法的棚架原理[J].岩石力学与工程学报,2005, 24(14):2565-2570.
    [32]董新平,胡新朋,周顺华.软弱地层管棚作用特性判别和分析[J].地下空间与工程学报, 2006,2(4):631-634.
    [33]董新平,周顺华.软土地层开挖释放荷载引起管棚位移敏感度分析[J].岩土程学报,2005,27(11):1296-1299.
    [34]董新平,周顺华.软弱地层管棚荷载传递作用分析[J].岩土程学报,2005,27(11): 1296-1299.
    [35]程小彬,刘建民.三维非线性有限元分析在地下管棚支护中的应用[J].探矿工程(岩土钻掘工程),2007,6:59-62.
    [36]肖世国,夏才初,朱合华等.管幕内箱涵顶进中顶部管幕竖向变形预测[J].岩石力学与工程学报,2006,25(9):1887-1892.
    [37]庄丽,雷震宇.软弱地层管棚施工中失水引起的地表沉降计算[J].地下空间与工程学报,2005,1(3):383-385.
    [38]周顺华,庄丽,王炳龙等.管棚成孔失水引起地表沉降因素分析[J].中国铁道科学, 2006,27(1):23-26.
    [39]苟德明,阳军生,张戈等.浅埋暗挖隧道管棚变形监测及受力机制分析[J].岩石力学与工程学报,2007,26(6):1258-1264.
    [40]常艄东.管棚超前预支护机理研究[D].成都:西南交通大学,1999.
    [41]孔恒.城市地铁隧道浅埋暗挖发地层预加固机理及应用研究[D].北京:北京交通大学,2003.
    [42]朱正国.连拱隧道围岩压力计算方法与动态施工力学行为研究[D].北京:北京交通大学,2007.
    [43]JTG D70-2004,公路隧道设计规范[S].北京:人民交通出版社,2004.
    [44]王海涛.隧道管棚预支护体系的力学机理与开挖面稳定性研究[博士学位论文].大连:大连理工大学,2009.
    [45]关宝树.隧道及地下工程专题技术——辅助工法概论[M].成都:西南交通大学出版社,1998.
    [46]赵建平.浅埋暗挖隧道管棚预支护机理及其效用研究[D].长沙:中南大学,2005.
    [47]苟德明.既有公路下连拱隧道管棚变形测试与作用机理研究[D].长沙:长沙理工大学,2007.
    [48]关宝树,杨其新.地下工程管棚法[M].成都:西南交通大学出版社,1996.
    [49]徐明星.浅埋大断面管棚——箱涵法关键技术研究[D].上海:同济大学,2008.
    [50]陈长征,罗跃纲,白秉三,唐忠.结构损伤检测与智能诊断[M].北京:科学出版社,2001.
    [51]彭文斌. FLAC3D实用教程[M].北京:机械工业出版社,2008.
    [52]朱国保.软弱破碎围岩隧道中管棚超前预支护技术研究[D].成都:西南交通大学, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700