用户名: 密码: 验证码:
河川径流的混沌特征和预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对径流变化规律的研究是水资源合理开发利用的前提和基础。河川径流是一种复杂的非线性时间序列。长期以来,人们一直用传统的确定性方法或随机性方法,或将二者结合的方法来描述径流演变过程,揭示径流演变的规律。根据水文要素变化的非线性特点,本文将混沌理论应用于河川径流演变规律的研究中,并通过和其他方法相结合,以黄河为研究对象,对径流时间序列进行了混沌特征分析和预测,取得的主要研究成果如下:
     (1)河川径流时间序列的相空间重构。对黄河干流兰州、三门峡、花园口站的月径流时间序列和三门峡站的日径流时间序列进行了相空间重构,得出:月径流时间序列相空间重构的时间延迟τ为2,嵌入维数m达到12时,具有饱和关联维数;三门峡站日径流时间序列相空间重构的时间延迟τ为12,嵌入维数m达到10时,具有饱和关联维数3.5;同一水文站,天然月径流时间序列比实测序列的饱和关联维数要大,要恰当描述实测月径流序列的变化特征,进行动力系统建模,最少需要4个独立变量,即4种因素,最多需要8个独立变量,要描述天然径流序列则最少需要5-6个独立变量,最多需要12个独立变量;下游的饱和关联维数比上游要稍大,下游径流形成所受到的影响因素会更复杂。
     (2)河川径流时间序列的混沌特征识别。通过引入饱和关联维数法、主分量分析法、最大Lyapunov指数等方法对黄河干流主要水文站的月、日径流资料的混沌特征识别,得出:①黄河干流月、日径流序列具有混沌特征;②同一水文站、同一时期的实测月径流序列的混沌特征要强于天然序列;③黄河干流下游的混沌特征要强于上游;④从上世纪五十年代到本世纪初黄河干流月径流序列的混沌特性比上世纪二十年代到上世纪七十年代月径流序列的混沌特性要稍强(即,现在要强于过去);⑤在同一尺度下,比如月径流,所采用径流时间序列的长、短对混沌特征的识别有影响,序列越长,所表现的混沌特征就越强,序列越短,所表现的混沌特征就相对较弱。
     (3)河川径流时间序列的混沌预测。对相空间近邻等距预测模式进行改进,利用改进后的相空间近邻等距法对月平均流量时间序列进行预测时,由于满足T=τ=sδt,消除了相空间时滞τ的变化对提前预测时间尺度T的影响,所以无需考虑对τ的选择问题,不仅简化了预测模式,而且显著提高了预测正确率,延长了预测时效,可以进行提前1月、1a甚至更长时间尺度的预测。
     (4)将混沌理论和支持向量机方法相结合,建立了基于混沌理论的最小二乘支持向量机模型(C-LSSVM),并对兰州站月径流序列进行了研究。C-LSSVM模型采用结构风险最小化原则,解决了网络模型的过学习问题,在处理小样本预测问题上具有优越性,适合小样本情况的建模,能够取得较好的预测精度。
     (5)提出了克服BP神经网络易陷入局部极小点、避免过度训练、增加模型的外推能力的方法。将混沌理论和神经网络相结合,建立基于混沌理论的神经网络预测模型,利用相空间重构技术充分显露日流量时间序列中蕴藏的信息,揭示传统时间序列方法无法展示的变化规律,利用神经网络巨大的非线性模拟能力进行河川日流量的预测研究,取得了较好的模拟和预测结果。
     (6)将非趋势波动分析法引入水文系统,对河川径流的长程相关性进行研究。通过对黄河近80年月径流序列的非趋势波动分析,得出:黄河近80年月径流存在内在的负长程相关性;黄河近80年径流长程幂律相关的标度指数a≌0.39,标度区间为11.3a。因此,分析预测在未来十几年,黄河径流的变化可能会成下降趋势。
Research on the river runoff changing rule is the premise and base of reasonable development water resource. Stream flows are sorts of complicated nonlinear time series. For a long time, people research it by using classical certainty methods, random methods, or union of the methods. The deterministic laws onrunoff changs are disclosure. According to the nonline characteristic of hydrographic features, the article uses chaotic theory and confluenses chaotic theory and other methords to to research stream flow. The yellow river is certification object. The main results of this paper are as follows:
     (1) The phase space reconfiguration is completed about month and day runoff of Lanzhou, Sanmenxia, and Huayuankou station in the yellow river. The results are obtaind. The month runoff phase space reconfiguration's dayly time'τ'are 2 and the day runoff are 12. The month runoff embedding dementions are 12, day runoff are 10. The saturation relation demention is 3.5 about day runoff phase space reconfiguration.
     (2) The chaotic characteristic of runoff time seris is identified adout month and day stream flow in Lanzhou, Huayuankou, Sanmenxia station by using the saturation relation demention, the most Lyapuno index number and PCA. We obtain these results. The first, the month and day cream flow of main station in the yellow river have chaotic characteristic; the second, the actual measurement month runoff time seris'chotic characteristic is stronger than natural in the same hydraulitic station and during the same time. The third, the chaotic characteristic in lower reaches of yellow river is stronger the upper reachs. The 4th, the chaotic characteristic in the modem is stronger than the past. The 5th, the length of runoff time seris can affect chaotic characteristic. The longer is stronger. The 6th, the month runoff chaotic characteristic is stronger than dayrunoff'chaotic characteristic.
     (3) The river runoff predicting is done by chaotic methords. The phase space neighbor isomtric prediction model is improved. When we predict runoff with this model, the problem of selecting'τ'need'nt considered, because of T=τ=s 8t', wich eleminits the effect that 'τ' affect to the time of predicting'T'.So the predicting time is prolonged, the accuracy is improved. We can predict runoff by advancing one month or one year.
     (4) Binding the chaotic theory and the support vector machine way, the chaotic predicting model base of least square support vector machine (C-LSSVM) is contructed. By using it in Lanzhou station, we attained the results as follow:the model is fit to predict month runoff, because of using structure risk minimizition principle, solveing the over-fiting problem, fiting to small number.
     (5) After the ways of overing the problems are proposed,witch are neural network falling into local very minimum point easily, avoding overtraining, and improving the model's extrapolation ablity, the chaotic network model is builded. The phase space reconstruction reveals the complicated information of day runoff seris and the changing law of classtic ways not revealing. By using it in yellow river, the satisfactory result was got.
     (6) By using Detrended Fluctuation Analysis way to hydraulitic system, the long-range power-law correlations were identified. Analysising 80 year's month runoff seris of Lanzhou station, we concluded that the seris has negative long-range power-law correlations, the relation index is 0.39, and the time length is 11.3a. By analysising it, we conclude the runoff will decress in the 10a in yellow river.
引文
[1]张济世,刘立昱,程中山等,统计水文学[M].郑州:黄河水利出版社,2006.
    [2]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2001.
    [3][美]E.N.洛仑兹.混沌的本质[M].刘式达,等译.北京:气象出版社,1997.
    [4]黄强,赵雪花等.河川径流时间序列分析预测[M].郑州:黄河水利出版社,2008.
    [5]黄强,乔西现,刘晓黎.江河流域水资源统一管理理论与实践[M].北京:中国水利水电出版社,2008.
    [6]沈小峰.混沌初开[M].北京:北京师范大学出版社,1993.
    [7]Lorenz EN. Detministic Noperiodic Flow [J]. Jatmos. Sci,1963,20:130-141.
    [8]Henon M. A two-dimensional mapping with a strange attractor [J], Commun, Math. Phys, 1976,50:69-77.
    [9]Rossler OE.An equation for continuous Chaos [J]. Phys Lett.1976, (57).
    [10]Ruelle D, Takens F. On the nature of turbulence [J]. Phys,1971,20:167-192.
    [11]Ruelle D, Takens F. On the nature of turbulence [J]. Phys,1971,23:343-344.
    [12]May R M. Simple mathematical models with very complicated dynamics [J]. Nature,1976, 261:459-467.
    [13]Feigenbaum M J. Quantitative university for a class of nonlinear transformations [J]. J. Start. Phys,1978,19:25-52.
    [14]冯国璋,李佩成.论水文系统混沌特征的研究方向[J].西北农业大学学报,1997,25(4):97-101.
    [15]杨立钦,顾岚.时间序列分析与动态数据建模[M].北京理工大学出版社,北京:1988.12.
    [16]王振龙主编.时间序列分析.北京:中国统计出版社,2000.
    [17]安鸿志,陈敏.非线性时间序列分析.上海:上海科学技术出版社,1998.
    [18]洪时中.非线性时间序列分析的最新进展及其在地球科学中的应用前景[J].地球科学进展,14(6),1999:559-565.
    [19]丁晶,邓育仁.随机水文学.成都:成都科技大学出版社,1988.
    [20]叶守泽,夏军.水文科学研究的世纪回眸与展望[J].水科学进展,2002,13(1):93-104.
    [21]张继国,刘新仁.水文水资源中不确定性的信息嫡分析方法综述[J].河海大学,2000,28(6):32-37.
    [22]丁晶,邓育仁.水文水资源中不确定性分折与计算的耦合途径[J].水文,1996(1):19-21.
    [23]程天文,陈洪经.随机水文学一周文德教授来华讲学主要内容[J].水文,1981,(2):30-33;(3):37-43.
    [24]陈守煜.模糊水文学[J].大连理工大学学报,1981,1:93-97.
    [25]B. M. Ayyub. Uncertainty Modeling and Analysis. Prooecdings of ISUMA. University of Maryland [J].Colkge Park, Maryland USA, December 3-5,1990.
    [26]陈守煜等.水利水文水资源与环境模糊集分析[M].大连:大连工学院出版社,1987.
    [27]冯宛平等.利用月平均量构造郑州地区月降水量预测[J].全国第一次灰色系统与农业学术会,1984.
    [28]杨叔子等.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1991.
    [29]袁嘉祖.灰色系统理论及其应用[M].北京:科学出版社,1991.
    [30]夏军.水文水资源管理中的统计理论及不确定性的研究与展望[J].水资源研究,1992,13(1):23-28.
    [31]刘光吉等.模糊灰色马氏过程在水库洪水顶报中的应用[J].水电能源科学,1989,7(2):56-48.
    [32]陈守煜.中长期水文预报综合分析理论模式与方法[J].水利学报,1997(8):15-21.
    [33]Eilbert R FChristensen R A. Performance of the entropy hydrological forecasts for California water year 1949-1977.) Of Calimate and Applied Meteorology [J],1983 (22):1645-1357.
    [34]Burg J P Maximumentropy spectral analysis[A].37th Ann. Intern[C]. Meeting Soc. Explor Geophys, Oklahoma City, Oklahoma,1967.
    [35]黄忠恕.波谱分析方法在水文上的应用[J].水文,1983(3):13-20.
    [36]Rao A R, Padmanahan q Kashyap R L. Comparison of recently developed methodsof spectral analysis [A]. Proceedings, Third International Symposiumon StochasticHydaulics, Tokyo, 1980,165-175.
    [37]Huang Qiang, Chang Jianxia, Wang Yimin, Peng Shaoming. Synergy Methodology for Multi-objective Reservoir Operation Control in Yellow River Basin [J]. China Science E.2004(47):212-223.
    [38]Krstanovic P F, Singh V P. A univariate model for long-term streamflow forecasting: I. Development [J]. Stoch Hydrol Hydraul,1991,5:173-188.
    [39]Krstanovic P F, Singh V P. A univariate model for long-term streamflow forecasting: II. Development [J].Stoch Hydrol Hydraul,1991,5:189-205.
    [40]Krstanovic P F, Singh V P A real-time flood forecasting model based on maximum entrop spectral analysis:I. Development[J]. Water Resources Management,1993,7:109-129.
    [41]Krstanovic P F, Singh V P A real-time flood forecasting model based on maximum entrop spectral analysis:II. Development [J]. Water Resources Management,1993,7:131-151.
    [42]Padmanahan Q Rao A R. Maximum entrop spectral analysis of hydrologic data[J]. Water Resources Research,1988,24(9):1519-1533.
    [43]Padmanahan q Rao A R. Maximum entrop spectral of some railfall and river flowtime series from southern and central India [J]. Theory Appl Climatology,1986,37:63-73.
    [44]Dalezios N R, Tyraskis P A. Maximum entrop for regional precipitation analysis and
    forecasting [J].J of hydrology,1989,109:25-42.
    [45]刘秉正.非线性动力学与混沌基础[M].长春:东北师范大学出版社,1995.
    [46]郑泽权,谢平等.小波变换在非平稳水文时间序列分析中的初步应用[J].水电能源科学,2001,19(3):49-51.
    [47]李荣,李义天.基于神经网络理论的河道水情预报模型[J].水科学进展,2000,11(5):427-431.
    [48]马炼等.神经网络技术在水文系列中长期预报中的应用[J].水利水电技术,2002(2).
    [49]胡江林等.神经网络模型预报湖北汛期降水量的应用研究[J].气象学报,2001(6).
    [50]蔡煌东等.径流长期预报的神经网络方法[J].水科学进展.1995(1).
    [51]钟登华,王仁超等.水文预报时间序列神经网络模型[J].水利学报,1995(2):69-75.
    [52]K Y Lee, Y T Cha and J H Park. Short-term load forecasting usingan artificial neural net-works. IEEE Transactions on Power System,7(1),1992:124-132.
    [53]黄强,蒋晓辉,刘俊萍,薛小杰.二元模式下黄河年径流变化规律研究[J].自然科学通报,2002,8(8):874-877.
    [54]Shozo;Tokinaga, et al. Forecasting of time series with fractal geometry by usingscale transformations and parameters estimation obtained by the wavelet transform, electronics and communication in Japan [J]. Parts3,1997,80(8):20-30.
    [55]Cao Liangyue, et al. Predicting chaotic time series with wavelet network [J]. PhysicalD, 1995,85:225-238.
    [56]赵永龙等.混沌小波网络模型及其在水文中长期预测中的应用[J].水科学进展.1998,9(3):252-287.
    [57]尤卫红等.小波变换在短期气候预测模型研究中的应用[J].高原气象,1999,18(1):39-46.
    [58]李贤彬,丁晶等.基于子波变换序列的人工神经网络组合预测[J].水利学报,1999(2):1-4.
    [59]金龙等.多步预测的小波神经网络预报模型[J].大气科学,2000,24(1):71-86.
    [60]赵永龙,丁晶等.相空间小波网络模型及其在水文中长期预测中的应用[J].水科学进展,1998,9(3):252-257.
    [61]刘俊萍,田峰巍,黄强等.基于小波分析的黄河河川径流变化规律研究[J].自然科学进展,2003,13(4):383-387.
    [62]薛小杰,蒋晓辉,黄强等.小波分析在水文序列趋势分析中的应用[J].应用科学学报.2002(4):99-101.
    [63]敖力布,林鸿溢.分形学导论[M].呼和浩特:内蒙古人民出版社,1996.
    [64]曾文曲等.分形理论与分形的计算机模拟[M].沈阳:东北大学出版社,1993:5-20.
    [65]丁晶等.洪水混沌分析[J].水资源研究,1992,13(3):14-18.
    [66]杨思全,陈亚宁.河冰湖突发洪水的分形和混沌特征研究[J].干旱区地理,1999,22(2):77-82.
    [67]杨思全,陈亚宁,王昂生.基于混沌理论的洪水灾害动力机制[J].中国科学院研究生院学报,
    2003,20(4):446-451.
    [68]傅军,丁晶,邓育仁.洪水混沌特性初步研究[J].水科学进展,1996,7(3):226-230.
    [69]袁鹏,李谓新,王文圣,等.月降雨量时间序列中的混沌现象[J].四川大学学报(工程科学版),2002,34(1):16-19.
    [70]Jayawardena A W, Lai F. Analysis and prediction of chaos in rainfall and stream flow time series [J].J Hydrol,1994,153:23-52.
    [71]Jayaw ardena A W et al. Analysis and prediction of chaos in rainfall and stream flow time series [J]. Journal of Hydrology.1994,75(3):23-52.
    [72]Breadford P W et al. Searching for chaotic dynamics in snow melt runoff [J]. Water Resources Research.1991,27(6):1005-1010.
    [73]Taiye B S, et al. Nonlinear dynamics of the Great Salt Lake dimension estimation [J]. Water Resources Research.1996,32(1):149-159.
    [74]王德智,夏军等.东北地区月降雨时间序列的混沌特性研究[J].水电能源科学,2002,20(3):32-34.
    [75]权先璋,温权等.混沌预测技术在径流预报中的应用[J].华中理工大学学报.1999,27(12)41-43.
    [76]蒋传文,权先璋等.径流序列的混沌神经网络预测方法[J].水电能源科学,1999,17(2):39-41.
    [77]叶守泽.水文水利计算[M].北京:水利电力出版社,1995:75-76
    [78]李东,蒋秀华,王玉明,李红良.黄河流域天然径流量计算解析[J].人民黄河,2001,23(2): 35-38
    [79]Poincare,科学的价值[M],北京:光明日报出版社,1988,386-389页.
    [80]Poincare,科学的价值[M],北京:光明日报出版社,1988,387页.
    [81]Poincare,科学的价值[M],北京:光明日报出版社,1988,389-394页.
    [82]郝柏林,自然界中的有序和混沌[J],百科知识,1984,No.1.
    [83]吴祥兴,陈忠等.混沌学导论[M].上海:上海科学技术文献出版社,1996.
    [84]尼克利斯G,普里戈京I.非平衡系统自组织.徐锡申,陈式刚等译[M].北京:科学出版社,1986.
    [85]陈士华,陆君安.混沌动力学初步[M].武汉:武汉水利电力大学出版社,1998.
    [86]陈南祥,徐建新,黄强.水资源系统动力学特征及合理配置的理论与实践[M].郑州:黄河水利出版社,2007.
    [87]黄润生.混沌及其应用[M].武汉:武汉大学出版社,2000.
    [88]Takens F. Detecting strange attractors in turbulence [A]. In:A Rand, LS Yong. Dynamic al systems and turbulence [M]. Warwick, Lecture Notes in Mathematics,898[C]. Berlin: Springer Verlag,1981.366-381.
    [89]Packard N H, Crutchfield J, Farmer J. Geometry from a time series [J]. Physics Review Letters,1980,45(9):712-715.
    [90]工金东,刘岩,赵海洋.基于延时嵌入法的往复式压缩机关联维数提取技术[J].化工机械,2005,32(4):214-216.
    [91]刘传孝,谭云亮,秦广鹏.相空间重构中时滞判定的功率谱分析法[J].岩土力学,2004,25(9):83-86.
    [92]Smith LA. Intrinsic limits on dimension calculations[J]. Phys LettA,1998,133(6): 283-288.
    [93]Nerenberg MAH, Essex C.Correlation dimension and systematic geometric effects[J].Phys Rev A,1990,42(12):7065-7074.
    [94]洪时中,洪时明.用Grassberger-Procaccia方法计算吸引子维数的基本限制[J].物理学报,1994,43(8):1228-1233.
    [95]Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times, and embedding windows [J]. Phys D,1999,127:48-60.
    [96]王红瑞,宋宇,刘昌明,等.混沌理论及在水科学中的应用与存在的问题[J].水科学进展,2004,15(3):400-407.
    [97]Sturrock P A, Scargle J D, Walther G, et al. Combined and comparative analysis of power spectra. Solar Physics,2005,227(1):137-153
    [98]弗朗索瓦.吕尔萨.混沌.马金章译.北京:科学出版社,2005
    [99]Giona M, Lentini F, Cimagalli V.. Functional reconstruction and local prediction of chaotic time series. Physical Review A,1991,44(6):3496-3502
    [100]Chellapilla K, Rao S. Optimizations of bilinear time series models using fast evolutionary programming. IEEE Signal Processing Letters,1998,5(2):39-42
    [101]Casdagli M. Chaos and deterministic versus stochastic and nonlinear modeling. Jounal of the Royal Statistical Society Sereis B,1992,54(2):303-328
    [102]Pawelzik J, Schuster H G. Unstable periodic orbits and prediction. Physical Review A,1991,43(4):1808-1812
    [103]McDonnell J R, Waagen D. Evolving recurrent perceptrons for time series modeling. IEEE Transactions on Neural Networks,1994,5(1):24-38
    [104]间相超,郑君里.一种正交多项式混沌全局建模方法.电子学报,2002,30(1):76-78
    [105]张森,肖先赐.混沌时间序列全局预测新方法——连分式法.物理学报,2005,54(11):5062-5068
    [106]Zhang J S, Xiao X C. Fast evoving multi-layer perceptrons for modeling and prediction of noisy chaotic time series. Chinese Physics,2000,9(6):408-413
    [107]Maguire L P, Roche B, McGinnnity T M, McDaid L J. Predicting a chaotic time series with a fuzzy neural network. Information Science,1998,112:137-142
    [108]Zhang J S, Xiao X C. Predicting chaotic time series with recurrent neural networks. Chinese Physics Letter,2000,17(2)
    [109]袁坚.混沌理论及其在电子工程中的应用研究.电子科技大学博士论文,1997
    [110]Farmer J D, Sidorowich J J. Predicting chaotic time series. Physical Review Letters, 1987,59(8):845-848
    [111]Kantz H, Schreiber T. Nonlinear time series analysis. Cambridge university press,1997
    [112]Li T Y, York J A. Period three implies chaos. Amer, Math, Monthly,1975, (82):985-992
    [113]王永忠,曾昭磐.混沌时间序列的局域线性回归预测方法.厦门大学学报(自然科学版),1999,38(4):636-640
    [114]李恒超,张家树.混沌时间序列局域零阶预测法性能比较.西南交通大学学报,2004,39(3):328-331
    [115]Kugiumtzis D,Lingjaerde C, Christophersen N. Regularized local linear prediction of-chaotic time series. Physica D,1998,112(3-4):334-360
    [116]Zhang J, Man K F, Ke J Y. Time series predication using lyapunov exponents in embedding phase space. IEEE International Conference on systems, Man and Cybernetics,1998, 1750-1755
    [117]Roy E, Srewart R W, Durrani T S. Higher-order system identification with an adaptive recusive second-order polynomial filter. IEEE Transactions on Neural Networks,1996, 3(10):276-279
    [118]Haykin S, Li L. Nonlinear adaptive prediction of nonstationary signals. IEEE Transactions on Neural Networks,1995,43(2):526-535
    [119]Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks,1990,1(1):4-27
    [120]郭双冰,肖先赐.混沌时间序列Volterra自适应滤波器定阶.电子与信息学报,2002,24(4):461-466
    [121]张家树,肖先赐.用于低维时间序列预测的一种非线性自适应预测滤波器.通信学报,2001,22(10): 93-98
    [122]马二红,杨建浩,张绍武,张敏贵.混沌时间序列的自适应非线性滤波预测.声学与电子工程,2003,(1):1-6
    [123]Jayawardena A W, Lai F. Analysis and Prediction of Chaos in Rainfall and Stream Flow Time Series [J]. Journal of Hydrology,1994,753:23 52
    [124]Siva Kumar B. Chaos Theory in Hydrology [J]. Journal of Hydrology,2000,227:1 20
    [125]傅军.洪水混沌特征分析及其非线预测方法研究[D].成都:成都科技大学,1994.
    [126]赵永龙.水文动力系统混沌分析及其非线预测方法研究[D].成都:四川联合大学,1997.
    [127]赵永龙,丁晶,邓育仁.混沌分析在水文预测中的应用和展望[J].水科学进展,1998,9(2):181-186.
    [128]杨旭,栾继虹,冯国璋.中长期水文预报研究评述与展望[J].西北农业大学学报,2000,28(6):203-207.
    [129]Box GEP, Jenkins GM. Time Series Analysis Forecasting and Control [M]. San Francisco: Holden Day,1976.
    [130]ASCE Task Committee. Artificial neural networks in hydrology I:Preliminary concepts [J]. Journal of hydrologic Engineering,2000,5(2):115-123.
    [131]ASCE Task Committee. Artificial neural networks in hydrology II:Hydrological applications [J]. Journal of Hydrologic Engineering,2000,5(2):124-137.
    [132]李元成,方廷健,于尔铿.短期负荷预测的支持向量机方法研究[J].中国电机工程学报,2003,23(6):55-59.
    [133]王景雷,吴景社,孙景生,等.支持向量机在地下水位预报中的应用研究[J].水利学报,2003,(5):122-128.
    [134]Liong SY, Sivapragasm C. Flood stage forecasting with SVM [J]. Journal of the America Water Resources Association,2002,38(1):173-186.
    [135]Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times, and embedding windows [J]. Phys D,1999,127:48-60.
    [136]Vapnik V. Statistical Leaning Theory [M], New York:Springer,1998.
    [137]Smcla AJ, Schoelkopf B. A tutorial on support vector regression [J]. Statistics and Computing,2004,14:199-222.
    [138]Cortes C, Vapnik V. Support vector networks [J]. Machine Learning,1995,20:273-297.
    [139]苑希民,李鸿雁,刘树坤.神经网络和遗传算法在水科学领域的应用[M].北京:中国水利水电出版社,2002,8.
    [140]钟珞,饶文碧,邹承明.人工神经网络及其融合应用技术[M].北京:科学出版社,2007,1:2-3.
    [141]胡守仁.神经网络导论.长沙:国防科技大学出版社,1993.
    [142]史忠植.神经计算.北京:电子工业出版社,1993.
    [143]焦李成.神经网络系统理论.西安:西安电子科技大学出版社,1996.
    [144]Narendra K, Parthasarathy K. Nonlinear system identification using neural networks [J]. Int J Control,1990,10(1):1191-1214.
    [145]Martin T,Hagan, Hovard B,Demuth.神经网络设计[M].北京:机械工业出版社,2002,9:211.
    [146]赵新宇.大型灌区退水量预测理论与方法研究[D]西安:西安理工大学,2007.
    [147]LeeJ M, KinDJ, KimI Y, etal. Detrended Fluctuation Analysis of EEG in Sleep Apnea Using MIT/BIH Polysomn ography data. Computers in Biology and Medicine. 2002(32):37-47.
    [148]Weron R. Estimating long-range dependence:finite sample properties and confidence intervals. Physica.2002,3(2):285-299.
    [149]Jan W K, Eva KB,Henio H A, et al. Detecting long-range correlations with detrended fluctuation analysis [J]. Physica A,200,295:441-454.
    [150]Peng C-K, Buldyrev SV, Havlin S, etal. Mosaic Organization of DNA Nucleotides [J]. Phys. Rev.,1994, E49:1685-1689
    [151]Bunde E K, Bunde A, Havlin S, etal. Analysis of daily temperature fluctuations [J]. Physica,1996,231:393-396
    [152]Bunde E K, Bunde A. Havlin S, etal. Indication of a Universal Persistence Law Governing Atmospheric Variability [J]. Phys.Rev. Lett,1998,81:729-732
    [153]Weron R. Estimating long-range dependence:finite sample properties and confidence intervals [J]. Physica A,2002,312:285-299

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700