用户名: 密码: 验证码:
缺血预处理对大鼠脂肪肝缺血再灌注损伤的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的和背景
     随着人民生活水平的提高,脂肪性肝病的发病率越来越高。酒精摄入、肥胖、营养不良、药物毒性、高脂血症、代谢或内分泌失调(如糖尿病)等是肝脏发生脂肪变的高危因素。据不完全统计,在常规显微镜下检查,发现约有30%的供肝有不同程度的脂肪变,约有10%的供肝因有中、重度脂肪变而不能用作供肝进行移植,在肝脏手术中也有近20%的患者是脂肪肝。在肝脏手术(肝移植、肝叶切除术)中,常需阻断肝脏血流造成缺血再灌注损伤,容易导致术后肝功能衰竭,影响手术疗效及移植物的存活。许多研究证明存在脂肪变的肝脏比正常肝脏对缺血再灌注损伤的耐受性差。有报道在脂肪肝患者肝叶切除术中夹闭血管60min,术后出现肝功能衰竭。接受具有中、重度脂肪变的供肝会降低移植物和病人的存活率。另外,供肝脂肪变是移植后移植物发生原发性肝无能(primary non-function,PNF)或最初肝功能衰竭(initial poor function,IPF)的高危因素。目前对脂肪肝缺血再灌注(ischemia reperfusion,I/R)损伤的研究较多,但其具体的损伤机制尚不十分清楚,许多假说试着阐述脂肪肝对缺血再灌注损伤的耐受性降低的原因,具体包括:(1)脂质过氧化增加,脂质负荷过重的肝细胞的抗氧化能力下降。(2)中性粒细胞浸润增加。(3)微循环的损害。(4)Kupffer细胞的激活及炎性介质的释放:如:TNF-α等。
     早在1986年Murry在研究心肌缺血时提出了缺血预处理的概念,短暂的缺血并不产生代谢产物的堆积,也不会造成高能磷酸储备减少,但能通过某种机
    
     浙江大学硕士学位论文
    制启动内源性的保护机制,从而减轻随后而来的较长时间的缺血再灌注损害。
    缺血预处理(isehemie preeonditioning,IpC)是缺血损伤强有力的保护机制,己
    经证明这种保护作用不仅存在于心脏,对许多脏器均有保护作用,如:大脑、
    脊髓、视网膜、肝脏、肺及骨骼肌等。许多研究证明缺血预处理对正常肝脏的
    缺血再灌注损伤具有保护作用,表现为:明显降低缺血再灌注后的肝细胞坏死
    和凋亡,减轻肝脏损害标记酶的变化;降低窦状内皮细胞的损害,改善微循环
    失衡,减轻白细胞、血小板与肝窦内皮细胞的豁附;增加肝脏细胞的胆汁分泌;
    减轻肝细胞内酸中毒和钠超载;抑制Kupffer细胞的激活,减少翎F一。、IL一1
    等炎性因子的释放;降低肝脏及各脏器的中性粒细胞浸润及氧自由基的产生;
    增加剩余肝细胞活性和肝组织ATP含量;增加肝脏血流;提高实验动物的存活
    力。
     Anna Serafin等人研究发现缺血预处理能提高Zucker肥胖大鼠脂肪肝对缺
    血再灌注损伤的耐受性。缺血预处理是否也能提高高脂饮食致大鼠脂肪肝对缺
    血再灌注损伤的耐受性?目前的研究甚少。本实验通过高脂饮食喂养建立SD
    大鼠脂肪肝模型,用苏丹m染色观察肝脏脂肪蓄积情况,HE染色观察基本病理
    变化,用化学比色法检测血清酶学指标、肝组织匀浆的氧化及抗氧化指标。探
    讨缺血预处理是否能提高高脂饮食致大鼠脂肪肝对缺血再灌注损伤的耐受性及
    其潜在机制。
    材料与方法
     动物分组及处理:清洁级SD雄性大鼠72只,体重约140一1609。随机分成
    8组,l一4组为高脂饮食组大鼠,1组为对照组、2组为缺血再灌注组(1瓜)、3
    组为smin缺血预处理组(IPC一5)及4组为10min缺血预处理组(IPC一10),以
    高脂饲料喂养,高脂饲料配方如下:2%胆固醇+lO%猪油+88%普通饲料;5一8
    组为普通饮食组大鼠,5组为对照组、6组为1/R组、7组为IPC一5组、8组为IPC一10
    组,予以普通饲料喂养。所有大鼠均自由采食、自由饮水;动物房通风良好、
    室温20一22度,昼夜周期12小时。大鼠每周称重一次,至4w末进行手术处理。
     手术方案:2%戊巴比妥钠(30一40m叭g)腹腔内注射。腹部正中切口,
    分离左、中、右肝蒂,无损伤血管夹阻断左、中肝蒂血流,造成肝脏70%的缺
    
     浙江大学硕士学位论文
    血,松开血管夹造成再灌注。1瓜组大鼠分别缺血40min,再灌注gomin;IPC一5
    组大鼠分别先阻断smin、再灌注smin后同呱组;IPC一10组大鼠先阻断smin、
    再灌注10min后同1瓜组;对照组仅腹部正中切口及分离肝蒂。手术结束后腹
    主动脉取血及留取缺血部分的肝组织。
     HE染色观察肝脏基本病理学改变;苏丹m染色观察肝脏脂肪蓄积情况。检
    测血清丙氨酸氨基转移酶(alanine aminotransferase,ALT)、天冬氨酸氨基转移
    酶(aspartate aminotransferase,AsT),乳酸脱氢酶(lactate dehydrogenase LDH)、
    一氧化氮(nitrie oxide,No)及肝组织超氧化物歧化酶(s即eroxide dismutase,
    Son)、丙二醛(malondialdehyde,MnA)、谷肤甘肤(glutathione,GsH)及
    髓过氧化物酶(明eloperoxidase,MPo)水平。
     统计学处理:各指标测定数据均以均值士标准差表示,采用SPSS 10.0软件
    包分析处理。采用方差检验,组间比较采用SNK检验;方差不齐时采用非参数
    检验。p<0.05为统计学上差别具有显著性意义,p<0.01为差别有非常显著性意
    义。
    结果
     一、一般状态观察:正常组大鼠毛色亮泽,活泼,食欲佳,无消瘦、搪便
    等。
Backgrounds and Purposes
    The ischemia-reperfusion(I/R) injury is an important cause of liver damage during surgical procedures including hepatic resections and liver transplantation. Liver steatosis is popular among people, affecting about 25% of donors for liver transplantation and 20% of patients undergoing liver resection. It can be caused by obesity, ethanol toxicity, or variety of metabolic disorders(such as diabetes mellitus, hyperlipemia). Hepatic steatosis is a major risk factor after liver surgery because steatotic livers tolerate poorly to I/R injury. Fatty livers are extremely sensitive to the deleterious effects of ischemia-reperfusion injury. The occurrence of postoperative liver failure after hepatic resection in a steatotic liver exposed to 60 min of vascular clamping has been reported. Moreover, fatty infiltration of a donor liver is a well-known risk factor for the development of graft dysfunction and in some cases graft failure after transplantation. However, the precise mechanism underlying increased vulnerability
     of fatty livers to I/Rinjury is still not fully understood. Current opinions suggest that the enhanced I/Rinjury IN fatty livers may be attributed to 1) fat solidification during organ preservation and hepatocyte disruption during reperfusion;
    
    
    2) enhanced lipid peroxidation; 3) increased damage to the sinusoidal microcirculation and increased leukocyte adhesion to the sinusoidal endothelial cells; 4) increased Kupffer cell activation; 5) deterioration of mitochondria ATP synthesis; and 6) decreased antioxidant defenses of the fat-laden hepatocytes. In 1986, Murry et al. discovered that a short period of ischemia and reperfusion led to an unexpected resistance of myocardium to a subsequent prolonged ischemia. The phenomenon, called ischemia preconditioning (IPC), has been subsequently documented in several organs, including cerebrum, spinal cord, optomein , Skeletal muscles , liver and lung.
    IPC is a potential therapeutic strategy, which may increase the tolerance of normal liver to ischemia-reperfusion injury demonstrated in animals as well as humans. But the mechanism of the preconditioning effect in the liver remains uncertain. Current thinking suggests that the protective effect may be attributed to 1) depresses Cellular necrosis and apoptosis; 2) protects the sinusoidal endothelial cells, improves liver microcirculation and decreases leucocytes adhere to platelet and endothelial cell; 3) decreases Kupffer cell activation and TNF, IL-1 release; 4) reduces acidosis and Na+ overload.
    Is ischemia preconditioning can increase the tolerance of fatty liver to hepatic ischemia-reperfusion injury or not? There is little investigation done at present in home and abroad. The present study were designed to make the fatty liver model by feeding a high-fat diet and aimed to evaluate whether ischemia preconditioning could be an effective strategy to reduce hepatic I/R injury in the presence of steatosis and to elucidate the underlying mechanisms of preconditioning on hepatic I/R injury in normal and steatotic liver.
    Materials and methods
    Experimental animal and design: Seventy-two healthy Sprague-Dawley rats, weighing between 140 and 160 grams, were divided randomizedly into 8 groups. Rats in group 1-4 were fed a high-fat diet containing 10% lard, 2% Cholesterol, and 88%
    
    ordinary diet while rats in group 5-8 were fed ordinary diet.Water and food ad libitum until use and kept under constant environmental conditions with a 12-hour light-dark cycle. Group 1 and 5:control(NG1=9;NG5=10) rats were subjected to anesthesia and laparotomy. Group2 and 6: 1/11(NG2=9;NG6=10), rats were subjected to 40 minutes of partial ischemia followed by 90 minutes reperfusion. Group3 and 7: (NG3=8;NG7=8)ischemia preconditioning plus I/R (IPC-5+I/R), rats subjected to I/R were subjected to precious preconditioning induced by 5 minutes of ischemia and reperfusion. Group4 and 8: (NG4=8;NG8=10)( IPC-10+I/R), rats subjected to I/R were subjected to precious preconditioning induced by 5minutes of ischemia
引文
1. Holdstock G, Iredale J, Millward-Sadler GH, Wright R:Hepatic changes in systemic diseases. Fatty Changes. In: Millward-Sadler GH,Wright R, Arthur MJP (Eds.). Wright's liver and biliary disease. 3rd Edition. London: W.B.Saunders co. 1992; 997-998.
    2. Marsman WA, Wiesner RH, Rodriguez L, Batts KP, Porayko MK, Hay JE, Gores G J, Krom RA. Use of fatty donor liver is associated with diminished early patient and graft survival. Transplantation. 1996; 62(9): 1246-1251.
    3. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium [J] circulation, 1986.74(5): 1124-1136.
    4. Glazier SS, O'Rourke DM, Graham DL, Welsh FA. Induction of ischemic tolerance following brief local ischemia in rat brain. J Cereb Blood Flow Metab 1994; 14: 545-553.
    5. Pang CY, Yang RZ, Zhong A, Xu N, Boyd B, Forrest CR. Acute ischaemic preconditioning protects against skeletal muscle infarction in the pig. Cardiovasc Res 1995; 29: 782-788.
    6. Hotter G, Closa D, Prados M, Femandez-Cruz L, Prats N, Gelpf E, Rosello-Catafau J. Intestinal preconditioning is mediated by a transient increase in nitric oxide. Biochem Biophys Res Commun 1996; 222: 27-32.
    7. Peralta C, Hotter G, Closa D, Gelpi E, Bulbena O, Rosello- Catafau J. Protective effect of preconditioning on the injury associated to hepatic ischemia-reperfusion: role of nitrc oxide and adenosine. Hepatology. 1999 Jan; 29(1): 126-132.
    8. Crenesse D, Laurens M, Gugenheim J, Heurteaux C, Cursio R, Rossi B, Schmid-Alliana A. Intermittent ischemia reduces warm hypoxia-reoxygenation-induced JNK(1)/SAPK(1) activation and apoptosis in rat hepatocytes. Hepatology. 2001 Nov; 34(5): 972-978.
    9. Zapletal C, Maksan SM, Lehmann T, Guenther L, Fallsehr C, Mehrabi A, Weiss G, Golling M, Gebhard MM, Herfarth C, Klar E. Ischemic preconditioning improves liver microcirculation after ischemia/reperfusion. Transplant-Proc. 1999; 31 (8): 3260-3262.
    10. Howell JG, Zibari GB, Brown MF, Burney DL, Sawaya DE, Olinde JG, Granger DN, McDonald JC. Both ischemic and pharmacological preconditioning decrease hepatic leukocyte/endothelial cell interactions. Transplantation. 2000 Jan 27; 69(2): 300-303.
    
    
    11. Carini R, Grazia-De-Cesaris M, Splendore R, Albano E. Stimulation of p38 MAP kinase reduces acidosis and Na(+) overload in preconditioned hepatocytes. FEBS-Lett. 2001 Mar 2; 491(3): 180-183.
    12. Arai M, Thurman RG, Lemasters JJ. Involvement of Kupffer cells and sinusoidal endothelial cells in ischemic preconditioning to rat livers stored for transplantation. Transplant-Proc. 1999 Feb-Mar; 31(1-2): 425-427.
    13. Schauer RJ, Gerbes AL, Vonier D, Winkel M, Fraunberger P, Bilzer M. Induction of cellular resistance against kupffer cell-derived oxidant stress: a concept of hepatoprotection by ischemic preconditioning. Hepatology. 2003; 37(2): 286-295.
    14. Peralta C, Bulbena O, Xaus C, Prats N, Cutrin JC, Poli G, Gelpi E, Rosello-Catafau J. Ischemic preconditioning: a defense mechanism against the reactive oxygen species generated after hepatic ischemia reperfusion. Transplantation. 2002; 73(8): 1203-1211.
    15. Yamada S, Iida T, Tabata T, Nomoto M, Kishikawa H, Kohno K, Eto S. Alcoholic fatty liver differentially induces a neutrophil-chemokine and hepatic necrosis after ischemia-reperfusion in rat. Hepatology. 2000 Aug; 32(2): 278-288.
    16. Lloris-Carsi JM, Cejalvo D, Toledo-Pereyra LH, et al. Transplant Proc 25: 3303, 1993.
    17. Cutrin JC, Llesuy S, Boveris A. Primary role of Kupffer cell-hepatocyte communication in the expression of oxidative atress in the post-ischaemic lever. Cell Biochem. Funct. 16: 65-72;1998.
    18. Selzner M, Rudiger HA, Sindram D, Madden J, Clavien PA. Mechanisms of ischemic injury are different in the steatotic and normal rat liver. Hepatology. 2000 Dec; 32(6): 1280-1208.
    19. Gonzalez-Flecha B, Cutrin JC, Boveris A. Time course and mechanism of oxidative stress and tissue damage in rat liver subjected to in vivo ischemia-reperfusion. J-Clin-Invest. 1993 Feb; 91(2): 456-464.
    20. Cutrin JC, Llesuy S, Boveris A. Primary role ofKupffer cell-hepatocyte communication in the expression of oxidative stress in the post-ischaemic liver. Cell-Biochem-Funct. 1998 Mar; 16(1): 65-72.
    21. Jaeschke H, Bautista AP, Spolarics Z, Spitzer JJ. Superoxide generation by neutrophils and Kupffer cells during in vivo reperfusion after hepatic ischemia in rats. J-Leukoc-Biol. 1992
    
    Oct; 52(4): 377-382.
    22. Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J-Pathol. 2000 Feb; 190(3): 255-66.
    23. Schauer RJ, Bilzer M, Kalmuk S, Gerbes AL, Leiderer R, Schildberg FW, Messmer K. Microcirculatory failure after rat liver transplantation is related to Kupffer cell-derived oxidant stress but not involved in early graft dysfunction. Transplantation. 2001 Nov 27; 72(10): 1692-1699.
    24. Serracino-Inglott F, Habib NA, Mathie RT. Hepatic ischemia-reperfusion injury. Am-J-Surg. 2001 Feb; 181(2): 160-166.
    25. Kawachi S, Hines IN, Laroux FS, Hoffman J, Bharwani S, Gray L, Leffer D, Grisham MB. Nitric oxide synthase and postischemic liver injury. Biochem-Biophys-Res-Commun. 2000 Oct 5; 276(3): 851-854.
    26. Shigeki A, Masayuki I. Physiological role ofsinusoidal endothelial cells and Kupffer cells and their implication in the pathogenesis of liver injury. J Hepatobiliary Pancreat. Surg. 7: 40-48; 2000.
    27. Jaeschke H, Farhood A, Bautista AP, Spolarics Z, Spitzer JJ. Complement activates Kupffer cells and neutrophils during reperfusion after hepatic ischemia. Am-J-Physiol. 1993 Apr; 264(4 Pt 1): G801-G809.
    28. Scoazec JY, Borghi-Scoazec G, Durand F, Bernuau J, Pham BN, Belghiti J, Feldmann G, Degott C. Complement activation after ischemia-reperfusion in human liver allografts: incidence and pathophysiological relevance. Gastroenterology. 1997 Mar; 112(3): 908-918.
    29. Lehmann TG, Koeppel TA, Munch S, Heger M, Kirschfink M, Klar E, Post S. Impact of inhibition of complement by sCR1 on hepatic microcirculation after warm ischemia. Microvasc-Res. 2001; 62(3): 284-292.
    30. Ploeg RJ, D'Alessandro AM, Knechtle SJ, Stegall MD, Pirsch JD, Hoffmann RM, Sasaki T, Sollinger HW, Belzer FO, Kalayoglu M. Risk factors for primary dysfunction after liver transplantation--a multivariate analysis. Transplantation. 1993; 55(4): 807-813.
    31. Nardo B, Grattagliano I, Domenicali M, Caraceni P, Catena F, Santoni B, Turi P, Cavallari G, Dall'Agata M, Trevisani F, Bernardi M, Cavallari A. Mitochondrial oxidative injury in rat
    
    fatty livers exposed to warm ischemia-reperfusion. Transplant-Proc. 2000 Feb; 32(1): 51.
    32. Behrns KE, Tsiotos GG, DeSouza NF, Krishna MK, Ludwig J, Nagorney DM. Hepatic steatosis as a potential risk factor for major hepatic resection. J-Gastrointest-Surg. 1998 May-Jun; 2(3): 292-298.
    33. Selzner M, Clavien PA. Resection of liver tumors: special emphasis on neoadjuvant and adjuvant therapy. In: Clavien PA, ed. Malignant liver tumors—Current and emerging therapies. MA: Blackwell Science 1999: 137-149.
    34. Teramoto K, Bowers JL, Kruskal JB, Clouse ME. Hepatic microcirculatory changes after reperfusion in fatty and normal liver transplantation in the rat. Transplantation. 1993 Nov; 56(5): 1076-1082.
    35. Arai M, Thurman RG, Lemasters JJ. Contribution of adenosine A(2) receptors and cyclic adenosine monophosphate to protective ischemic preconditioning of sinusoidal endothelial cells against Storage/Reperfusion injury in rat livers. Hepatology. 2000 Aug; 32(2): 297-302.
    36. Peralta C, Bartrons R, Riera L, Manzano A, Xaus C, Gelpi E, Rosello-Catafau J. Hepatic preconditioning preserves energy metabolism during sustained ischemia. Am-J-Physiol-Gastrointest-Liver-Physiol. 2000 Jul; 279(1): G163-G171.
    37. Peralta C, Prats N, Xaus C, Gelpi E, Rosello-Catafau J. Protective effect of liver ischemic preconditioning on liver and lung injury induced by hepatic ischemia-reperfusion in the rat. Hepatology. 1999 Dec; 30(6): 1481-1489.
    38. Nakayama H, Yamamoto Y, Kume M, Yamagami K, Yamamoto H, Kimoto S, Ishikawa Y, Ozaki N, Shimahara Y, Yamaoka Y. Pharmacologic stimulation of adenosine A2 receptor supplants ischemic preconditioning in providing ischemic tolerance in rat livers. Surgery. 1999 Nov; 126(5): 945-954.
    39. Cohen MV, Baines CP, Downey JM. Ischemic preconditioning: from adenosine receptor of KATP channel. Annu-Rev-Physiol. 2000; 62: 79-109.
    40. Stein SC, Woods A, Jones NA, Davison MD, Carling D. The regulation of AMP-activated protein kinase by phosphorylation. Biochem-J. 2000 Feb 1; 345 Pt 3: 437-443.
    41. Peralta C, Bartrons R, Serafin A, Blazquez C, Guzman M, Prats N, Xaus C, Cutillas B, Gelpi
    
    E, Rosello-Catafau J. Adenosine monophosphate-activated protein kinase mediates the protective effects of ischemic preconditioning on hepatic ischemia-reperfusion injury in the rat. Hepatology. 2001 Dec; 34(6): 1164-1173.
    42. Li RC, Ping P, Zhang J, Wead WB, Cao X, Gao J, Zheng Y, Huang S, Han J, Bolli R. PKCepsilon modulates NF-kappaB and AP-1 via mitogen-activated protein kinases in adult rabbit cardiomyocytes. Am-J-Physiol-Heart-Circ-Physiol. 2000; 279(4): H1679-1689.
    43. Xuan YT, Tang XL, Banerjee S, Takano H, Li RC, Han H, Qiu Y, Li JJ, Bolli R. Nuclear factor-kappaB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ-Res. 1999 May 14; 84(9): 1095-1109.
    44. Bolli R. The late phase of preconditioning. Circ-Res. 2000 Nov 24; 87(11): 972-983.
    45. Peralta C, Fernandez L, Panes J, Prats N, Sans M, Pique JM, Gelpi E, Rosello-Catafau J. Preconditioning protects against systemic disorders associated with hepatic ischemiareperfusion through blockade of tumor necrosis factor-induced P-selectin up-regulation in the rat. Hepatology. 2001 Jan; 33(1): 100-113.
    46. Serafin A, Rosello-Catafau J, Prats N, Xaus C, Gelpi E, Peralta C. Ischemic preconditioning increases the tolerance of Fatty liver to hepatic ischemia-reperfusion injury in the rat. Am-J-Pathol. 2002; 161(2): 587-601.
    47. Koneru B, Reddy MC, dela-Torre AN, Patel D, Ippolito T, Ferrante RJ. Studies of hepatic warm ischemia in the obese Zucker rat. Transplantation. 1995 Apr 15; 59(7): 942-946.
    48. Yamada S, Iida T, Tabata T, Nomoto M, Kishikawa H, Kohno K, Eto S. Alcoholic fatty liver differentially induces a neutrophil-chemokine and hepatic necrosis after ischemia-reperfusion in rat. Hepatology. 2000 Aug; 32(2): 278-288.
    49. Day CP, James OF .Hepatic steatosis: innocent bystander or guilty party? Hepatology. 1998 Jun; 27(6): 1463-1466.
    50. Nakano H, Nagasaki H, Barama A, Boudjema K, Jaeck D, Kumada K, Tatsuno M, Baek Y, Kitamura N, Suzuki T, Yamaguchi M, The effects of N-acetylcysteine and anti-intercellular adhesion molecule-1 monoclonal antibody against ischemia-reperfusion injury of the rat steatotic liver produced by a choline-methionine-deficient diet. Hepatology. 1997 Sep; 26(3): 670-678.
    
    
    51. Ohhara K. Study of microcirculatory changes in experimental dietary fatty liver. Hokkaido-Igaku-Zasshi. 1989; 64(2): 177-185.
    52. Hakamada K, Sasaki M, Takahashi K, Umehara Y, Konn M. Sinusoidal flow block after warm ischemia in rats with diet-induced fatty liver. J-Surg-Res. 1997; 70(1): 12-20.
    53. Clavien PA, Yadav S, Sindram D, Bentley RC. Protective effects of ischemic preconditioning for liver resection performed under inflow occlusion in humans. Ann-Surg. 2000 Aug; 232(2): 155-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700