用户名: 密码: 验证码:
海草矮大叶藻生物量与热值的动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海草与红树林和珊瑚礁并称为三大典型海洋生态系统,它是生活于热带和温带海域浅水中的单子叶植物,是只适应于海洋环境生活的水生种子植物。本研究对广西防城港珍珠湾海草床矮大叶藻群落进行了一整年的生物量和热值的研究,并对矮大叶藻的不同发育阶段和四种不同海草的热值进行的比较研究。本论文研究填补了广西海草的基础科学数据、并为保护恢复和合理利用方面提供了科学依据。
     1、矮大叶藻地上全年平均生物量为21.97 g.DW.m~(-2),地下的全年平均生物量是24.53 g.DW.m~(-2),一年每个月份的变化趋势也相差不多,4月的生物量最大,8月最小。地上部与地下部生物量的比值3月、4月、7月、8月的比值1,其他月份小于1。矮大叶藻呈现出越向向海面的生物量越高,且是个明显的变化趋势。
     2、矮大叶藻地上全年平均干重热值是13.43 kJ/g,平均的灰分含量17.03%,平均去灰分热值为16.22 kJ/g地下平均干质量热值是12.33 kJ/g,平均的灰分含量21.72%,平均去灰分热值为15.76kJ/g。
     3、眼子菜科的矮大叶藻和海神草干重热值大于水鳖科的海菖蒲和海黾草,而灰分含量矮大叶藻小于其他三种,地上部与地下部的灰
     分含量大小随海草种的不同而不同。去灰分热值的大小是,海神草>海黾草>矮大叶藻>海(艹昌)蒲。
     4、矮大叶藻成熟的叶、茎的干重热值高于幼的叶、茎和老的叶、茎。随着发育过程,叶片的灰分含量越来越高,茎的灰分含量越来越少。去灰分热值最大是成熟叶16.57 kJ/g,最小的是老茎14.19 kJ/g。
     5、矮大叶藻叶片的N/P秋、冬季较大,达到16,春季较低为10.2,茎的N/P秋季最大11.8,最小的是春季为4.9。四种海草的N、P含量均较高,叶片的N含量大于茎中的,但P含量随海草种不同而不同。矮大叶藻随着发育过程,N、P含量逐渐增加。
Seagrass bed is one kind of the representative marine ecosystems like mangrove, coral reefs and so on. Being a category of Monocotyledons in the shallow water, they are adapted well to the marine habitats. My research was designed to study: (1) the year-round dynamics in the biomass and caloric value of Zostera japonica seagrass meadow in Zhenzhu Bay, Fangchenggang city, Guangxi province; (2) The caloric values of Zostera japonica in the different development stages; And (3) comparison of the caloric values in four species of seagrass in Southern China. The goal of this study was to provide with scientific data for the protection, restoration and sustainable utilization of seagrass in China.
     The results are as follow:
     1. The average year-round biomass of aboveground organs in Zostera japonica was 21.97 g.DW.m~(-2), and that in the underground organs was 24.53 g. DW. m~(-2). It seemed that the biomass changed evenly through the whole year, it was however higher in April and lower in August. The ratios of the aboveground biomass to the underground were higher than 1 in March, April, July and August, while those were lower than 1 in other months. The biomass of Zostera japonica increased significantly with the increasing distance off the shore.
     2. In the aboveground part of Zostera japonica, the average year-round gross caloric value was 13.43kJ/g, the average ash free caloric value 16.22 kJ/g and the average ash content 17.03%. And in the underground part, the average year-round gross caloric value was 12.33 kJ/g, the average ash free caloric value 15.76 kJ/g and the average ash content 21.72%.
     3. The gross caloric values in Zostera japonica and Cymodocea rotundata (two species in family Potamogetonaceae) were higher than those in Enhalus acoroides and Thalassia hemperichii (two species in family Hydrocharitaceae). The ash contents varied among these four species, with the lowest recorded in Zostera japonica. The decreasing order in the ash-free caloric values was Cymodocea rotundata, Thalassia hemperichii, Zostera japonica and Enhalus acoroides.
     4. The gross caloric values in mature leaf and stem were higher than those in young leaf and stem in Zostera japonica. Along with the aging process, the ash content in leaf increased, while those in stem decreased. The maximum of ash free caloric value occurred in the mature leaf, 16.57kJ/g, and the minimum in old stem, 14.19kJ/g.
     5. The N/P ratios in leaf of Zostera japonica were 16 in autumn and winter, 10.2 in spring. The N/P ratios in stem were highest in autumn, 11.8, and lowest in spring, 4.9. In contrast to other plants, the contents of N and P in these four species of seagrass were higher. The N contents in leaves were always higher than those in stems, but the P contents did not obey the same rule as the N contents. Both the N and P contents increased along with the aging process.
引文
Adams.S.M., The ecology of eelgrass, Zastera marina (L),fish communities, Structural analysis, J.Exp. Mar.Biol.Ecol., 1976,22:269~291
    Adamsndhd S., Caloric content of Plates dominating phryganic(Ist Mediterranean) ecosysteln in Greece,Flora, 1978,167:514~584.
    Almasn.M N. Hoskon. C.M. Reed.J.K.and Milo.J., Effects of natural and artificial Thalasate on rates of sedimentation, J.Sediment.Petrol, 1987,57:901~906
    Bidwell RGS(刘富林译),植物生理学,北京:高等教育出版社。1982,173~181,
    Bliss L.C., Caloric and lipid content in Alpine Tundra plants, Ecology,1962, 43(4): 753~757.
    Chen L. Z. Nutrient Cycling of Forest Ecosystem in China. Beijing: Meteorology Press. 1997, 1~182
    Dawes C J,厦门大字植物生态字研究室 林鹏等译权,海洋植物学.厦门:厦门大学出版社.1989,305~322.
    Duarte.C.M. and Chicano.C.L., Seagrass biomass and production: A reassessment, Aqual.bet., 1999,65:159~174
    Edgar.G.J.Shaw.C,Watson.G.F and hammond.L.S.,Comparisons of species richness. size-structure and production of benthos in vegetated and unvetated habitats in Western Port Victoria, J.Exp.Mar biol.Ecol, 1994,176:201~226
    Fonseca.M.S., Sedment stabilization by Halophila decipiens in companson to other seagrasses, Estuary.Coast.Shelfsci, 1989,29:501~507
    Franken.M, Major nutrientand energy contents of thell tedall of ariver in eforest of central Amazonia. TropEcol, 1979, 20(2): 211~224.
    Golley FG, Energy values of ecological materials, Ecology, 1961, 42(3): 581~584,
    Hadiey N.F.Tinkle D.W , Lizard reproductive effects: calorie Estimates and commentsonits evolution , Ecology, 1975,56(3):427- 434,
    Hartog C D and Yang Z D, A Catalogue of the seagrass China, Chin. J. Oceanol. Limnol, 1990, 8(1):74-91.
    Hartog D C. Structure, function and classification in seagrass communities. Mar. Sci., 1977,4:89-119.
    Howards-Williams C, Nutritional qualityand caloric value of Amazonian-rest litter, Amazonisana, 1974,1: 67 - 75.
    James TDW, Smith DW , Seasonal changes in the caloric values of the leaves and twigs of Papulus remuloides, Can.J.Bot, 1978, 56: 1804-1805.
    Jordan CF, Productivity of a tropical forest and its relation a world pattern of energy storage, J.Ecol, 1971, 59: 127-142
    Koch.E.W, Hydrodynamics of a shallow Thalassia testudinum bed in Florida, USA. In seagrass biology Proc.International Workshop. Rottnest Island. Western Aastralia,25-29 January 1996 .kuo,J,Phillips ,R.C.Waalker,D.I and Kirkman, H (eds). Faculty of sciences.The University of Western Australia.pp. 1996.105-110
    Koerselman W ,Meuleman A.F.M , Vegetation N P ratio: Anew tool to detect the nature of nutrient limitation, J Appl Ecol, 1996,33:1441 - 1450
    Lin P,Wang W Q, Changes in the leaf composition, leaf mass and leaf area during leaf senescence in three species of mangroves, Ecological Engineering,2001,16(3): 415-424.
    Livingstern.R.J. The relationship of physical factors and biological response in coastal seagrass neadows. Estuaries. 1984,7:377-390
    Long FL,Application of calorimetric methods to ecological research,Plant Phiol,1934, 9(2): 323-327.
    Mann,K.H.,and A.R.O. Chapman primary production of marine macrophytes. Inter. Biol.Prog. 1975,3;1-15.
    McRoy,C, and C. McMillan Production ecology and physidogy of seagresses. Mar. Sci.Vol.4(seagrass ecosystems) ,1977:53-81
    Ovington JD, Lawrence DB. Comparative chlorophyll and energy studies of prairie, savanna.oakwood an d Irlaize field ecosystem, Ecology, 1967,48(4): 515~524.
    Rooke.R.Holt.S.A..Soto.M.A and Holt.G.J. Postsettelment patterns of habital use by scaenid fishes in subtropical seagrass meadows. Estuaries, 1998.21:318~327
    Singh AK.Misrakn, Ambasht RS. Energy dynamics in a savanna ecosystemin India. Jap. J. Eoz. 1980,3:295-305.
    Smith.S.V. Marine macrophytes as a global carbon sink. Science 1981.211:838~840
    UNEP. Seagrass in the South China Sea, UNEP/GEF/SCS Technical Publication No.3. Bangkok, Thailand,2004.
    WangW Q, Lin P. Transfer of Salt and nutrients in Bruguiera gymnorrhiza leaves during development and senescence. Mangroves and Salt Marshes, 1999 3(1): 1~7.
    WhittakerRH,(姚壁君等译),群落与生态系统,北京:科学出版社,1977
    Wielgolaski FE. Kjelvik S. Energy content and use of solar radiation of Fennoseandian Tundra plants. In: Wielgolaski FEeds. Fennoseandian Tundra Ecosystem, Part Ⅰ: Plants andMicroorganisms. Berlin: Springer. Verlag, 1975, 201-207.
    Wielgolaski FE.Kjevikc S,(杨福囤译),芬兰斯堪的纳维亚冻原植物能量含量及 太阳辐射能的利用,国外畜牧学—草原.1982,(3):27~31
    毕玉芬,车伟光,2002,几种苜蓿属植物植株热值研究,草地学报,10(4):265-269.
    陈家宽.上海九段沙湿地自然保护区科学考察集.北科学出社,2003.97~101
    陈佐忠,张鸿芳,内蒙古典型草原地带118种植物的热值,草原生念系统研究,1992,4:41~48
    邓超冰,廉雪琼,广西北部湾珍稀海洋哺乳动物的保护及管理,广西科学院学报,2004,20(2):123~126
    邓超冰著,北部湾儒艮及海洋生物多样性,南宁:广西科学技术出版社.,2002:45~52
    段晓男,王效科,欧阳志云等,乌梁素海野生芦苇群落生物及影响因子分析,植物生态学报,2004,28(2):246~251
    冯宗炜,陈楚莹,张家武等,湖南会同县两个森林群落生产力,植物生态学与地植物学学报,1982,6(4):136~140
    郭继勋,王若丹,王娓.松嫩草原拂子茅种群热值、生物量和能量动态的研究,植物学报,2001,43(8):852~856
    郭继勋,王若丹.东北草原优势植物羊草热值和能量特征,草业学报,2000,9(4):28~32
    郭继勋,郑茂钟,林鹏,等,园林竹类植物叶的热值和灰分含量研究,厦门大学学报(自然科学版),2000,39(1):136~140
    郭水良,黄华等,金华市郊10种杂草的热值和灰分含量及其适应意义,植物研究,2005,25(4):460~464
    何池全,三江平原毛果苔草湿地生物过程——Ⅰ,种群地上物量的增长规律,中国草地,2001,23(4):11~171
    侯庸,王伯荪,张宏达,等,广东黑石顶自然保护区南亚热带常绿阔叶林5种优势植物的热值研究,生态学报,1998,18(3):263~268
    胡自治,孙吉雄,张映生,等,天祝高寒珠牙蓼草甸群落的热值和营养成分的初步研究,植物生态学与地植物学学报,1990,14(2):185~190
    华南热带作物研究院,用比色法测定橡胶叶片氮含量,热作科技通讯,1974,(5):12~13
    姜趣 草地生态研究方法,北京 农业出版社,1988,67~83
    咎启杰,王伯荪,王勇军,深圳福田无瓣海桑——海桑林能量的研究,应用生态学报,2003,14(2):170~174.
    李冠国,范振刚,海洋生态学,北京:高等教育出版社,2004,297~299.
    李意德.吴仲民,曾庆波,等.尖峰岭热带山地雨林主要种类能量背景值测定分析.植物生态学报,1996.20(1):1~10.
    林承超,福州鼓山季风常绿阔叶林及其林缘几种植物叶热值和营养成分,生态学报,1999,19(6):832~836.
    林光辉,林鹏,红树植物秋茄热值及其变化的研究,生态学报,1991,11(1):44~48
    林鹏,林光辉,几种红树植物的热值和灰分含量研究,植物生态学与地植物学学报,1991:114~120
    林鹏,邵成,郑文教,福建和溪亚热带雨林优势植物叶的热值研究,植物生态学报,1996,20(4):303~309
    林鹏,吴世军,林益明,红树植物繁殖体发育过程的能量变化,海洋科学,2000,24(9):46—50
    林鹏,中国红树林生态系,北京:科学出版社,1997,257~266
    林益明,柯莉娜,王湛昌,等,深圳福田红树林区7种红树植物叶热值的季节变化,海洋学报,2002,24(3):112~118
    林益明,黎中宝,陈奕源,福建华安竹园一些竹类植物叶的热值研究,植物学通报,2001,18(3):356~362
    林益明,李和阳,林鹏,等,福建南靖虎伯寮亚热带雨林竹类植物热值的研究,竹子研究汇刊,2000,19(1):57~62
    林益明,林鹏,华安县绿竹林能量的研究,厦门大学学报(自然科学版),1998,37(6):908~914,
    林益明,林鹏,李振基,等.福建武夷山常绿林群落能量的研究.植物学报,1996,38(12):989~994
    林益明,林鹏,王通.几种红树植物木材热值和灰分含量研究.应用生态学报,2000,1(2):181~184
    林益明,杨志伟,李振基,武夷山常绿林研究,厦门:厦门大学出版社,2001.
    林益明,郑茂钟,林鹏,等,园林竹类植物叶的热值和灰分含量研究,厦门大学学报(自然科学版),2000,39(1):143~147
    刘世荣,王文章,王明启,落叶松人工林生态系统净初级生产力形成过程中的能量特征,植物生态学与地植物学学报,1992,16(3):209~218
    刘志鸿,董树刚,青岛汇泉湾大叶藻种群遗传多样性的研究,海洋水产研究,1998,19(2):27~32
    刘祖祺,张石城,植物胁迫生理,北京:中国农业出版社,1994,232~282
    龙瑞军.徐长林,胡自治,等,天祝高山草原15种饲用灌木的热值及季节动态生态学杂志,1993,12(5):13~16
    邱瑾,云叶,邱澄宇等,辣木植物器官不同发育阶段的热值研究,集美大学学报(自然科学版),2006,11(4):320~325
    任海,彭少麟,刘鸿先,等,鼎湖山植物群落及其主要植物的热值研究,植物生态学报,1999,23(2):148~154
    任海,彭少麟,余作岳,等,鹤山乡土混交林的能量特征及光能利用率,中国科学院研究生院学报,1996,13(1):54~60
    邵成,陈中林,董厚德,辽河河口湿地芦苇的生长及生物量究.辽宁大学学报(自然科学版),1995,22(1):89~94
    世界生态保护中心,世界海草地图集,联合国环境署,2003
    孙国夫,郑志明,王兆骞,水稻热值的动态变化研究,生态学杂志,1993,12(1):1~4
    孙雪峰,陈灵芝,徐瑞成,暖温带落叶阔叶林林内能量的分配组合特征,见陈灵芝,黄建辉,暖温带生态系统结构与功能的研究,北京:科学出版社,1997,163~172.
    谭忠奇,林益,明向平等,5种榕属植物不同发育阶段叶片的热值与灰分含量动态,浙江林学院学报,2003,20(3):264—267
    王得祥,雷瑞德,尚廉斌,秦岭林区主要乔木、灌木种类能量背景值测定分析,西北林学院学报,1999,14(1);54~58
    王桂花,张峰,上官铁梁,等,滹沱河河漫滩草地苔草群落生物量研究,中国草地,2003,25(5):23~26.
    徐永荣,张万钧等,天津滨海盐渍土上几种植物的热值和元素含量及其相关性,生态学报,2003,23(3):450~455
    杨福囤,何海菊,高寒草甸地区常见植物热值的初步研究,植物生态学与地植物学丛刊,1983,7(4):280~288,
    杨盛昌,李云波,林鹏,冷胁追下红树植物白骨壤和桐花树叶片热值的变化,台湾海峡,2003,22(1):46~52,
    杨永兴,王世岩,何太蓉,等,三江平原典型湿地生态系统生量及其季节动态研究,中国草地,2002,24(1):1~7
    杨宗岱,吴宝玲,国海草场的分布、生产力及其结构与功能的初步探讨,生态学报,1981,1(1):84~89
    杨宗岱,李淑霞,海草系统分类的探讨,山东海洋学院学报,1983,13(4):78~87
    杨宗岱,支序分类在海草分类划分中的应用,黄渤海海洋,1993,11(2):56~67
    杨宗岱,中国海草植物地理学的研究,海洋湖沼通报,1979,2:41~46
    杨宗岱,中国海草生态学的研究,海洋科学,1982,2:34~37
    叶春江,赵可夫,高等植物大叶藻研究进展及其对海洋沉水生活的适应,植物学通报,2002,19(2):184~193
    由文辉,宋永昌,淀山湖水生维管束植物群落能量的研究,植物生态学报,1995,19(3):208~216.
    于应文,胡自治,张德罡,等,天祝金强河高寒地区金露梅的热值及其季节动态,草业科学,2000,17(2):1~4.
    张峰,高翠莲,上官铁梁,等,滹沱河湿地狭叶香蒲群落生物量研究,山西大学学报(自然科学版),2000,23(4):347~349
    张鸿芳,陈佐忠,大针茅典型草原几种主要植物热值的季节变化,植物学通报,1993,10(1):51~53
    赵建刚,杨琼,陈章和,等,几种湿地植物根系生物量研究,中国环境科学,2003,23(3):290~294
    赵可夫,李法曾主编,中国盐生植物,北京,科学出版杜,1999,311~322
    中国科学院长春地理研究所,三江平原北京,科学出版社,1983,123~148
    中国科学院南京土壤研究所,中国土壤,北京,科学出版社,1974,499~622
    中国湿地植被编辑委员会编著,中国湿地植被,北京,科学出版社,1999,252-263
    周道纬,孙刚,王平,火烧后草原植物营养和热值的变化,东北师范大学学报(自然科学版),1999,(4):100~104
    祖元刚,张宏一,植物热值测定的若干技术问题,生态学杂志。1986,5(4):53~56
    祖元刚,能量生态学引论,长春,吉林科学技术出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700