用户名: 密码: 验证码:
基于多孔泡沫金属的磁流变液阻尼材料的理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变液阻尼器作为一种半主动可控的阻尼器件,自磁流变现象发现后一直是学术界和工程界的研究热点。这种阻尼可控器件,其内部阻尼介质采用磁流变液,该液体主要由微米级尺寸大小的磁性颗粒与载液和稳定剂混合而成,通过调节不同强度的外加磁场,使阻尼通道中磁流变液的流动特性发生变化,从而控制阻尼力。目前高性能的磁流变液在市场上已可以购买,但价格昂贵,因此只有在一些重要或高端的技术领域,有可控磁流变液阻尼器的应用实例。传统的磁流变阻尼器由于是采用腔体充满磁流变液的设计方式,用量大,同时还需专门的密封装置,导致价格昂贵;另外在工作时,硬质的磁性颗粒极易进入到密封部位的间隙里,加剧了密封处的磨损,影响了阻尼器的寿命。
     本论文针对磁流变液阻尼器在工程应用中碰到的价格昂贵和使用寿命短的瓶颈问题,以现有的多孔海绵磁流变液阻尼器设计为模版,研究了采用多孔泡沫金属替代多孔海绵储存磁流变液并产生阻尼的新型磁流变液阻尼材料的可行性,对这种磁流变液阻尼材料产生阻尼效应的机理进行了理论和实验研究,并对该材料的动态响应和阻尼性能进行了测试和分析。
     本论文完成的主要工作有:
     1)提出多孔材料的结构参数选择原则,对相关参数进行了测试,为选择合适的多孔材料储存磁流变液并产生阻尼提供实验依据。研究了磁流变液在毛细管中的上升现象,得到磁流变液在毛细管中的上升高度与孔径的关系以及毛细管内的磁流变液性能变化情况,初步确定了保证磁流变液性能不产生较大变化的最小孔径;测试了不同种类和不同孔隙率的多孔材料储存磁流变液的能力,分析了磁流变液在通过多孔材料后的渗透情况。
     2)分析和测试了多孔泡沫金属的性能。针对选择的多孔泡沫金属(铜、铁、镍),利用石蜡熔融法,测出多孔泡沫金属的孔隙率,测试了在重力作用下,磁流变液通过多孔泡沫金属后的性能变化与多孔泡沫金属结构参数的关系;对不同种类多孔泡沫金属的相对磁导率及对磁场分布的影响进行了理论和实验研究。
     3)研究了磁流变液在磁场作用下的上升机理,建立了用于计算磁流变液上升高度的理论模型,搭建了测试磁流变液上升高度的装置,测试了磁流变液在不同强度外加磁场下的上升高度,实验验证了所建立的磁流变液上升高度计算模型的准确性,磁流变液上升高度的理论模型建立和实验验证工作为分析多孔泡沫金属磁流变液阻尼材料的阻尼效应提供了理论依据。
     4)搭建了多孔泡沫金属磁流变液阻尼材料的性能测试系统,研究了剪切转矩及其影响因素。介绍了性能测试装置的工作原理、主要结构和测试系统,采用计算、仿真和实验的方法分析了所设计装置的内部磁场分布。应用搭建的实验装置研究了不同多孔泡沫金属、剪切间隙、外加电流(磁场)及剪切应变等对多孔泡沫金属磁流变液阻尼材料剪切转矩的影响。结果表明,采用多孔泡沫金属铜储存磁流变液时产生的剪切转矩最大;对于多孔泡沫金属磁流变液阻尼材料,在外加磁场强度和剪切间隙相同的条件下,从多孔泡沫金属中析出磁流变液的量对剪切转矩的影响非常大。
     5)研究了多孔泡沫金属磁流变液阻尼材料的动态响应性能。定义了三个时间参数用于表征多孔泡沫金属磁流变液阻尼材料的动态响应性能,实验研究了剪切间隙、外加电流(磁场)以及多孔泡沫金属的材料等参数对动态响应性能的影响,同时分析了响应时间的其它影响因素,建立了多孔泡沫金属磁流变液阻尼材料的响应时间计算模型,利用建立的响应时间计算模型,对多孔泡沫金属磁流变液阻尼材料剪切转矩和响应时间的变化进行了分析。
Magnetorheological fluid (MR fluid) damper, as a kind of the semiactive and controllable dampers, has been focused for the academia and engineering region since the MR effect was discovered. MR fluid, as the damping medium of the damper, is a stable disperse system composed of two phases, such as micro sized magnetic particles, carrier oil and stabilizer. Although fully commercial, mass-produced MR fluids and devices have been available via the retail market and applied, the high cost of MR fluid damper is still a barrier to widespread commercial acceptance in many areas. The typical MRF dampers need large volume of MR fluid and specific sealing component to restrict MRF leakage make them very expensive. Beside this, the wear produced by the magnetic particles will also shorten the life of the damper.
     The motivation of the work is to overcome the large volume of MRF and costly seal needed by conventional MRF dampers. Referring to the porous sponge MR fluid damper, this dissertation presents an original idea to use porous foam metal to hold magneto-rheological fluid (MRF) when unexcited and the MR fluid can be propelled when excited with external magnetic field. The feasibility and theory on the porous foam metal used to store MR fluid and produce the damping effect is studied.
     The main research works of this dissertation are as followings:
     1) The principles for selection of the porous materials are put forward. The relationship between the MR fluid capillary force and the pore size, the change of MR fluid characteristics in the micro tube such as density are investigated. The MRF storing ability and the penetrability of different porous materials have been evaluated. These experimental works are much useful for the selection of the suitable materials to store MRF.
     2) The performance of porous foam metals is studied and tested. The porosity of porous foam metal (Fe, Ni and Cu) is measured using fusible paraffin. The relationship between the penetrability of porous foam metal and the change of characteristics of MR fluid is obtained by measuring of MR fluid after flowing through the porous foam metal. The relative permeability of three porous foam metals are measured by vibrating sample magnetometer. The effect of the different materials and thickness of porous foam metals on the distribution of magnetic field is studied.
     3) The mechanism of the rising phenomenon of MR fluid under magnetic field is investigated. The computing model of the rising height of MR fluid is built up. A test rig is developed to evaluate the rising height under the different magnetic field; the experimental results validate the computing model of the rising height. These works provide the theoretic and experimental basis for the damping effect of MRF soaked porous metal foam (also named porous foam metal MRF damping materials).
     4) A shearing plate-on-plate test-rig is developed so as to investigate the performance of MRF soaked metal foam. The effect, shearing gap, current and different metal foams on the shearing performance, are investigated experimentally. The porous foam metal Cu, which could provide the maximal shear torque, is found out. At the same condition of magnetic field and shear gap, the shearing performance is sensitive to the volume of the propelled MRF.
     5) The performance of dynamic response of the MRF soaked porous metal foam is investigated. The three time parameters are defined to describe the dynamic response. The effect, shearing gap, current (or magnetic field) and different metal foams on the dynamic response, are investigated experimentally. The computing model on the response time is built up to explain the shear performance and dynamic response.
引文
[1] Rabinow. The magnetic fluid clutch [J]. AIEE Transactions, 1948, (67) , 1308
    [2]庞雪蕾,唐芳琼.电流变液体的研究进展[J],化学进展,2004,(06):72-78
    [3]潘之茂,磁流变液阻尼控制器的研制及其性能测试系统设计[D],武汉:武汉理工大学硕士学位论文,2003.2:2-5
    [4]汪建晓,孟光.磁流变液研究进展[J].航空学报,2002,(1):6-12
    [5] Shtarkman. Fluid Response to Magnetic Field, U.S Patent, 1991, No: 4992190
    [6] Weiss K D, J. David Carlson, John P. Coulter. Material Aspects of Electrorheological Systems [J], Journal of Intelligent Material Systems and Structures, 1993, 4(1), 13-34
    [7] Carlson J. D. New cost Effective Braking Damping and Vibration Control Devices Made with Magnetorheological Fluids [J], Materials Technology, 1998, (13), 96-99
    [8] Carlson J. D. Magnetorheological Materials Based on Alloy Particles, U.S Patent, 1995, No: 5382373
    [9]王立克.新型结构磁流变阻尼器的实验建模[C].2005年第四届全国电磁流变学术会议论文集:135-137
    [10] Nagaya Kosuke, li lianjin. Method for reducing sound radiated from structures using vibration absorbers optimized with a neural network[J], Journal of the Acoustical Society of America, 1998, 104 (3), 1466-1473
    [11] Li Lianjin, Nagaya Kosuke. Noise reduction for structures by using magnetic vibration absorbers[J], Transactions of the Japan Society of Mechanical Engineers, Part C, 1995, 61(591), 4187-4194
    [12] Li Lianjin, Nagaya Kosuke. Optimal vibration control of a beam having vibration absorbers by means of neural networks with consideration of higher modes[J], Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1995, 61(582), 85-92
    [13] Ginder J. M. Shear Stress in Magnetorheological Fluids: Role of Magnetic Saturation[J], Applied Physics Letters, 1994, (65), 3410-3418
    [14] Ginder J. M. Rheology of Magnetorheological Fluids: Models and Measurements[C], Proc. of the 5th International Conference on ER and MR Fluids, 1995, 504-515
    [15] B. F.Spencer, Guangqing Yang, J. D. Carlson.“Smart”Damper for Seismic Protection of Structures: A Full-scale Study[C], Proc. of the Second World Conference on Structures, 1998, 102-108
    [16] Dyke.S, B.F.Spencer, Carlson J. D. Experimental Verification of Semi-Active Structural Control Strategies Using Acceleration Feedback[C], Proc. the 3rd Int. Conf. On Motion and Vibr. Control, 1996, 291-296
    [17] Dyke.S, B.F.Spencer, Carlson J.D. Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction [J], Smart Mater. Struct, 1996, (5), 565-575
    [18]杨广强,B.F.Spencer, J.D.Carlson.足尺磁流变液阻尼器的建模与动态特性[J],地震工程与工程振动,2001,(6):8-23
    [19] Ginder J M. Controllable-stiffness components based on magnetorheological elastomers [C]. Proceedings of SPIE-the International Society for Optical Engineering Smart Structures and Materials, 2000, (20), 108-120
    [20] Gopalswamy S, Linzell S M, Jones G L. et al. U.S.Patent, No:5896965, 1999
    [21] Sheng R, Flores G A, Liu J. Investigation of a novel cancer therapeutic method using embolizing properties of magnetorheological fluids, 1999, (194), 167-175
    [22] Kordonski , Gorodkin S R, Novikova Z A, Nakano M, Koyama K eds. Proc of the 6th Int Conf on ER Fluids, MR Suspensions and their Applications[C]. World Scientific, 1998, 535-542
    [23] Kordonsky. Magnetorheological Effect As a Base of New devices and Technologies, Journal of Magnetism and Magnetic Materials, 1993, (122), 395-398
    [24] Volkova O, Bossis G, Lemaire E, Nakano M, Koyama K, eds. Proc of the 6th Int Conf on ER Fluids, MR Suspensions and their Applications[C]. World Scientific, 1998, 528-534
    [25] Bossis G, Lemaire, Tao R, eds. Proc of the 3rd Int Conf on ER Fluids[C].World Scientific, 1992.75-80
    [26] Kormann C, Laun H M, Richter H J. Bullogh W A ed. Proc of the 5th Int Conf on ER Fluids MR Suspensions and Associated Technology[C]. World Scientific, 1996.362-367
    [27]唐新鲁.有关电流变液、磁流变液机理若干问题的研究[D],合肥:中国科学技术大学,1996
    [28]金昀,唐新鲁,王晓杰.磁流变液屈服应力的管道流测试方法研究[J],实验力学,1998,13(2):168-173
    [29]江万权,陈祖耀.α-Fe粉体浓悬浮体系的制备及磁流变效应[J],化学物理学报,2002,15(2):146-148
    [30]陈吉安,赵晓昱.应用于汽车减振的磁流变液阻尼器的设计原理[J],汽车技术,2002,(8):9-13
    [31]廖昌荣.汽车悬架系统磁流变阻尼器研究[D],重庆:重庆大学博士学位论文,2001
    [32]廖昌荣,陈伟民,黄尚廉.磁流变技术与磁流变阻尼器件[J],新技术新工艺,2000,(10):17-20
    [33]潘公宇.磁流体阻尼可调减振器[J],机械工程学报,2002,38(7):148-152
    [34]谢俊,刘军,马履中.汽车磁流变减振器流变力学特性的研究[J],江苏大学学报(自然科学版),2002,(11):26-29
    [35]张华良,饶柱石,傅志方,等.环型极板电流变液可控阻尼器理论建模研究[J],振动工程学报,2002,15(1):32-35
    [36] OU Jinping, GUAN Xichun. Magnetorheological fluid and smart damper for structural vibration control [J], EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION, 2001.12, 1-7
    [37]杨仕清,王豪才.磁流变液智能材料特性及器件研究[J],大自然探索,1998,(3):75-78
    [38]杨仕清,吴建耀.磁流变液的流变学性质研究[J],功能材料,1998,(5):48-54
    [39]张茂润,陶昭才,李广学.硅油基Fe3O4磁流体的制备与性能[J],磁性材料及器件,2003,(6):7-9
    [40]张茂润,彭成松.工艺条件对硅油基铁氧体磁流体性能的影响[J],安徽理工大学学报,2003,23(3):50-53
    [41]池长青,王之珊.铁磁流体力学[M],北京:北京航空航天大学,1993
    [42]马小娟.可调粘滞性CoFe2O4离子型磁性液体的制备及其磁致光透射变化特性研究[D],重庆:西南师范大学硕士学位论文,2003
    [43]周云,徐龙河,李忠献.磁流体阻尼器半主动控制结构的地震反应分析[J],土木工程学报,2001,(10):10-14
    [44]刘亚俊,赵生权,刘崴.泡沫金属制备方法及其研究概况[J],现代制造工程,2004 (9):83-87
    [45]于英华,梁冰,李智超.多孔泡沫金属研究现状及分析[J],青岛建筑工程学院学报,2003,24(1):54-57
    [46]周照耀,吴峥强,邵明.烧结金属多孔材料孔隙的研究[J],粉末冶金工业,2005. 8,15(4):6-10
    [47] Sosnik.加汞法制备泡沫铝, US Patent, No: 2434775, 1948.05
    [48]王录才,于利民,王芳.多孔泡沫金属的研究及其前景展望[J],太原重型机械学院学报,2002.1,23 (1):72-76
    [49] M.S. Phanikumar, R.L.Mahajan. Non-Darcy natural convection in high porosity metal foams[J], International Journal of Heat and Mass Transfer, 2002, (45), 3781–3793
    [50] John Banhart. Manufacture, characterisation and application of cellular metals and metal foams[J], Progress in Materials Science, 2001, (46), 559–632
    [51] Y.W.Kwon, R.E.Cooke, C. Park. Representative unit-cell models for open-cell metal foams with or without elastic filler[J], Materials Science and Engineering, 2003, (343), 63–70
    [52]左孝青,孙加林.泡沫金属的性能及应用研究[J],昆明理工大学学报,2005,30(1):13-17
    [53]祝长生.剪切型磁流变脂阻尼器转子系统的动力特性[J],机械工程学报,2006,(10):91-94
    [54]李明章,焦映厚,涂奉臣.磁流体-泡沫金属阻尼器减振性能的研究[J],哈尔滨工业大学学报,2006.2,38(10),177-190
    [55]徐平,王洋.基于磁流体-泡沫金属的机床颤振在线监控系统[J],机械制造,2005,(6):52-55
    [56] Pavel Kuzhir, Georges Bossis. Flow of magnetorheological fluid through porous media[J], European Journal of Mechanics, 2003, (22), 331–343
    [57] T. Ricken, R de Boer. Multiphase flow in a capillary porous medium[J], Computational Materials Science, 2003, (28), 704–713
    [58] Victor Bashtovoia, Georges Bossis. Magnetic field effect on capillary rise of magnetic fluids[J], Journal of Magnetism and Magnetic Materials, 2005, (289), 376–378
    [59] J.David Carlson. Sponge wrings cost from MR-fluid devices[J], machine design, 2001.2,73-75
    [60] Michael J. Chrzana, J.David Carlson. MR Fluid Sponge Devices and Their Use in Vibration Control of Washing Machines[C], The proceedings of the 8th Annual Symposium on SmartStructures and Materials,2001
    [61] J. David Carlson, Mark R. Jolly. MR fluid, foam and elastomer devices[J], Mechatronics, 2000, (10) , 555-569
    [62]杨思一,吕广庶.开孔泡沫金属的结构特性及流体流过性能的研究[J],新技术新工艺,2004,(8):50-52
    [63]刘培生,马晓明.多孔材料检测方法[M],冶金工业出版社,2006
    [64]李海涛,彭向和,黄尚廉.基于偶极子理论的磁流变液链化机理模拟研究[J],功能材料,2008,(6):902-904
    [65]李德才.磁性液体理论及应用[M],北京:科学出版社,2003
    [66] X.H. Liu, P.L. Wong, W Wang and K.P. Liu. Modelling of the B-field effect on the free surface of magneto-rheological fluids[J], Journal of Physics: Conference Series, 2009, (149) 012072
    [67] Adrian Lange, Heinz Langer, Andreas Engel. Dynamics of a single peak of the Rosensweig instability in a magnetic fluid[J], Physica D, 2000, (140), 294–305
    [68] Christian Gollwitzer, Gunar Matthies. The surface topography of a magnetic fluid: a quantitative comparison between experiment and numerical simulation [J], J. Fluid Mech,2007 (571), 455-474
    [69] V.G. Bashtovoi, O.A. Lavrova, V.K. Polevikov, L.Tobiska. Computer modeling of the instability of a horizontal magnetic-fluid layer in a uniform magnetic field[J], Journal of Magnetism and Magnetic Materials, 2002, (252), 299-301
    [70] Gunar Matthiesa, Lutz Tobiskab. Numerical simulation of normal-field instability in the static and dynamic case[J], Journal of Magnetism and Magnetic Materials, 2005, (289), 346–349
    [71] A. Engel, A. Lange, H. Langer, T. Mahr, M.V.Chetverikov. A single peak of the Rosensweig instability[J], Journal of Magnetism and Magnetic Materials, 1999, (201), 310-312
    [72] Reinhard Richter, V. Barashenkov. Two-Dimensional Solitons on the Surface of Magnetic Fluids [J], Physical review letters ,2005, 184503,1-3
    [73] Bert Reimann, Thomas Mahr, Reinhard Richter, Ingo Rehberg. Standing twin peaks due to non-monotonic dispersion of Faraday waves[J], Journal of Magnetism and Magnetic Materials, 1999, (201), 303-305
    [74] S.N.Samatov, O.Yu.Tsvelodub. Wave regimes on a ferromagnetic viscous-fluid film flowing down a vertical cylinder[J], Journal of Applied Mechanics and Technical Physics, 2002, (43), 406-410
    [75] Thomas Mahr, Ingo Rehberg. Nonlinear dynamics of a single ferrofluid-peak in an oscillating magnetic field[J], Physica D, 1998, (111), 335-346
    [76] Y.Renardy, S.M.Sun. Stability of a layer of viscous magnetic fluid flow down an incline plane[J], Phys.fluids, 1994, (10), 3235-3246
    [77]小飒工作室.最新经典ANSYS及Workbench教程编[M],电子工业出版社,2004
    [78]盛和太,喻海良,范训益.ANSYS有限元原理与工程应用实例大全[M],清华大学出版社,2006
    [79] http://sine.ni.com/nips/cds/view/p/lang/zhs/nid/3380
    [80] http://forums.ni.com/ni/board/
    [81]裴锋,王翠英.基于LabVIEW的虚拟仪器算法解决方案[J],自动化仪表,2005,26(8):62-64
    [82]刘旭辉.磁流变液阻尼减震器及其振动控制的研究[D],天津:天津理工大学,2005.12
    [83]翁建生.基于磁流变阻尼器的车辆悬架系统半主动控制[D],南京:南京航空航天大学博士学位论文,2001.8
    [84] Yang G, Ramallo J C, Spencer.J. Dynamic Performance of Large scales MR Fluid Dampers[C], Proceedings of 14th ASCE Engineering Mechanics Conference. Austin: Texas, 2000.
    [85] G Yang, B.F.Spencer. Phenomenological Model of Large-scale MR Damper Systems, Advances in Building Technology, 2002, (1), 545-552
    [86]关新春,欧进萍.磁流变减振驱动器的响应时间试验与分析[J],地震工程与工程振动,2002.12,22(6):96-102
    [87] Kenichi Koyanagi. Time response model of ER fluids for precision control of motors[J], Journal of Physics: Conference Series, 2009, (149) 012019
    [88] Changsheng Zhu. The response time of a rotor system with a Disk-type magnetorheological fluid damper[J], International Journal of Modern Physics B, 2006, 19(7),1506-1512
    [89]黄曦,余淼,陈爱军.磁流变液阻尼器动态响应及其影响因素分析[J],功能材料2006,(5):808-811
    [90] Naoyuki Takesue, Junji Furusho, Yuuki Kiyota. Analytic and Experimental Study on Fast Response MR-Fluid Actuator[C], Proceedings of the 2003 IEEE international Conference on Robotics & Automation, Taipei, Taiwan, September 14-19. 2003
    [91] Naoyuki Takesue, Junji Furusho, Yuuki Kiyota, Fast Response MR-Fluid Actuator[J], JSME International Journal Series C,2004,47(3), 206-210
    [92] Naoyuki TAKESUE, Junji FURUSHO, Masamichi SAKAGUCHI. Improvement of Response Properties of MR-Fluid Actuator by Torque Feedback Control[C], Proceedings of the 2001 IEEE International Conference on Robotics Automation, Seoul, Korea, 2001
    [93]朱伟,马履中,谢俊徐,华伟.磁流变阻尼器设计及实时控制研究[J],机械设计与制造,2007,(11):138-141
    [94] Goncalves F D, Ahmadian M. An Investigation of the Response Time of MR fluid dampers [C], Proceedings of SPIE 2004 Smart Structures and materials, 2004
    [95] V. Bashtovoi, P. Kuzhir, A.Reks. Capillary ascension of magnetic fluids[J], Journal of Magnetism and Magnetic Materials, 2002, (252), 265-267
    [96]任明星,李邦盛,杨闯,傅恒志.微尺度型腔内液态金属流动规律模拟研究[J],物理学报,2008.8:5063-5011
    [97]宋静.微通道内气液两相流动特性研究[J],青岛科技大学学报,2006.8,27(4):299-304
    [98]谢刚.毛细管束流变模型内壁粘附力的测量及影响因素研究[J],黑龙江大学学报, 2005.2,22(1):53-57
    [99] A.G.Kostornov. Capillary Transport of Low-Viscosity Liquids in Porous Metallic Materials under the Action of Gravitational Force[J], Powder Metallurgy and Metal Ceramics, 2003, (42), 9-10
    [100]凌智勇,丁建宁,杨继昌,范真,李长生.微流动的研究现状及影响因素[J],江苏大学学报,2002.11,23(6):1-5
    [101]李勇,江小宁,周兆英,叶雄英.微管道流体的流动特性[J],中国机械工程,1994,5(3):23-27
    [102]陶然,权晓波,徐建中.微尺度流动研究中的几个问题[J],工热物理学报,2001.9,22(5):576-580
    [103]邹茜,沈瀛生,赵弋洋,等.铁磁流体表面张力的测试[J],清华大学学报,2000,40(5):73-75
    [104] Gollwitzer C, Matthies G. The surface topography of a magnetic fluid: a quantitative comparison between experiment and numerical simulation, J. of Fluid Mech, 2007, (571), 455-474
    [105] Marcelo Lago, Mariela Araujo. Capillary Rise in Porous Media, Journal of Colloid and Interface Science, 2001, (234), 35-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700