用户名: 密码: 验证码:
感潮河段潮位与洪水预报及上游水库控制模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在世界范围内,感潮河段地处的三角洲是社会经济活动最为活跃的地区,并且由于同时受潮水和洪水的影响,也最有可能造成更大的洪灾损失。因此,研究减少感潮河段洪灾损失的工程和非工程措施也一直受到重视。现代监测、通信和预报技术的跨跃式进步,为采取更有效的非工程措施提供了前所未有的便利条件,也使得非工程措施越来越受到关注。
     为实现感潮河段防洪减灾目标,必须解决好两个关键问题:一是对感潮河段潮水和洪水的科学预测;二是基于该预测,通过对上游水库的控制运用进行错峰、错潮,从而实现防洪减灾的目标。本文即围绕上述关键问题开展研究。以作者参与的科研课题为支撑,以辽河油田的防洪减灾为背景开展研究,结合辽宁地区的实际洪水及辽河下游盘锦、营口地区的潮位特点,围绕潮水、洪水预报和上游水库实时水位和下泄流量控制对下游的防洪安全等问题进行研究,取得的主要研究与应用成果如下:
     1.对高潮潮位进行混沌相空间重构,初步证明营口站的高潮潮位具有混沌特性,为潮位的混沌分析预测奠定理论基础。
     相空间重建是一切混沌分析和研究的基础,首先对潮水动力系统的相空间重构,然后在重构的相空间中对潮水系统采用功率谱定性分析法,采用饱和关联维数法和Lyapunov指数定量分析法识别其混沌特性,通过验证营口站高潮潮位的混沌特性,为其混沌时间序列预测创造条件。
     2.建立了混沌时间序列的模糊支持向量机预测模型,提高了高潮潮位预报精度。
     在混沌相空间重构和混沌特性辨识的基础上,针对混沌时间序列固有的确定性和非线性特点,以传统的支持向量机预测模型为基础,通过引入模糊隶属函数来考虑时间序列随时间推移引起的内在变化,建立了混沌时间序列的模糊支持向量机预测模型,并在实例计算中,讨论了模糊隶属度参数变化对预报结果的影响。对营口高潮潮位时间序列实例计算表明,该方法具有较好的实用性。同时,基于成因分析引用模糊隶属度函数,更好的反映了近期数据对预测结果的影响,也使得外推预测更可信。研究还表明,该方法在水文月径流时间序列的预测中同样有效。
     3.采用了改进相应涨差模型及Kalman滤波实时校正方法,预报感潮河段洪水和无遥测降雨资料水库洪水,为水库实时控制运用提供了坚实的信息基础。
     感潮河段的洪水预报及上游水库的入库洪水预报,是上游水库实时控制运用的信息基础和流域防洪减灾的关键。首先,本文研究了在相应涨差模型计算中,引入Kalman滤波实时校正方法。在感潮河段的洪水预报中,采用了改进相应涨差模型的水位形式,验证了此方法的有效性。在无遥测降雨资料水库洪水预报中引入改进相应涨差模型,并对其在水库中的应用作了进一步改进。在流域上游大伙房水库的计算实例中,使用了改进相应涨差模型的流量形式作预报,同时在实例中结合Kalman在水文预报中初值和参数难以选取的问题,分别对Kalman滤波的初值P(0|0)和X(0|0)及噪声协方差阵Q和R给予讨论,并给出确定方法。实例证明该方法是有效的。
     4.基于贝叶斯理论分析了上游水库考虑降雨预报的风险,并建立了水库水位及泄量控制模式,其运行结果既可增加洪水资源利用量,又能保障感潮河段及周边区域的防洪安全。
     基于水文现象的不确定性和对预报信息的利用,上游水库的实时控制运用决策中必须进行相应的风险分析。本文应用贝叶斯定理,在互斥完备事件条件下,统计推断不同设计量级暴雨事件发生的概率,证明了作者所在的科研团队在水利部重大项目研究中风险分析基本结论:“设计标准洪水是预报无雨或小雨条件下的不可能事件;设计标准洪水是中雨或以上量级降雨预报漏报无条件下的可能事件”新理念及假定的合理性,进一步将假定更确切的表征为“设计标准暴雨事件E是各级降雨预报漏报条件下的随机事件,在‘无雨'预报的条件下发生漏报的概率趋于零,属实际不可能事件;在大雨以上量级预报条件下发生的概率极高,为防洪安全计,实时调度中应视为可能事件”,并为构建水位与泄量实时控制推理新模式提供理论依据。最后,以盘锦、营口上游的葠窝水库为例,建立的水库水位与泄量实时控制推理新模式,以该模式指导葠窝水库的实时控制,既可增加洪水资源利用率,又能为流域下游油田安全提供保障。
     5.成果的实用化—感潮河段洪水潮水预报预警系统的设计与开发。
     理论的价值在于应用。本文在深入分析辽河油田潮水洪水预报预警特性和计算机网络现状的基础上,选择恰当的软件体系结构,设计开发了实用化的“辽河油田潮水洪水预报预警系统”。系统既结合了传统C/S软件体系结构的交互性强,适宜大量的数据处理,便于集中管理等优势,又引进新近发展起来的B/S软件体系,发挥了该体系结构的访问方便,可扩展性强、易维护等优势。采用集成式的设计与开发方法,将GIS组件技术以及其它工具软件的功能与系统的设计开发有效集成,既缩短了开发周期,又提高了成果的实用性。该系统实现了实时数据、空间数据、属性数据的交互计算、统计、查询、预测等功能,结合“辽河油田潮水洪水预报预警系统”详细阐述了各关键技术及其应用。
     最后对全文做了总结,并对有待于进一步研究的问题进行了展望。
World widely, great parts of socio-economic activities happen in deltas, where tides and floods affect more frequently. As the results, tides and floods may cause much more damage to deltas than other places. To eliminate flood and tide damage, both engineering and non-engineering measures were studied in the past decades. Modern progress in monitoring, communications and forecasting and computer technology provide a hopeful alternative for non-engineering measures playing an mort important role.
     To successfully control flood in deltas, two key issues must be resolved. One is the forecast of tidal and flood. The other is forecast-based upper stream reservoir operation. Thus, focusing on the key issues, this paper studied tide and flood forecast methods, risk analysis, and reservoir inference dynamic operating mode. Taking Panjin, Yingkou as backgrounds, this paper studied related key issues, and the main progress is summarized as follows:
     1. Chaos phase space of YingKou high tidal level is reconstructed and its chaotic characteristics are validated, which serves as the foundation for high tidal forecasting.
     Phase space reconstruction is the foundation of the chaos analysis and forecasting. Firstly, the phase space of high tidal is reconstructed; Then, the power spectrum mothed for qualitative analysis is studied; thirdly, G-P method, Lyapunov Exponents for quantitative analysis are used for validation of the YingKou high tidal level. These steps provide theoretic possibility for high tidal level chaotic system forecasts.
     2. The fuzzy SVM of chaotic time series model is developed, and the forecasting precision of high tidal level chaotic system is improved.
     Analyzing the characteristic of certainty and nonlinear of chaotic system, the prediction model of chaotic flow time series using fuzzy support vector machine is developed. This model introduces fuzzy membership function for considering the inner mechanism changed with time. Effects of fuzzy membership function parameter are discussed in the example. The results of Yingkou high tidal level forecaste show that the model is of good performance. Moreover, the introduction of fuzzy membership function reflects the effect of the recent data and makes the forecasting results credible. On runoff time series forecasting, this method shows a good result, too.
     3. Corresponding rising difference model and Kalman filter real-time correction method are used for tidal river flood forecasting and remote sensing rainfall data absence reservoirs, this paper studied tide and flood forecast method. The results play an important role for real-time reservoir operation decision making.
     Flood forecaste in the tidal river and upstream reservoir is the foundation of the real-time reservoir operation and basin wide flood disaster elimination. Firstly, Kalman filter real-time correction method is introduced into Corresponding rising difference model. The developed new model is applied for the flood forecast in the tidal river, and the validity of this approach is confirmed. The model is used in the telemetry rainfall absence reservoirs, and its application in the reservoir was further improved. For Dahuofang reservoir where part remote censoring data is absent, flood forecast is studied. While forecasting, initial value P(0|0) and X(0|0) of Kalman filter and noise covariance matrix Q and R are confirmed. The forecast results prove the model to be effective.
     4. Dynamic upstream reservoir real-time operating mode based on Bayes theorem can not only raise floodwater development, but also eliminate flood damage.
     Based on the uncertainty of hydrology and use of forecasted message, the risk analysis in real-time upstream reservoir operation must be taken account into. This paper applies Bayes theorem, on the condition of mutually full fledged events, statistical computes the probability of different design rainstorm flood event, and the new idea and hypothesis". This proved the conclusion, studied by my research group in an national key research project. The proved conclusion is that it is impossible to happen designed rain while forecasted rain is no rain or little rain; And the designed rain possibly happen only while forecasted rain is moderate or heavy rain. This conclusion gave an further confirm for the assumption, which is that design rainstorm flood event E is random events of rainfall forecasting omissions, when 'no rain' is forecasted, the probability is extremely small, tends to zero. And the probability is high under the condition of the heavy rain forecasting" these conclusion made from a National key program is certificated. The above risk analysis results provide important data for reservoir real-time operating decision making. At last, the real-time reservoir elevation and discharge mode is developed. Taking ShenWo reservoir as an example, an inference operating mode is developed, which play an important role for flood resources development and flood control for PanJin and YingKou and LiaoHe Oilfield.
     5. Application - design and development of the flood and tide forecast and warning system.
     The value of theory lies in its application. Based on the analysis of the LiaoHe Oilfield flood forecast and early warning systems, the present progress of computer network, etc. "LiaoHe Oilfield Flood and Tide Forecasting and Warning System" is designed and developed. Combining the interactive, suitable for large data processing, facilitate centralized management and other advantages, traditional C/S (Client/Server) software architecture is used. Meanwhile, B/S (Browser/Server) software architecture is introduced, which is convenient, good scalability and maintainability etc. Using integrated design and development method, the system integrates ComGIS, ActiveX. This step can shorten software development period and efficiency increases the practicality value of the achievements. At last, taking "LiaoHe Oilfield Flood and Tide Forecasting and Warning System" as an example, we gave a detailed description of the application of the critical techniques.
     Finally, a summary is given and some remained problems are discussed.
引文
[1]陈立,明宗富.河流动力学[M].武汉:武汉大学出版社,2001.
    [2]辽宁省水利厅.防洪调度新方法及应用[M].沈阳:辽宁科学技术出版,2006.
    [3]王才,孟春利,付洪涛,梁凤国.辽河油田防汛指南[M].北京:中国水利水电出版,2007.
    [4]辽宁省水利水电勘测设计院.辽河油田绕阳河滩地油井水浸问题分析[R].2009,7.
    [5]陈宗镛.长方形浅水海湾的一种潮波模式[J].海洋与湖沼,1965,7(2):85-93.
    [6]方国洪,王仁树.海湾的潮汐与潮流[J].海洋与湖沼,1965,8(1):67-77.
    [7]方国洪.潮汐预报的几种方法(一)[J].海洋科学,1977,1,40-45.
    [8]方国洪.潮汐预报的几种方法(二)[J].海洋科学,1977,2,39-44.
    [9]方国洪.潮汐分析和预报的准调和分潮方法,Ⅰ,准调和分潮[J].海洋科学集刊,1974,9:1-15.
    [10]方国洪.潮汐分析和预报的准调和分潮方法,Ⅱ,短期观测的方法[J].海洋科学集刊,1976.11:33-56.
    [11]方国洪.潮汐分析和预报的准调和分潮方法,Ⅲ,潮流和潮汐分析的一个实际过程计算[J].海洋科学集刊,1981,18:19-39.
    [12]芮孝芳.感潮河段洪水演算方法的探讨[J].水利水电技术,1990,11:18-24.
    [13]刘开平.长江下游感潮水流数值模拟探讨[J].人民长江,1991,22(9):27-31.
    [14]郭大源,彭吉辽.感潮河段洪水位动力数值预报方法在闽江下游的应用[J].水文,1991.5:29-33.
    [15]芮孝芳.基于时间序列分析最优控制理论的洪水演算方法[J].水利学报,1993,4:41-47.
    [16]陈尚渭,金兆森.长江潮位预报方法的研究[J].水利学报,1989,6:41-47.
    [17]曹升乐,员汝安.感潮河段水位预报方法研究[J].山东工业大学学报,1994,4(24):301-305.
    [18]Tsai-C-P,Lee-T-L,Back-propagation neural network in tidal-level forecasting[J].Journal of Waterway,Port,Coastal and Ocean Engineering,1999,125(4):195-202.
    [19]Kumar A,Minocha V K.Discussion of Back-propagation neural in tidal-level forecasting' by Ching-Piao Tsai and Tson-Ling Lee[J].Journal of Waterway,Port,Coastal and Ocean Engineering,2001,127(1):54-55.
    [20]Mandal S.Discussion of Back-propagation neural in tidal-level forecasting' by Ching-Piao Tsai and Tson-Ling Lee[J].Journal of Waterway,Port,Coastal and Ocean Engineering,2001,127(1):55.
    [21]Medina J R.Discussion of Back-propagation neural in tidal-level forecasting' by Ching-Piao Tsai and Tson-Ling Lee[J].Journal of Waterway,Port,Coastal and Ocean Engineering,2001,127(1):55-57.
    [22]Walton T,Garcia A W.Discussion of Back-propagation neural in tidal-level forecasting' by Ching-Piao Tsai and Tson-Ling Lee[J].Journal of Waterway,Port,Coastal and Ocean Engineering,2001,127(1):57-58.
    [23]宋立松,魏高峰.感潮河段水位过程预报探讨[J].水科学进展,2000,3(11):302-306.
    [24]祝中昊.长江镇扬河段潮位预报相应水位法的改进[J].水文,2000,S1:32-35.
    [25]黄国如,芮孝芳.河道洪水演算的径向基函数神经网络模型[J].河海大学学报(自然科学版).2003,31(6):621-625.
    [26]Supharatid,Seree.Tidal-level forecasting and filtering by neural network model[J].Coastal Engineering Journal,2003,45(1):119-137.
    [27]Chang Fi-Jhon,Chen Yen-Chang.Estuary water-stage forecasting by using radial basis function neural network[J].Journal of Hydrology,2003,270(1-2):158-166.
    [28]丁峰,胡凤彬,周建林等.径流的河口潮位预报方法研究[J].现代交通技术,2005,3(2):74-77
    [29]Kalman R E.A new approach to linear filtering and prediction problems[C].Trans.ASME,J.Basic Eng,1960,3(82):34-45.
    [30]郑春瑞.系统工程学概述[M].北京:科学技术文献出版社,1981.
    [31]赵人俊,文康,王钦梁译.水位预报论文集(共三集)[M],华东水利学院,南京水文研究所,长办水文局,1980.
    [32]Hino M.Runoff Forecasts by Linear Predictive Filter[C].Proc.ASCE,J.Hyd.Div,1970,96(Hy3):681-701.
    [33]Hino M.On-line prediction of a hydrologic system[C].IAHR,Istanbul,1973
    [34]Wood E F,Szollosi-Nagy A.An Adaptive Algorithm for Analyzing Short Term structural and Parameter Changes in Hydrologic Prediction Models[J].Water Resour.Res.,1978,14(4):578-581.
    [35]Todini E,Martellied S.CLS:Constrained Linear System[M],1973.
    [36]Natale L,Todine E A.Constrained Parameter Estimation Technique for Linear Models in Hydrology[M].Paria:Inst.Of Hydraulic,University of Paria.
    [37]Todini E,Bouillot D.A Rainfall-Runoff Kalman Filter Model[C].In G.C.Vanteenkiste Ed.System Simulation in Water Resource.North-Holland,Amsterdam,1975.
    [38]Todini E,Szollosi-Nagy A,Wood E.Adaptive State Parameter Estimation Algorithm for Real-time Hydrological Forecasting[C].A Case Study Presented at Workshop on Recent Development in Forecasting and Control of Water resource Systems.IIASA,Laxenburg,Austria,1976,10:18-20.
    [39]Todini E,Connell P E,Jone DA.Kalman Filter Estimation Problems,Real-Time Hydrological Forecastiong and Control[C].Proceedings of 1st International Workshop,1977.
    [40]Moore R J,Weiss G.Real Time Parameter Estimation of a Non-Linear Catchment Model,Using Extended Kalman Filters[C].Presented at[IASA/WMO Workshop on Recent Developments in "in Real Time Forecasting/Control of Water Resource Systems"Laxenburg,Austria,1976,10:18-21.
    [41]Cooper D M,Wood E F.Model Identification and Parameter Estimation for Hydrologic Input/Output Model[C].proc.of these Jacc Conf,CA,1980,8(2):6-13.
    [42]葛守西.一般线性汇流模型实时预报方法的初步探讨[J].水利学报,1985,4.
    [43]王燕生,王舜燕.适应性滤波在水文预报上的应用[J].水文,1985,1:22-25.
    [44]葛守西.蓄满产流模型的卡尔曼滤波算法[J].成都科技大学学报,1984,4:38-43.
    [45]葛守西.使用产汇流两阶段校正和参数动态预测算法的实时洪水预报模型[J].成都科技大学学报,1993,4:23-34.
    [46]陈小红.降雨径流实时预报研究[J].武汉水利电力学报,1990,5(23):40-48.
    [47]葛守西.水动力学模型卡尔曼滤波实时校正技术[J].水利学报,2005,6(36):687-695.
    [48]王船海,吴晓玲.卡尔曼滤波校正技术在水动力学模型实时洪水预报中的应用[J].河海大学学报(自然科学版),2008,3(36):300-305.
    [49]傅湘,纪昌明.水库汛期调度的最大洪灾风险率研究[J].水电能源科学,1998,16(2):12-15
    [50]高革命,陈惠源.白盆珠水库拦蓄洪水尾巴的风险分析[J].江西水利科技,1997,23(4)
    [51]万俊,陈感源.白盆珠水库汛期蓄水运用风险分析[J].水电能源科学,2000,18(1):25-27
    [52]万俊,陈惠源.考虑预报预泄时白盆珠水库汛期蓄水运用方式研究[J].武汉水利电力大学学报,2000,33(1):10-13
    [53]程春田,王本德.短期气象预报在水库防洪调度中的可行性分析[J].大自然探索,1994(4)
    [54]蒋云钟.水资源系统的模糊可靠性分析与应用研究[D].大连:大连理工大学,1996
    [55]王本德,殷峻暹.动态控制汛限水位的风险分析[J].水库水文气象预报风险调度论文集,2001.
    [56]王本德.考虑降雨预报的洪水实时调度极限风险率分析[J].全国水库防洪学组年会,2001.
    [57]王本德,梁国华等.利用预报降雨信息调度非常洪水的可靠性分析[J]:水库水文气象预报风险调度论文集,2001,10.
    [58]王本德,周惠成,王国利.水库汛限水位动态控制理论与方法及其应用[M].北京:中国水利水电出版社,2006.
    [59]周惠成,王本德,王国利等.水库汛限水位动态控制方法研究[M].大连:大连理工大学出版社,2006.
    [60]李玮,郭生练,郭富强,等.水库汛限水位动态控制方法研究及其应用[J].水力发电,2006,32(3):8-12
    [61]高波,王银堂,胡四一.水库汛限水位调整与运用[J].水科学进展.2005,16(3):326-333
    [62]彭才德,五强溪水库汛期水位动态控制运用研究[J].水力发电,2004,30(6):71-74.
    [63]华家鹏,孔令婷.分期汛限水位和设计洪水位的确定方法[J].水电能源科学,2002,20(1):21-24.
    [64]周建军,林秉南,张仁.三峡水库减淤增容调度方式研究-多汛限水位调度方案[J].水利学报,2002(3):13-19.
    [65]王本德.水库模糊优化调度[M].大连:大连理工大学出版社,1990.
    [66]王本德,周惠成,程春田.可利用丰满气象台短期降雨时效分析[J].水利管理技术,1994,(4):22-26
    [67]张改红.基于防洪预报调度的水库汛限水位设计与控制研究[D].大连:大连理工大学,2008.
    [68]曹永强.汛限水位动态控制方法研究及其风险分析[D].大连:大连理工大学,2003.
    [69]董四辉.水库防洪预报调度及灾情评价理论研究与应用[D].大连:大连理工大学,2005.
    [70]赵永龙.水文动力系统混沌分析及其非线性预测[D].成都:四川联合大学,1997.
    [71]Takens F.Detecting strange attractors in turbulence[J].Lecture Notes in Mathematics,1980,898:366-38.
    [72]丁涛.混沌理论在径流中的预报研究[D].大连:大连理工大学,2003.
    [73]Fraser A M,Swinney H L.Independent coordinates for strange attractors from mutual information[J].Phys.Rev.A,1986,33:1134-1140.
    [74]Henry D I,Abarbanel N M,Rabinovich M I,Evren T.Distribution of mutual information[J].Physics Letters A,2001,281:368-373.
    [75]Martinerie J M,Albano A M,Mees A I,Rapp P E.Mutual information,strange attractors,and the optimal estimation of dimension[J].Physical Review A,1992,45:7058-7064.
    [76]赵永龙,丁晶,邓育仁,洪时中.以互信息为基础的广义相关系数及其应用[J].非线性动力学报,1997,4(1):9-18
    [77]Grassberger P,Procaccia I.Measuring the strangeness of strange attractors[J].Physica D,1983,9:189-208.
    [78]Taiye B,,Sangoyomi.Nonlinear dynamics of the Great Salt Lake:dimension estimation[J].Water Resources Research,1996,32(1):149-159.
    [79]Broomhead D S,Gregory P K.Extracting qualitative dynamics from experimental data[J].Physica D,1986,20
    [80]Kugiumtzis D.State space reconstruction parameters in the analysis of chaotic time series-the role of the time window length[J].Physica D,1996,95:13-28.
    [81]Kim H S,Eykholt R,Salas J D.Nonlinear dynamics,delay times,and embedding windows[J].Physica D,1999,127:48-60.
    [82]Kantz H.Nonlinear Time Series Analysis[M].Cambridge University Press,1997
    [83]贾丽会.分形理论及在信号处理中的应用[J].计算机技术与发展,2007,17(9):203-206.
    [84]Smith L A.Intrinsic limits on dimension calculations[J].Physical Letters A,1988,133(6):283-288.
    [85]Brock W A,Hsieh D A,Le B B.Nonliear dynamics,chaos,and instability:statistical theory and economic evidence[M].Cambridge:MIT Press,1991.
    [86]田峰巍.用非平衡系统理论认识水资源系统分析中的儿个问题[J].西安理工大学学报,1997,13(4):314-319.
    [87]赵永龙,丁晶,邓育仁.混沌分析在水文预测中的应用和展望[J].水科学进展,1998,9(2):181-186.
    [88]E.Kreuzer著,凌复华译.非线性动力学系统的数值研究[M].上海:上海交通大学出版社,1989.
    [89]Wolf A,Swift J B,Swinney H L.Determining Lyapunov exponents from time series[J].Physica D,1985,16(2):285-371.
    [90]Sano M,Sawada Y.Measurement of Lyapunov spectrum from a chaotic time series[J].Physical Review Letters,1985,55(10):1082-1085.
    [91]Barana G,Tsuda I.A new method for computing Lyapunov exponents[J].Phys.Lett.A,1993,175:421-427.
    [92]Rosenstein M T,Collins J J,De luca C J.A practical method for calculating largest Lyapunov exponents from small data sets[J].Physica D,1993,65:117-134.
    [93]Kantz H.非线性时间序列分析[M].北京:清华大学出版社,2000,42-47.
    [94]Verdes P F,Granitto P M,Navone H D,Ceccatto H A.Forecasting Chaotic Time Series:Global vs.Local Methods[J].Novel Intelligent Automation and Control Systems,1998,1:129-145.
    [95]deliveira K A,Vannucci A,Silva D A.Using artificial neural network to forecast chaotic time series[J].Physica A,2000,284:393.
    [96]Tronci S,Giona M,Baratti R.Reconstruction of chaotic time series by neural models:a case study[J].Neurocomputing,2003,55:581-591.
    [97]Vapnik V N.Statistical Learning Theory[M].New York:Wiley,1998.
    [98]Chun-Fu Lin,Sheng-De Wang.Fuzzy support vector machines[J].IEEE Transaction on Neural Networks,2002,13(2):464-471.
    [99]Chun-Fu Lin,Sheng-De Wang.Training algori-thms for fuzzy support vector machines with noisy data[J].Pattern Recognition Letters,2004,25:1647-1656.
    [100]龚灯才,孙长银,李林峰.基于模糊回归支持向量机的短期负荷预测[J].三峡大学学报(自然科学版),2006,28:37-41.
    [101]王红瑞,宋宇,刘昌明等.混沌理论及在水科学中的应用与存在的问题[J].水科学进展,2004,15(3):400-407.
    [102]Sivakumar B.Chaos theory in geophysics:past,present and future[J].Chaos,Solitons,and Fractals,2004,19:441-462.
    [103]Jayawardena A W,Lai F.Analysis and prediction of chaos in rainfall and streamflow time series[J].Journal of Hydrology,1994,153:23-52.
    [104]贾仰文,高辉,牛存稳等.气候变化对黄河源区径流过程的影响[J].水利学报,2008,39:52-58
    [105]崔万照,朱长纯,保文星等.混沌时间序列的支持向量机预测[J].物理学报,2004,53(10):3303-3306
    [106]王景雷,吴景社,孙景生等.支持向量机在地下水位预报中的应用研究[J].水利学报,2003,5:122-128.
    [107]李元诚,方廷健,于尔铿.短期负荷预测的支持向量机方法研究[J].中国电机工程学报,2003,23(6):55-59.
    [108]杜树新,吴铁军.用于回归估计的支持向量机方法.系统仿真学报,2003,15(11):1580-1585
    [109]Duan Q Y,Sorooshian S,Gupta V K.Optimal use of the SCE-UA global optimization method for calibrating watershed models[J].Journal of Hydrology,1994,158(1):265-284.
    [110]Kuczera G.Efficient subspace probabilistic parameter optimization for catchment models[J].Water Resources Research,1997,33(1):177-185.
    [111]白亮,老松杨,胡艳丽.支持向量机训练算法比较研究[J].计算机工程与应用,2005,17:79-81.
    [112]Burges C J C.A Tutorial on Support Vector Machines for Pattern Recognition[M].1998.
    [113]Boser B,Guyon I,Yapnik Y.A training algorithm for optimal margin classifiers[C].Haussler D.Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory.ACM Press,1992:144-152.
    [114]Cortes C,Vapnik V.Support Vector Networks[J].Machine Learning,1995,(20):273-297.
    [115]Platt J.Fast training of support vector machines using sequential minimal optimization[M].Cambridge:MIT Press,1999.
    [116]范玉刚,李平,宋执环.基于样本取样的SMO算法[J].信息与控制,2004,33(6):665-669.
    [117]Zhang X G.Using Class-center Vector to Build Support Vector Machines[J].Machine Learning,2001,(13):3-11.
    [118]Ahmed S N.Incremental Learning with Support Vector Machines[C].IICAI' 99 In Workshop on Support Vector Machines,Stockholm,1999.
    [119]Cauwenberghs G,Ppggio T.Incremental and Decremental Support Vector Machine[J].Machine Learning,2001,(13):29-37.
    [120]萧嵘,王继成,孙正兴等.一种SVM增量学习算法一ISVM[J].软件学报,2001,12(12):1818-1824.
    [121]卢桂章.现代控制理论[M].北京:科学出版社,1979.
    [122]徐建华,倪重匡.状态估计与系统识别[M].北京:科学出版社,1981.
    [123]常春馨.现代控制理论[M].北京:机械工业出版社,1982.
    [124]中国科学院数学研究所概率组编.离散时间系统滤波的数学方法[M].北京:国防工业出版社,1975.
    [125]长江水利委员会.水文预报方法(第2版)[M].北京:水利电力出版社,1993.
    [126]葛守西.现代洪水预报技术[M].北京:中国水利水电出版社,1999.
    [127]覃光华,丁晶,赵英林等.改进的相应涨差模型及其在洪水预报中的应用[J].武汉大学学报(工学版),2002,6:20-23.
    [128]张静.水库防洪分类预报调度方式研究及风险分析[D].大连:大连理工大学,2007.
    [129]程向红,郑梅.捷联惯导系统初始对准中Kalman参数优化方法[J].中国惯性技术学报,2006,8(4):12-17
    [130]F.S.梅理特.丁仁,陈三平译.工程技术常用数学[M].北京:科学出版社出版,1978.
    [131]谭德宝,李青云,黄奇.空间信息技术在长江水利信息化中的应用及展望[J].长江科学院院报,2004,21(3):1-5.
    [132]谭华,刘耘,桂文军.水利信息化标准体系建设初探[J].人民长江,2002,33(12):41-43.
    [133]常志华,詹全忠,周维续.国家防汛抗旱指挥系统骨干网建设[J].计算机系统应用,2005,(6):2-5.
    [134]陈述彭,鲁学军,周成虎.地理信息系统导论[M].北京:科学出版社,2000.
    [135]高振东,何俊仕.水资源管理地理信息系统的探讨[J].农业与技术,2006,26(1):46-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700