用户名: 密码: 验证码:
肥胖的遗传流行病学研究以及双变量关联定位的理论探讨和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近的研究数据表明,白种人群的肥胖诊断标准可能不适用于亚洲人。虽然在白种人群中已经开展了许多关于肥胖相关表型的全基因组关联研究,但是在中国人群中至今没有成功运用全基因组关联研究定位肥胖基因的报道。在统计遗传学领域,已有大量关于单个性状的关联分析方法研究,但是对于两个相关性状的关联分析方法研究,还少有开展。
     本文首先使用全身脂肪含量(PBF)作为金标准,在1109个男性个体和879个女性个体中采用受试者操作特征曲线(ROC)分析估计了三个简易测量指标,即体重指数(BMI)、腰围(WC)、腰髋比(WHR)预测肥胖的能力。分析表明,BMI、WC、WHR都与PBF高度相关,相关系数为0.45-0.75。真阳性率在男性中是82.4%到94.1%,在女性中是68.8%到86.3%。真阴性率在男性中是64.1%到84.7%,在女性中是56.9%到79.0%。BMI和WC两个指标在男性和女性不同年龄组中曲线下的面积比较高(0.76-0.92),而WHR这个指标稍微低-些(0.74-0.88)。研究表明,BMI和WC是两个很好的预测肥胖的指标,WHR次之。该研究同时发现,用BMI在中国人群中预测肥胖的标准要明显低于白种人群。
     接下来我们在597个中国北方人群中运用Affymetrix 500k芯片开展了全基因组关联研究定位影响BMI变异的新基因,此研究进一步在2955个中国南方人中进行了重复验证。通过一系列的质量控制程序后,281,533个单核苷酸多态性(SNP)可以进行关联分析。经过FDR方法进行多重校正后,8个SNP仍然与BMI关联(FDRq=0.033-0.048)。最显著的SNP是rs4633,位于catechol-0-methyltransferase (COMT)基因的外显子上(p=5.45×10-7,FDRq=0.033)。另外,位于EIF2AK4(eukaryotic translation initiation factor 2 alpha kinase 4)基因内的两个临近的SNP rs4432245和rs711906也与BMI显著关联(?)值分别为4.38×10-6,6.39×10-6,FDRq=0.048)。在南方人群的验证研究中,这两个位点与BMI的关联获得了证实(p=0.03和0.01)。
     除此之外,我们通过大量的计算机模拟,运用广义估计方程2(GEE2)对两个相关性状的关联定位方法进行研究。通过与单个性状关联研究的功效比较,发现双变量模型比单变量模型统计功效更高。而且双变量关联分析的假阳性率与单变量分析相比没有差别,都在设定的显著性水平0.05左右。所以我们提出的双变量分析模型是合理的。进一步对肥胖和骨质疏松两个相关性状的实验数据进行的双变量关联分析验证了该方法的优越性。
     本研究的创新性在于:1)第一次在中国南方人群中对衡量全身肥胖的简易指标进行评估;2)第一次在中国人群中运用全基因组关联分析方法定位影响BMI变异的新基因;3)第一次尝试运用广义估计方程2拟合基于群体设计的两个数量性状的关联定位研究。
Recent data suggest that current obesity diagnostic criterion for Caucasians may not be appropriate for Asian populations. Genome wide association studies for obesity have been successfully conducted in Caucassians but none was done in Chinese. In the area of statistical genetics, univariate association analyses have been widely investigated, however, multivariate association analyses for population design have not received sufficient attention.
     Here, in this study, firstly, we utilized receiver operating characteristic analyses to evaluate body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) in predicting obestiy using percentage body fat (PBF) as gold standard in 1109 males and 879 females. BMI, WC and WHR showed strong positive correlation with PBF (r=0.47-0.75) in both males and females within both age groups. True-positive rates ranged from 82.4% to 94.1% and 68.8% to 86.3% in males and females, respectively. True-negative rates ranged from 64.1% to 84.7% and from 56.9% to 79.0%, respectively. The areas under the curves (AUCs) for WC and BMI were high (0.76-0.92) in both sexes and divided age groups (20-30-y and 31-45-y), and those for WHR were a little lower (0.74-0.88). Our study suggested that BMI and WC are two important predictors for obesity in Chinese, and WHR is an alternative. We also suggested an obviously lower cut of BMI to define obestity in young Chinese compared with that in Caucasians.
     Than we conducted a genome wide association study for BMI using Affymetrix 500k chip in 597 northern Chinese and a replication study in 2955 southeren Chinese. After quality control,281,533 single nucleotide polymorphisms (SNPs) were included in the association analysis. Eight SNPs were significantly associated with BMI variation after false discovery rate (FDR) correction (FDR q=0.033-0.048). Among these eight SNPs, rs4633 which is located at the exon of catechol-O-methyltransferase (COMT) gene is the most significant SNP associated with BMI (FDR q=0.033). Two additional contiguous SNPs (rs4432245 & rs711906) in the eukaryotic translation initiation factor 2 alpha kinase 4 (EIF2AK4) gene were significantly associated with BMI (FDR q=0.048). In the follow-up replication study (southern Chinese sample) containing 2955 Chinese Han subjects, we confirmed the associations between BMI and rs4432245, rs711906 in the EIF2AKE gene (p=0.03 & 0.01, respectively).
     Besides, we performed extensive simulation studies and introduced generalized estimating equation 2 (GEE2) to association mapping for two traits. Through power comparison with univariate analyses, we found that bivariate models can be more powerful than univariate model. The introduced method leads to false-positive rates around 0.05 at the nominal significant level of 0.05, and so the introduced method is reasonably robust. Our real data analyses for obesity and osteoporosis confirmed these findings.
     The present study is the first attempt to evaluate the diagnostic indices for obesity in southern Chinese, the first genome wide association study for Chinese and identified a new gene for BMI. It is also the first effort to introduce a method applied to association mapping for two traits for population-based design.
引文
1. Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat.Genet.1996;13:399-408. 2. Hastbacka J, de la CA, Kaitila I, Sistonen P, Weaver A, Lander E. Linkage disequilibrium mapping in isolated founder populations:diastrophic dysplasia in Finland. Nat.Genet.1992;2:204-11. 3. Xia JH, Liu CY, Tang BS, Pan Q, Huang L, Dai HP et al. Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat.Genet.1998;20:370-73. 4. Hanis CL, Boerwinkle E, Chakraborty R, Ellsworth DL, Concannon P, Stirling B et al. A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nat.Genet.1996;13:161-66. 5. Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat.Genet.2000;26:163-75. 6. Lander ES, Schork NJ. Genetic dissection of complex traits. Science 1994;265:2037-48. 7. Sox HC, Jr. Probability theory in the use of diagnostic tests. An introduction to critical study of the literature. Ann.Intern.Med.1986;104:60-66. 8. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves:a nonparametric approach. Biometrics 1988;44:837-45.
    9. Metz CE. ROC methodology in radiologic imaging. Invest Radiol.1986;21:720-33.
    10. Tosteson AN, Begg CB. A general regression methodology for ROC curve estimation. Med.Decis.Making 1988;8:204-15.
    11. McPherson JD, Marra M, Hillier L, Waterston RH, Chinwalla A, Wallis J et al. A physical map of the human genome. Nature 2001;409:934-41.
    12. Kazazian HH, Jr. Mobile elements:drivers of genome evolution. Science 2004;303:1626-32.
    13. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD et al. Global variation in copy number in the human genome. Nature 2006;444:444-54.
    14. Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU et al. Segmental duplications and copy-number variation in the human genome. Am.J.Hum.Genet. 2005;77:78-88.
    15. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996;273:1516-17.
    16. Feitosa MF, Borecki IB, Rich SS, Arnett DK, Sholinsky P, Myers RH et al. Quantitative-trait loci influencing body-mass index reside on chromosomes 7 and 13: the National Heart, Lung, and Blood Institute Family Heart Study. Am.J.Hum.Genet. 2002;70:72-82.
    17. Hanson RL, Ehm MG, Pettitt DJ, Prochazka M, Thompson DB, Timberlake D et al. An autosomal genomic scan for loci linked to type Ⅱ diabetes mellitus and body-mass index in Pima Indians. Am.J.Hum.Genet.1998;63:1130-38.
    18. Nash MW, Huezo-Diaz P, Williamson RJ, Sterne A, Purcell S, Hoda F et al. Genome-wide linkage analysis of a composite index of neuroticism and mood-related scales in extreme selected sibships. Hum.Mol.Genet.2004; 13:2173-82.
    19. Palmer LJ, Buxbaum SG, Larkin EK, Patel SR, Elston RC, Tishler PV et al. Whole genome scan for obstructive sleep apnea and obesity in African-American families. Am.J.Respir.Crit Care Med.2004; 169:1314-21.
    20. Turner ST, Kardia SL, Boerwinkle E, Andrade MM. Multivariate linkage analysis of blood pressure and body mass index. Genet.Epidemiol.2004;27:64-73.
    21. Arya R, Duggirala R, Jenkinson CP, Almasy L, Blangero J, O'Connell P et al. Evidence of a novel quantitative-trait locus for obesity on chromosome 4p in Mexican Americans. Am.J.Hum.Genet.2004;74:272-82.
    22. Wu X, Cooper RS, Borecki I, Hanis C, Bray M, Lewis CE et al. A combined analysis of genomewide linkage scans for body mass index from the National Heart, Lung, and Blood Institute Family Blood Pressure Program. Am.J.Hum.Genet. 2002;70:1247-56.
    23. Bell CG, Benzinou M, Siddiq A, Lecoeur C, Dina C, Lemainque A et al. Genome-wide linkage analysis for severe obesity in french caucasians finds significant susceptibility locus on chromosome 19q. Diabetes 2004;53:1857-65.
    24. Dai F, Keighley ED, Sun G, Indugula SR, Roberts ST, Aberg K et al. Genome-wide scan for adiposity-related phenotypes in adults from American Samoa. Int.J.Obes.(Lond) 2007;31:1832-42.
    25. Deng HW, Deng H, Liu YJ, Liu YZ, Xu FH, Shen H et al. A genomewide linkage scan for quantitative-trait loci for obesity phenotypes. Am.J.Hum.Genet. 2002;70:1138-51.
    26. Hsueh WC, Mitchell BD, Schneider JL, St Jean PL, Pollin TI, Ehm MG et al. Genome-wide scan of obesity in the Old Order Amish. J.Clin.Endocrinol.Metab
    2001;86:1199-205.
    27. Zhu X, Cooper RS, Luke A, Chen G, Wu X, Kan D et al. A genome-wide scan for obesity in African-Americans. Diabetes 2002;51:541-44.
    28. Adeyemo A, Luke A, Cooper R, Wu X, Tayo B, Zhu X et al. A genome-wide scan for body mass index among Nigerian families. Obes.Res.2003; 11:266-73.
    29. Almasy L, Goring HH, Diego V, Cole S, Laston S, Dyke B et al. A novel obesity locus on chromosome 4q:the Strong Heart Family Study. Obesity.(Silver.Spring) 2007;15:1741-48.
    30. Meyre D, Lecoeur C, Delplanque J, Francke S, Vatin V, Durand E et al. A genome-wide scan for childhood obesity-associated traits in French families shows significant linkage on chromosome 6q22.31-q23.2. Diabetes 2004;53:803-11.
    31. Groves CJ, Zeggini E, Walker M, Hitman GA, Levy JC, O'Rahilly S et al. Significant linkage of BMI to chromosome 10p in the U.K. population and evaluation of GAD2 as a positional candidate. Diabetes 2006;55:1884-89.
    32. Palmer LJ, Buxbaum SG, Larkin E, Patel SR, Elston RC, Tishler PV et al. A whole-genome scan for obstructive sleep apnea and obesity. Am.J.Hum.Genet. 2003;72:340-50.
    33. Liu YJ, Araujo S, Recker RR, Deng HW. Molecular and genetic mechanisms of obesity:implications for future management. Curr.Mol.Med.2003;3:325-40.
    34. Clement K, Boutin P, Froguel P. Genetics of obesity. Am.J.Pharmacogenomics. 2002;2:177-87.
    35. Chagnon YC, Rankinen T, Snyder EE, Weisnagel SJ, Perusse L, Bouchard C. The human obesity gene map:the 2002 update. Obes.Res.2003; 11:313-67.
    36. Comuzzie AG, Williams JT, Martin LJ, Blangero J. Searching for genes underlying normal variation in human adiposity. J.Mol.Med.2001;79:57-70.
    37. Liu YJ, Araujo S, Recker RR, Deng HW. Molecular and genetic mechanisms of obesity:implications for future management. Curr.Mol.Med.2003;3:325-40.
    38. Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell 2001;104:531-43.
    39. Pearson TA, Manolio TA. How to interpret a genome-wide association study. JAMA 2008;299:1335-44.
    40. Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G et al. Replicating genotype-phenotype associations. Nature 2007;447:655-60.
    41. Skol AD, Scott LJ, Abecasis GR, Boehnke M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat.Genet. 2006;38:209-13.
    42. Wang H, Du S, Zhai F, Popkin BM. Trends in the distribution of body mass index among Chinese adults, aged 20-45 years (1989-2000). Int.J.Obes.(Lond) 2007;31:272-78.
    43. Peeters A, Barendregt JJ, Willekens F, Mackenbach JP, Al MA, Bonneux L. Obesity in adulthood and its consequences for life expectancy:a life-table analysis. Ann.Intern.Med.2003;138:24-32.
    44. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX et al. Obesity and cardiovascular disease:pathophysiology, evaluation, and effect of weight loss. Arterioscler.Thromb.Vasc.Biol.2006;26:968-76.
    45. Wolf HK, Tuomilehto J, Kuulasmaa K, Domarkiene S, Cepaitis Z, Molarius A et al.
    Blood pressure levels in the 41 populations of the WHO MONICA Project. J.Hum.Hypertens.1997;11:733-42.
    46. James J, Kerr D. Prevention of childhood obesity by reducing soft drinks. Int.J.Obes.(Lond) 2005;29 Suppl 2:S54-S57.
    47. Liu PY, Li YM, Li MX, Malkin I, Qin YJ, Chen XD et al. Lack of evidence for a major gene in the Mendelian transmission of BMI in Chinese. Obes.Res. 2004;12:1967-73.
    48. Stunkard AJ, Sorensen TI, Hanis C, Teasdale TW, Chakraborty R, Schull WJ et al. An adoption study of human obesity. N.Engl.J.Med.1986;314:193-98.
    49. Kaprio J, Eriksson J, Lehtovirta M, Koskenvuo M, Tuomilehto J. Heritability of leptin levels and the shared genetic effects on body mass index and leptin in adult Finnish twins. Int.J.Obes.Relat Metab Disord.2001;25:132-37.
    50. Deng HW, Lai DB, Conway T, Li J, Xu FH, Davies KM et al. Characterization of genetic and lifestyle factors for determining variation in body mass index, fat mass, percentage of fat mass, and lean mass. J.Clin.Densitom.2001;4:353-61.
    51. Maes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human adiposity. Behav.Genet.1997;27:325-51.
    52. Deng FY, Lei SF, Li MX, Jiang C, Dvornyk V, Deng HW. Genetic determination and correlation of body mass index and bone mineral density at the spine and hip in Chinese Han ethnicity. Osteoporos.Int.2006; 17:119-24.
    53. Rice T, Daw EW, Gagnon J, Bouchard C, Leon AS, Skinner JS et al. Familial resemblance for body composition measures:the HERITAGE Family Study. Obes.Res.1997;5:557-62.
    54. Treuth MS, Butte NF, Ellis KJ, Martin LJ, Comuzzie AG. Familial resemblance of body composition in prepubertal girls and their biological parents. Am.J.Clin.Nutr. 2001;74:529-33.
    55. Farooqi IS. Monogenic human obesity. Front Horm.Res.2008;36:1-11.
    56. Yang W, Kelly T, He J. Genetic epidemiology of obesity. Epidemiol.Rev. 2007;29:49-61.
    57. Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B et al. The human obesity gene map:the 2005 update. Obesity.(Silver.Spring) 2006;14:529-644.
    58. Meyre D, Delplanque J, Chevre JC, Lecoeur C, Lobbens S, Gallina S et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat.Genet.2009;41:157-59.
    59. Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat.Genet.2009;41:18-24.
    60. Liu YJ, Liu XG, Wang L, Dina C, Yan H, Liu JF et al. Genome-wide association scans identified CTNNBL1 as a novel gene for obesity. Hum.Mol.Genet. 2008;17:1803-13.
    61. Hinney A, Nguyen TT, Scherag A, Friedel S, Bronner G, Muller TD et al. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS.ONE.2007;2:e1361.
    62. Fox CS, Heard-Costa N, Cupples LA, Dupuis J, Vasan RS, Atwood LD. Genome-wide association to body mass index and waist circumference:the Framingham Heart Study 100K project. BMC.Med.Genet.2007;8 Suppl 1:S18.
    63. Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat.Genet.2008;40:768-75.
    64. Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat.Genet.2009;41:25-34.
    65. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS.Genet.2007;3:e115.
    66. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007;316:889-94.
    67. Lange C, Whittaker JC. Mapping quantitative trait Loci using generalized estimating equations. Genetics 2001;159:1325-37.
    68. Lange C, Laird NM. On a general class of conditional tests for family-based association studies in genetics:the asymptotic distribution, the conditional power, and optimality considerations. Genet.Epidemiol.2002;23:165-80.
    69. Lange C, Silverman EK, Xu X, Weiss ST, Laird NM. A multivariate family-based association test using generalized estimating equations:FBAT-GEE. Biostatistics. 2003;4:195-206.
    70. Almasy L, Dyer TD, Blangero J. Bivariate quantitative trait linkage analysis: pleiotropy versus co-incident linkages. Genet.Epidemiol.1997;14:953-58.
    71. Lei S, Deng F, Xiao P, Zhong K, Deng H, Recker RR et al. Bivariate whole-genome linkage scan for bone geometry and total body fat mass. J.Genet.Genomics
    2009;36:89-97.
    72. Karasik D, Zhou Y, Cupples A, Hannan MT, Kiel DP, Demissie S. Bivariate Genome-Wide Linkage Analysis of Femoral Bone Traits and Leg Lean Mass: Framingham Study. J.Bone Miner.Res.2008.
    73. Zhang ZX, Lei SF, Deng FY, Zhang F, Liu YJ, Recker RR et al. Bivariate genome-wide linkage analysis for traits BMD and AAM:Effect of menopause on linkage signals. Maturitas 2009;62:16-20.
    74. Liu XG, Liu YJ, Liu J, Pei Y, Xiong DH, Shen H et al. A bivariate whole genome linkage study identified genomic regions influencing both BMD and bone structure. J.Bone Miner.Res.2008;23:1806-14.
    75. Karasik D, Shimabuku NA, Zhou Y, Zhang Y, Cupples LA, Kiel DP et al. A genome wide linkage scan of metacarpal size and geometry in the Framingham Study. Am.J.Hum.Biol.2008;20:663-70.
    76. Pan F, Xiao P, Guo Y, Liu YJ, Deng HY, Recker RR et al. Chromosomal regions 22q13 and 3p25 may harbor quantitative trait loci influencing both age at menarche and bone mineral density. Hum.Genet.2008; 123:419-27.
    77. Wang XL, Deng FY, Tan LJ, Deng HY, Liu YZ, Papasian CJ et al. Bivariate whole genome linkage analyses for total body lean mass and BMD. J.Bone Miner.Res. 2008;23:447-52.
    78. Vinson A, Mahaney MC, Cox LA, Rogers J, VandeBerg JL, Rainwater DL. A pleiotropic QTL on 2p influences serum Lp-PLA2 activity and LDL cholesterol concentration in a baboon model for the genetics of atherosclerosis risk factors. Atherosclerosis 2008; 196:667-73.
    79. Wang L, Liu YJ, Xiao P, Shen H, Deng HY, Papasian CJ et al. Chromosome 2q32
    may harbor a QTL affecting BMD variation at different skeletal sites. J.Bone Miner.Res.2007;22:1672-78.
    80. Karasik D, Dupuis J, Cupples LA, Beck TJ, Mahaney MC, Havill LM et al. Bivariate linkage study of proximal hip geometry and body size indices:the Framingham study. Calcif.Tissue Int.2007;81:162-73.
    81. Chiu YF, Chuang LM, Kao HY, Ho LT, Ting CT, Hung YJ et al. Bivariate genome-wide scan for metabolic phenotypes in non-diabetic Chinese individuals from the Stanford, Asia and Pacific Program of Hypertension and Insulin Resistance Family Study. Diabetologia 2007;50:1631-40.
    82. Feitosa ME, Rice T, Borecki IB, Rankinen T, Leon AS, Skinner JS et al. Pleiotropic QTL on chromosome 12q23-q24 influences triglyceride and high-density lipoprotein cholesterol levels:the HERITAGE family study. Hum.Biol.2006;78:317-27.
    83. Havill LM, Rogers J, Cox LA, Mahaney MC. QTL with pleiotropic effects on serum levels of bone-specific alkaline phosphatase and osteocalcin maps to the baboon ortholog of human chromosome 6p23-21.3. J.Bone Miner.Res.2006;21:1888-96.
    84. Gayan J, Willcutt EG, Fisher SE, Francks C, Cardon LR, Olson RK et al. Bivariate linkage scan for reading disability and attention-deficit/hyperactivity disorder localizes pleiotropic loci. J.Child Psychol.Psychiatry 2005;46:1045-56.
    85. Kullo IJ, Turner ST, Boerwinkle E, Kardia SL, de Andrade M. A novel quantitative trait locus on chromosome 1 with pleiotropic effects on HDL-cholesterol and LDL particle size in hypertensive sibships. Am.J.Hypertens.2005;18:1084-90.
    86. Feitosa MF, Rice T, North KE, Kraja A, Rankinen T, Leon AS et al. Pleiotropic QTL on chromosome 19q13 for triglycerides and adiposity:the HERITAGE Family Study. Atherosclerosis 2006; 185:426-32.
    87. Devoto M, Spotila LD, Stabley DL, Wharton GN, Rydbeck H, Korkko J et al. Univariate and bivariate variance component linkage analysis of a whole-genome scan for loci contributing to bone mineral density. Eur.J.Hum.Genet.2005;13:781-88.
    88. North KE, Miller MB, Coon H, Martin LJ, Peacock JM, Arnett D et al. Evidence for a gene influencing fasting LDL cholesterol and triglyceride levels on chromosome 21q. Atherosclerosis 2005;179:119-25.
    89. Martin LJ, Cianflone K, Zakarian R, Nagrani G, Almasy L, Rainwater DL et al. Bivariate linkage between acylation-stimulating protein and BMI and high-density lipoproteins. Obes.Res.2004;12:669-78.
    90. Zhang X, Wang K. Bivariate linkage analysis of cholesterol and triglyceride levels in the Framingham Heart Study. BMC.Genet.2003;4 Suppl 1:S62.
    91. Arya R, Lehman D, Hunt KJ, Schneider J, Almasy L, Blangero J et al. Evidence for bivariate linkage of obesity and HDL-C levels in the Framingham Heart Study. BMC.Genet.2003;4 Suppl 1:S52.
    92. Lin JP. Genome-wide scan on plasma triglyceride and high density lipoprotein cholesterol levels, accounting for the effects of correlated quantitative phenotypes. BMC.Genet.2003;4 Suppl 1:S47.
    93. North KE, Rose KM, Borecki IB, Oberman A, Hunt SC, Miller MB et al. Evidence for a gene on chromosome 13 influencing postural systolic blood pressure change and body mass index. Hypertension 2004;43:780-84.
    94. Soria JM, Almasy L, Souto JC, Buil A, Martinez-Sanchez E, Mateo J et al. A new locus on chromosome 18 that influences normal variation in activated protein C resistance phenotype and factor VIII activity and its relation to thrombosis susceptibility. Blood 2003;101:163-67.
    95. Hanson RL, Ehm MG, Pettitt DJ, Prochazka M, Thompson DB, Timberlake D et al. An autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians. Am.J.Hum.Genet.1998;63:1130-38.
    96. Tang ZH, Xiao P, Lei SF, Deng FY, Zhao LJ, Deng HY et al. A bivariate whole-genome linkage scan suggests several shared genomic regions for obesity and osteoporosis. J.Clin.Endocrinol.Metab 2007;92:2751-57.
    97. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986;73:13-22.
    98. Prentice RL. Correlated binary regression with covariates specific to each binary observation. Biometrics 1988;44:1033-48.
    99. Lange C, Silverman EK, Xu X, Weiss ST, Laird NM. A multivariate family-based association test using generalized estimating equations:FBAT-GEE. Biostatistics. 2003;4:195-206.
    100. Liu J, Pei Y, Papasian CJ, Deng HW. Bivariate association analyses for the mixture of continuous and binary traits with the use of extended generalized estimating equations. Genet.Epidemiol.2008.
    101. Pei YF, Zhang L, Liu J, Deng HW. Multivariate association test using haplotype trend regression. Ann.Hum.Genet.2009;73:456-64.
    102. Doll S, Paccaud F, Bovet P, Burnier M, Wietlisbach V. Body mass index, abdominal adiposity and blood pressure:consistency of their association across developing and developed countries. Int.J.Obes.Relat Metab Disord.2002;26:48-57.
    103. Lefebvre PJ, Scheen AJ. Obesity:causes and new treatments. Exp.Clin.Endocrinol.Diabetes 2001;109 Suppl 2:S215-S224.
    104. Kuczmarski RJ, Flegal KM, Campbell SM, Johnson CL. Increasing prevalence of overweight among US adults. The National Health and Nutrition Examination Surveys,1960 to 1991. JAMA 1994;272:205-11.
    105. Seidell JC. Obesity:a growing problem. Acta Paediatr.Suppl 1999;88:46-50.
    106. Bendixen H, Holst C, Sorensen TI, Raben A, Bartels EM, Astrup A. Major increase in prevalence of overweight and obesity between 1987 and 2001 among Danish adults. Obes.Res.2004;12:1464-72.
    107. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults:executive summary. Expert Panel on the Identification, Evaluation, and Treatment of Overweight in Adults. Am.J.Clin.Nutr.1998;68:899-917.
    108. Vikram NK, Misra A, Pandey RM, Dudeja V, Sinha S, Ramadevi J et al. Anthropometry and body composition in northern Asian Indian patients with type 2 diabetes:receiver operating characteristics (ROC) curve analysis of body mass index with percentage body fat as standard. Diabetes Nutr.Metab 2003;16:32-40.
    109. Chang CJ, Wu CH, Yao WJ, Yang YC, Wu JS, Lu FH. Relationships of age, menopause and central obesity on cardiovascular disease risk factors in Chinese women. Int.J.Obes.Relat Metab Disord.2000;24:1699-704.
    110. Wu CH, Yao WJ, Lu FH, Wu JS, Chang CJ. Relationship between glycosylated hemoglobin, blood pressure, serum lipid profiles and body fat distribution in healthy Chinese. Atherosclerosis 1998;137:157-65.
    111. Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. JAMA 1999;282:1523-29.
    112. Taylor RW, Keil D, Gold EJ, Williams SM, Goulding A. Body mass index, waist girth, and waist-to-hip ratio as indexes of total and regional adiposity in women:evaluation using receiver operating characteristic curves. Am.J.Clin.Nutr.1998;67:44-49.
    113. de OM, Habicht JP. Anthropometric reference data for international use: recommendations from a World Health Organization Expert Committee. Am.J.Clin.Nutr.1996;64:650-58.
    114. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004;363:157-63.
    115. Deurenberg P, urenberg-Yap M, Foo LF, Schmidt G, Wang J. Differences in body composition between Singapore Chinese, Beijing Chinese and Dutch children. Eur.J.Clin.Nutr.2003;57:405-09.
    116. Duncan E, Schofield G, Duncan S, Kolt G, Rush E. Ethnicity and body fatness in New Zealanders. N.Z.Med.J.2004; 117:U913.
    117. Lanham DA, Stead MA, Tsang K, Davies PS. The prediction of body composition in Chinese Australian females. Int.J.Obes.Relat Metab Disord.2001;25:286-91.
    118. Lin WY, Lee LT, Chen CY, Lo H, Hsia HH, Liu IL et al. Optimal cut-off values for obesity:using simple anthropometric indices to predict cardiovascular risk factors in Taiwan. Int.J.Obes.Relat Metab Disord.2002;26:1232-38.
    119. urenberg-Yap M, Schmidt G, van Staveren WA, Deurenberg P. The paradox of low body mass index and high body fat percentage among Chinese, Malays and Indians in Singapore. Int.J.Obes.Relat Metab Disord.2000;24:1011-17.
    120. Ko GT, Tang J, Chan JC, Sung R, Wu MM, Wai HP et al. Lower BMI cut-off value to define obesity in Hong Kong Chinese:an analysis based on body fat assessment by bioelectrical impedance. Br.J.Nutr.2001;85:239-42.
    121. Frankenfield DC, Rowe WA, Cooney RN, Smith JS, Becker D. Limits of body mass index to detect obesity and predict body composition. Nutrition 2001;17:26-30.
    122. James PT, Leach R, Kalamara E, Shayeghi M. The worldwide obesity epidemic. Obes.Res.2001;9 Suppl 4:228S-33S.
    123. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots:a fundamental evaluation tool in clinical medicine. Clin.Chem.1993;39:561-77.
    124. Hanley JA. The robustness of the "binormal" assumptions used in fitting ROC curves. Med.Decis.Making 1988;8:197-203.
    125. Garrow JS, Webster J. Quetelet's index (W/H2) as a measure of fatness. Int.J.Obes. 1985;9:147-53.
    126. Egger G. The case for using waist to hip ratio measurements in routine medical checks. Med.J.Aust.1992;156:280-85.
    127. Deng HW, Shen H, Xu FH, Deng HY, Conway T, Zhang HT et al. Tests of linkage and/or association of genes for vitamin D receptor, osteocalcin, and parathyroid hormone with bone mineral density. J.Bone Miner.Res.2002; 17:678-86.
    128. Romon M, Duhamel A, Collinet N, Weill J. Influence of social class on time trends in BMI distribution in 5-year-old French children from 1989 to 1999. Int.J.Obes.(Lond) 2005;29:54-59.
    129. Kuk JL, Lee S, Heymsfield SB, Ross R. Waist circumference and abdominal adipose tissue distribution:influence of age and sex. Am.J.Clin.Nutr.2005;81:1330-34.
    130. Singh KD, Dhillon JK, Arora A, Gill BS. Receiver operating characteristic curve analysis of BMI and percentage body fat in type 2 diabetics of Punjab. Indian J.Physiol Pharmacol.2004;48:73-80.
    131. Zou KH, Hall WJ, Shapiro DE. Smooth non-parametric receiver operating characteristic (ROC) curves for continuous diagnostic tests. Stat.Med. 1997;16:2143-56.
    132. Jia W, Lu J, Xiang K, Bao Y, Lu H, Chen L. [Evaluation of abdominal visceral obesity from anthropometric parameters using receiver operating characteristic curves]. Zhonghua Liu Xing.Bing.Xue.Za Zhi.2002;23:20-23.
    133. Wildman RP, Gu D, Reynolds K, Duan X, He J. Appropriate body mass index and waist circumference cutoffs for categorization of overweight and central adiposity among Chinese adults. Am.J.Clin.Nutr.2004;80:1129-36.
    134. Obarzanek E. Methodological issues in estimating the prevalence of obesity in childhood. Ann.N.Y.Acad.Sci.1993;699:278-79.
    135. Dwyer T, Blizzard CL. Defining obesity in children by biological endpoint rather than population distribution. Int.J.Obes.Relat Metab Disord.1996;20:472-80.
    136. Metz CE. Basic principles of ROC analysis. Semin.Nucl.Med.1978;8:283-98.
    137. SRuby LC Chu, Bernard MY Cheung, FRCP, FHKCP, FHKAM. Measuring obesity in practice. Medical Progress 2005;32:531-35.
    138. Daniels SR, Khoury PR, Morrison JA. The utility of body mass index as a measure of body fatness in children and adolescents:differences by race and gender. Pediatrics 1997;99:804-07.
    139. Mei Z, Grummer-Strawn LM, Pietrobelli A, Goulding A, Goran MI, Dietz WH. Validity of body mass index compared with other body-composition screening indexes for the assessment of body fatness in children and adolescents. Am.J.Clin.Nutr.2002;75:978-85.
    140. Misra A, Pandey RM, Sinha S, Guleria R, Sridhar V, Dudeja V. Receiver operating characteristics curve analysis of body fat & body mass index in dyslipidaemic Asian Indians. Indian J.Med.Res.2003;117:170-79.
    141. Mei Z, Grummer-Strawn LM, Pietrobelli A, Goulding A, Goran MI, Dietz WH. Validity of body mass index compared with other body-composition screening indexes for the assessment of body fatness in children and adolescents. Am.J.Clin.Nutr.2002;75:978-85.
    142. Himes JH, Bouchard C. Validity of anthropometry in classifying youths as obese. Int.J.Obes.1989;13:183-93.
    143. Curtin F, Morabia A, Pichard C, Slosman DO. Body mass index compared to dual-energy x-ray absorptiometry:evidence for a spectrum bias. J.Clin.Epidemiol. 1997;50:837-43.
    144. Lazarus R, Baur L, Webb K, Blyth F. Body mass index in screening for adiposity in children and adolescents:systematic evaluation using receiver operating characteristic curves. Am.J.Clin.Nutr.1996;63:500-06.
    145. Maughan RJ, Watson JS, Weir J. The relative proportions of fat, muscle and bone in the normal human forearm as determined by computed tomography. Clin.Sci.(Lond) 1984;66:683-89.
    146. Gilsanz V, Kovanlikaya A, Costin G, Roe TF, Sayre J, Kaufman F. Differential effect of gender on the sizes of the bones in the axial and appendicular skeletons. J.Clin.Endocrinol.Metab1997;82:1603-07.
    147. Nindl BC, Scoville CR, Sheehan KM, Leone CD, Mello RP. Gender differences in regional body composition and somatotrophic influences of IGF-I and leptin. J.Appl.Physiol2002;92:1611-18.
    148. Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet 2005;366:1640-49.
    149. Fernandez JR, Heo M, Heymsfield SB, Pierson RN, Jr., Pi-Sunyer FX, Wang ZM et al. Is percentage body fat differentially related to body mass index in Hispanic Americans, African Americans, and European Americans? Am.J.Clin.Nutr. 2003;77:71-75.
    150. Zhao L, Stamler J, Yan LL, Zhou B, Wu Y, Liu K et al. Blood pressure differences between northern and southern Chinese:role of dietary factors:the International Study on Macronutrients and Blood Pressure. Hypertension 2004;43:1332-37.
    151. Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature 2000;404:652-60.
    152. Kopelman PG. Obesity as a medical problem. Nature 2000;404:635-43.
    153. Bell AC, Ge K, Popkin BM. Weight gain and its predictors in Chinese adults. Int.J.Obes.Relat Metab Disord.2001;25:1079-86.
    154. Ko GT, Wu MM, Tang J, Wai HP, Chan CH, Chen R. Body mass index profile in Hong Kong Chinese adults. Ann.Acad.Med.Singapore 2001;30:393-96.
    155. Ma GS, Li YP, Wu YF, Zhai FY, Cui ZH, Hu XQ et al. [The prevalence of body overweight and obesity and its changes among Chinese people during 1992 to 2002]. Zhonghua Yu Fang Yi.Xue.Za Zhi.2005;39:311-15.
    156. Menke A, Muntner P, Wildman RP, Reynolds K, He J. Measures of adiposity and cardiovascular disease risk factors. Obesity.(Silver.Spring) 2007; 15.785-95.
    157. Yang F, Lv JH, Lei SF, Chen XD, Liu MY, Jian WX et al. Receiver-operating characteristic analyses of body mass index, waist circumference and waist-to-hip ratio for obesity:Screening in young adults in central south of China. Clin.Nutr. 2006;25:1030-39.
    158. Deng HW, Li J, Li JL, Dowd R, Davies KM, Johnson M et al. Association of estrogen receptor-alpha genotypes with body mass index in normal healthy postmenopausal Caucasian women. J.Clin.Endocrinol.Metab 2000;85:2748-51.
    159. Heijmans BT, Beem AL, Willemsen G, Posthuma D, Slagboom PE, Boomsma D. Further evidence for a QTL influencing body mass index on chromosome 7p from a genome-wide scan in Dutch families. Twin.Res.2004;7:192-96.
    160. Liu YJ, Rocha-Sanchez SM, Liu PY, Long JR, Lu Y, Elze L et al. Tests of linkage and/or association of the LEPR gene polymorphisms with obesity phenotypes in Caucasian nuclear families. Physiol Genomics 2004; 17:101-06.
    161. Zhao LJ, Guo YF, Xiong DH, Xiao P, Recker RR, Deng HW. Is a gene important for bone resorption a candidate for obesity? An association and linkage study on the RANK (receptor activator of nuclear factor-kappaB) gene in a large Caucasian sample. Hum.Genet.2006; 120:561-70.
    162. Eshraghi P, Hedayati M, Daneshpour MS, Mirmiran P, Azizi F. Association of body mass index and Trp64Arg polymorphism of the beta3-adrenoreceptor gene and leptin level in Tehran Lipid and Glucose Study. Br.J.Biomed.Sci.2007;64:117-20.
    163. Um JY, Chung HS, Song MY, Shin HD, Kim HM. Association of interleukin-1beta gene polymorphism with body mass index in women. Clin.Chem.2004;50:647-50.
    164. Chen G, Adeyemo AA, Johnson T, Zhou J, Amoah A, Owusu S et al. A genome-wide scan for quantitative trait loci linked to obesity phenotypes among West Africans. Int.J.Obes.(Lond)2005;29:255-59.
    165. Comes BK, Medland SE, Ferreira MA, Morley KI, Duffy DL, Heijmans BT et al. Sex-limited genome-wide linkage scan for body mass index in an unselected sample of 933 Australian twin families. Twin.Res.Hum.Genet.2005;8:616-32.
    166. Shima Y, Nakanishi K, Odawara M, Kobayashi T, Ohta H. Association of the SNP-19 genotype 22 in the calpain-10 gene with elevated body mass index and hemoglobin Alc levels in Japanese. Clin.Chim.Acta 2003;336:89-96.
    167. Suviolahti E, Oksanen LJ, Ohman M, Cantor RM, Ridderstrale M, Tuomi T et al. The SLC6A14 gene shows evidence of association with obesity. J.Clin.Invest 2003;112:1762-72.
    168. Guo YF, Xiong DH, Shen H, Zhao LJ, Xiao P, Guo Y et al. Polymorphisms of the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with obesity phenotypes in a large family-based association study. J.Med.Genet. 2006;43:798-803.
    169. Liu YJ, Liu XG, Wang L, Dina C, Yan H, Liu JF et al. Genome-wide association scans identified CTNNBL1 as a novel gene for obesity. Hum.Mol.Genet.2008.
    170. Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A, Illig T et al. A common genetic variant is associated with adult and childhood obesity. Science 2006;312:279-83.
    171. Ahn SJ, Costa J, Emanuel JR. PicoGreen quantitation of DNA:effective evaluation of samples pre-or post-PCR. Nucleic Acids Res.1996;24:2623-25.
    172. Singer VL, Jones LJ, Yue ST, Haugland RP. Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Anal.Biochem.1997;249:228-38.
    173. Rabbee N, Speed TP. A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics.2006;22:7-12.
    174. Di X, Matsuzaki H, Webster TA, Hubbell E, Liu G, Dong S et al. Dynamic model based algorithms for screening and genotyping over 100 K SNPs on oligonucleotide microarrays. Bioinformatics.2005;21:1958-63.
    175. Barrett JC, Fry B, Maller J, Daly MJ. Haploview:analysis and visualization of LD and haplotype maps. Bioinformatics.2005;21:263-65.
    176. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc.Natl.Acad.Sci.U.S.A2003;100:9440-45.
    177. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics 2000; 155:945-59.
    178. Devlin B, Roeder K. Genomic control for association studies. Biometrics 1999;55:997-1004.
    179. Yuan HY, Chiou JJ, Tseng WH, Liu CH, Liu CK, Lin YJ et al. FASTSNP:an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res.2006;34:W635-W641.
    180. Fisher RA. Statistical Methods for Research Workers.,13 ed. New York:Hafner; 1925.
    181. Li WD, Dong C, Li D, Zhao H, Price RA. An obesity-related locus in chromosome region 12q23-24. Diabetes 2004;53:812-20.
    182. Chagnon YC, Rice T, Perusse L, Borecki IB, Ho-Kim MA, Lacaille M et al. Genomic scan for genes affecting body composition before and after training in Caucasians from HERITAGE. J.Appl.Physiol 2001;90:1777-87.
    183. Chen W, Li S, Cook NR, Rosner BA, Srinivasan SR, Boerwinkle E et al. An autosomal genome scan for loci influencing longitudinal burden of body mass index from childhood to young adulthood in white sibships:The Bogalusa Heart Study. Int.J.Obes.Relat Metab Disord.2004;28:462-69.
    184. Kissebah AH, Sonnenberg GE, Myklebust J, Goldstein M, Broman K, James RG et al. Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc.Natl.Acad.Sci.U.S.A2000;97:14478-83.
    185. Stone S, Abkevich V, Hunt SC, Gutin A, Russell DL, Neff CD et al. A major predisposition locus for severe obesity, at 4p15-p14. Am.J.Hum.Genet. 2002;70:1459-68.
    186. Guo F, Cavener DR. The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell Metab 2007;5:103-14.
    187. Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat.Genet.2008.
    188. Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, Makarov SS et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 2006;314:1930-33.
    189. Handoko HY, Nyholt DR, Hayward NK, Nertney DA, Hannah DE, Windus LC et al. Separate and interacting effects within the catechol-O-methyltransferase (COMT) are associated with schizophrenia. Mol.Psychiatry 2005; 10:589-97.
    190. Need AC, Ahmadi KR, Spector TD, Goldstein DB. Obesity is associated with genetic variants that alter dopamine availability. Ann.Hum.Genet.2006;70:293-303.
    191. Tworoger SS, Chubak J, Aiello EJ, Yasui Y, Ulrich CM, Farin FM et al. The effect of CYP19 and COMT polymorphisms on exercise-induced fat loss in postmenopausal women. Obes.Res.2004; 12:972-81.
    192. Wang SS, Morton LM, Bergen AW, Lan EZ, Chatterjee N, Kvale P et al. Genetic variation in catechol-O-methyltransferase (COMT) and obesity in the prostate, lung, colorectal, and ovarian (PLCO) cancer screening trial. Hum.Genet.2007;122:41-49.
    193. Tworoger S S, Chubak J, Aiello EJ, Ulrich CM, Atkinson C, Potter JD et al. Association of CYP17, CYP19, CYP1B1, and COMT polymorphisms with serum and urinary sex hormone concentrations in postmenopausal women. Cancer Epidemiol.Biomarkers Prev.2004;13:94-101.
    194. Palep-Singh M, Picton HM, Barth JH, Balen AH. Ethnic variations in the distribution of obesity and biochemical metabolic abnormalities in fertility clinic attendees. J.Reprod.Med.2008;53:117-23.
    195. Myles S, Davison D, Barrett J, Stoneking M, Timpson N. Worldwide population differentiation at disease-associated SNPs. BMC.Med.Genomics 2008; 1:22.
    196. Henderson KD, Goran MI, Kolonel LN, Henderson BE, Le Marchand L. Ethnic disparity in the relationship between obesity and plasma insulin-like growth factors: the multiethnic cohort. Cancer Epidemiol.Biomarkers Prev.2006; 15:2298-302.
    197. Li H, Wu Y, Loos RJ, Hu FB, Liu Y, Wang J et al. Variants in the fat mass-and obesity-associated (FTO) gene are not associated with obesity in a Chinese Han population. Diabetes 2008;57:264-68.
    198. Turki J, Pak J, Green SA, Martin RJ, Liggett SB. Genetic polymorphisms of the beta 2-adrenergic receptor in nocturnal and nonnocturnal asthma. Evidence that Gly16 correlates with the nocturnal phenotype. J.Clin.Invest 1995;95:1635-41.
    199. Martinez FD, Graves PE, Baldini M, Solomon S, Erickson R. Association between genetic polymorphisms of the beta2-adrenoceptor and response to albuterol in children with and without a history of wheezing. J.Clin.Invest 1997;100:3184-88.
    200. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-Ⅳ disorders in the National Comorbidity Survey Replication. Arch.Gen.Psychiatry 2005;62:593-602.
    201. Lange C, Whittaker JC. Mapping quantitative trait Loci using generalized estimating equations. Genetics 2001;159:1325-37.
    202. Lange C, Laird NM. On a general class of conditional tests for family-based association studies in genetics:the asymptotic distribution, the conditional power, and optimality considerations. Genet.Epidemiol.2002;23:165-80.
    203. Lange C, Silverman EK, Xu X, Weiss ST, Laird NM. A multivariate family-based association test using generalized estimating equations:FBAT-GEE. Biostatistics. 2003;4:195-206.
    204. Karasik D, Dupuis J, Cupples LA, Beck TJ, Mahaney MC, Havill LM et al. Bivariate linkage study of proximal hip geometry and body size indices:the Framingham study. Calcif.Tissue Int.2007;81:162-73.
    205. Deng FY, Xiao P, Lei SF, Zhang L, Yang F, Tang ZH et al. Bivariate whole genome linkage analysis for femoral neck geometric parameters and total body lean mass. J.Bone Miner.Res.2007;22:808-16.
    206. Zeger SL, Liang KY, Albert PS. Models for longitudinal data:a generalized estimating equation approach. Biometrics 1988;44:1049-60.
    207. Zhao L.P., Prentice RL. Correlated binary regression using a quadratic exponential model. Biometrika 1990;77:642-48.
    208. Hedrick P, Kumar S. Mutation and linkage disequilibrium in human mtDNA. Eur.J.Hum.Genet.2001;9:969-72.
    209. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am.J.Hum.Genet.2001;68:978-89.
    210. Jun Yan. The R Package geepack for Generalized Estimating Equations. Journal of Statistical Software 2006; 15.
    211. R Development Core Team. R:A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria 2005;ISBN 3-900051-07-0.
    212. Nyholt DR. A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am.J.Hum.Genet. 2004;74:765-69.
    213. Hui SL, Slemenda CW, Johnston CC, Jr. Baseline measurement of bone mass predicts fracture in white women. Ann.Intern.Med.1989; 111:355-61.
    214. Khaodhiar L, McCowen KC, Blackburn GL. Obesity and its comorbid conditions. Clin.Cornerstone.1999;2:17-31.
    215. Lin S, Chakravarti A, Cutler DJ. Exhaustive allelic transmission disequilibrium tests as a new approach to genome-wide association studies. Nat.Genet.2004;36:1181-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700