用户名: 密码: 验证码:
多喷嘴对置式水煤浆气化炉内灰渣形成的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤中的矿物呈非均一分布,根据矿物和碳基体的联系程度不同,可以分为内在矿物和外在矿物。外在矿物和内在矿物形成飞灰的过程存在差异,这种差异会影响飞灰在气化炉内的沉积行为,从而影响气化炉壁面熔渣的组成和流动性。基于实验室规模的多喷嘴对置式水煤浆气化炉,对水煤浆进行热态试验,采用SEM、EDS、XRD、XRF和PSD详细表征气化炉内飞灰及熔渣的性质,并进一步分析了飞灰的形成机理及熔渣的流动性。
     水煤浆气化时,火焰被约束在气化炉中心,气化炉稳定运行时火焰不会冲刷气化炉壁面耐火砖。不同氧碳比下气化炉出口处CO和H2的总含量不同,氧碳比为1.0时CO和H2的总含量最高。
     喷嘴平面处飞灰与气化炉出口处飞灰的粒径分布及化学组成存在显著差异。喷嘴平面处飞灰的粒径比原煤颗粒略小,其组成是石英、方解石和硫化亚铁。气化炉出口处飞灰的粒径比喷嘴平面处飞灰的粒径显著减小,其组成是石英、方解石、硫化亚铁、莫来石、钙长石、钙黄长石和氧化钙。不同气化阶段飞灰的形成机理也不同。气化燃烧阶段飞灰的形成机理为部分固定碳燃烧和外在矿物转化;在焦炭气化反应阶段,飞灰的形成机理为焦炭破碎和内在矿物释放及转化。
     在喷嘴平面处,内在矿物未释放,焦炭颗粒粘性很低,壁面捕捉的颗粒主要是外在矿物,导致该处壁面熔渣的成分主要由外在矿物组成,其粘温曲线介于外在矿物和总体灰分的粘温曲线之间。在气化炉拱顶附近,碳转化率升高,内在矿物裸露在焦炭颗粒表面,使焦炭的粘性增加,壁面捕捉焦炭颗粒的量增多。气化炉拱顶附近壁面熔渣的成分所包含的内在矿物的量也增加,但其主要成分仍是外在矿物,其粘度也主要由外在矿物的组成确定。由于喷嘴平面处和气化炉拱顶处形成的熔渣的主要成分是外在矿物,因此其粘度无法由总体灰分进行准确预测。
Mineral is non-uniformly distributed in coal and can be divided into included mineral and excluded mineral. Ash formation of excluded mineral and included mineral is different. This difference may affect char-ash deposition behavior in gasifier, and could influence slag composition and slag flow property in the gasifier. Based on a bench-scale Opposed Multi-burner gasifier, flyash and slag in the gasifier were characterized by SEM, EDS, XRD, XRF and PSD, and ash formation mechanism and slag flow property were also analyzed.
     For coal-water slurry gasification, the flame is restricted within the gasifier center, and the flame dose not collide the gasifier wall. The total content of CO and H2 from the gasifier outlet is different at different oxygen to carbon ratio, and the optimized oxygen to carbon ratio was 1.0.
     Particle size distribution and composition of flyash are significantly different between flyash at impinging zone and flyash at gasifier outlet. Particle size distribution of flyash at impinging zone is slightly finer than that of raw coal, and composition of flyash at impinging zone are quartz, calcite and FeS. Particle size distribution of flyash at gasifier outlet dramatically decreased comparing to that of flyash at impinging zone, and composition of flyash at gasifier outlet are quartz, calcite, FeS, mullite, anorthite, gehlenite and calcium oxide. Ash formation mechanisms at different gasification stages are also different. Part of fixed-carbon combustion and excluded mineral transformation are the mechanisms of ash formation at combustion stage. Char fragmentation and included mineral liberation and transformation are the mechanisms of ash formation at char gasification stage.
     At the burner-plane zone, included mineral is still not liberated and the gasifier wall mainly captures excluded mineral. Viscosity-temperature curves of slag on this wall locate between the curve of excluded mineral and the curve of bulk ash. At the gasifier dome, carbon conversion increases and the gasifier wall captures more char than gasifier wall at burner-plane. Slag from the gasifier dome contains more included mineral than slag from the burner-plane. Composition of slag from the gasifier dome is still mainly comprised of excluded mineral and slag flow property is determined by the composition of excluded mineral. Due to the gasifier wall above burner-plane mainly captures excluded mineral, slag flow property is determined by the composition of excluded mineral. Consequently, the viscosity necessary for the slag to flow down would therefore always not be estimated by the viscosity of the slag forms from the bulk coal ash.
引文
[1]EIA. International Energy Outlook[J].2010.
    [2]徐明厚,于敦喜,刘小伟.燃煤可吸入颗粒的形成与排放[M].北京:科学出版社,2009.
    [3]王辅臣.大规模高效气流床煤气化技术基础研究进展[J].中国基础科学,2008,10(3):4-13.
    [4]于广锁,牛苗任,王亦飞等.气流床煤气化的技术现状和发展趋势[J].现代化工,2004,24(5):23-26.
    [5]Higman C, Burgt MJVd. Gasification[M]. Oxford:Gulf Professional Publishing,2008.
    [6]Wigley F, Williamson J, Gibb WH. The distribution of mineral matter in pulverised coal particles in relation to burnout behaviour[J]. Fuel,1997,76(13):1283-1288.
    [7]Gupta RP, Wall TF, Kajigaya I, et al. Computer-controlled scanning electron microscopy of minerals in coal-implications for ash deposition[J]. Progress in Energy and Combustion Science,1998,24(6):523-543.
    [8]赵永椿.煤燃烧矿物组合演化及其与重金属相互作用机制的研究[D].武汉:华中科技大学,2008.
    [9]郭崇涛.煤化学[M].北京:化学工业出版社,1992.
    [10]Bunt JR, Joubert JP, Waanders FB. Coal char temperature profile estimation using optical reflectance for a commercial-scale Sasol-Lurgi FBDB gasifier[J]. Fuel,2008,87(13-14): 2849-2855.
    [11]于敦喜,徐明厚,易帆等.燃煤过程中颗粒物的形成机理研究进展[J].煤炭转化,2004,27(4):7-12.
    [12]Quyna DM, Wua H, Bhattacharyab SP, et al. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅱ. Effects of chemical form and valence [J]. Fuel,2002,81(2):151-158.
    [13]Matsuoka K, Suzuki Y, Eykands KE, et al. CCSEM study of ash forming reactions during lignite gasification[J]. Fuel,2006,85(17-18):2371-2376.
    [14]Hurley JP, Schobert HH. Ash formation during pulverized subbituminous coal combustion.1. characterization of coals, and inorganic transformations during early stages of burnout[J]. Energy & Fuels,1992,6(1):47-58.
    [15]Benson SA, Sondreal EA, Hurley JP. Status of coal ash behavior research[J]. Fuel Processing Technology,1995,44(1-3):1-12.
    [16]岑可法,樊建人,池作和等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M].北京:中国科学出版社,1994.
    [17]Miccio F, Salatino P, Tina W. Modeling gasification and percolation of ash-bearing porous carbon particles[J]. Proceedings of the Combustion Institute,2000,28(2): 2163-2170.
    [18]Yan L, Gupta RP, Wall TF. A mathematical model of ash formation during pulverized coal combustion[J]. Fuel,2002,81(3):337-344.
    [19]兰泽全,曹欣玉,饶甦等.煤灰形成及沉积模型研究进展[J].热力发电,2003,32(10):32-37.
    [20]Latorre ACD. Ash Formation under Pressurized Pulverized coal Combustion Conditions[D]:University of Connecticut,2005.
    [21]于敦喜,徐明厚,刘小伟等.煤焦膨胀特性与残灰颗粒物的形成[J].华中科技大学学报(自然科学版),2006,34(2):101-104.
    [22]Yu JL, Strezov V, Lucas J, et al. A mechanistic study on char structure evolution during coal devolatilization-experiments and model predictions [J]. Proceedings of the Combustion Institute,2002,29(1):467-473.
    [23]Liu G, Wu H, Gupta RP, et al. Modeling the fragmentation of non-uniform porous char particles during pulverized coal combustion [J]. Fuel,2000,79(6):627-633.
    [24]Lin SY, Hirato M, Horio M. The characteristics of coal char gasification at around ash melting temperature [J]. Energy & Fuels,1994,8(3):598-606.
    [25]Ichikawa K, Kajitani S, Oki Y, et al. Study on char deposition characteristics on the heat exchanger tube in a coal gasifier-relationship between char formation and deposition characteristics[J]. Fuel,2004,83(7-8):1009-1017.
    [26]Miller SF, Schobert HH. Effect of the Occurrence and composition of iron compounds on ash formation, composition, and size in pilot-scale combustion of pulverized coal and coal-water slurry fuels [J]. Energy & Fuels,1993,7(6):1030-1038.
    [27]Srinivasachar S, Helble JJ, Boni AA, et al. Mineral behavior during coal combustion 2. Illite transformations [J]. Progress in Energy and Combustion Science,1990,16(4): 293-302.
    [28]Brink HMt, Eenkhoorn S, Weeda M. The behaviour of coal mineral carbonates in a simulated coal flame[J]. Fuel Processing Technology,1996,47(3):233-243.
    [29]Mclennan AR, Bryant GW, Stanmore BR, et al. Ash Formation Mechanisms during pf Combustion in Reducing Conditions [J]. Energy Fuels,2000,14(1):150-159.
    [30]Bryers RW. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steamoraising fuels[J]. Progress in Energy and Combustion Science,1996,22(1):29-120.
    [31]白进,李文,李保庆.高温弱还原气氛下煤中矿物质变化的研究[J].燃料化学学报,2006,34(3):292-297.
    [32]于敦喜,徐明厚,姚洪等.煤燃烧中无机矿物向颗粒物的转化规律[J].工程热物理学报,2008,29(3):507-510.
    [33]Baxter LL, DeSollar RW. A mechanistic description of ash deposition during pulverized coal combustion:predictions compared with observations[J]. Fuel,1993,72(10): 1411-1418.
    [34]Wall TF. Mineral matter transformations and ash deposition in pulverised coal combustion[J]. Symposium (International) on Combustion,1992,24(1):1119-1126.
    [35]Strandstrom K, Mueller C, Hupa M. Development of an ash particle deposition model considering build-up and removal mechanisms [J]. Fuel Processing Technology, 2007,88(11-12):1053-1060.
    [36]Mueller C, Selenius M, Theis M, et al. Deposition behaviour of molten alkali-rich fly ashes--development of a submodel for CFD applications [J]. Proceedings of the Combustion Institute,2005,30(2):2991-2998.
    [37]Srinivasachar S, Helble JJ, Boni AA. An experimental study of the inertial deposition of ash under coal combustion conditions[J]. Symposium (International) on Combustion, 1991,23(1):1305-1312.
    [38]Shimizu T, Tominaga H. A model of char capture by molten slag surface under high-temperature gasification conditions [J]. Fuel,2006,85(2):170-178.
    [39]Li S, Wu Y, Whitty KJ. Ash Deposition Behavior during Char-Slag Transition under Simulated Gasification Condition[J]. Energy Fuels,2010,24(3):1868-1876.
    [40]Wang H. Modeling of ash formation and deposition in pc fired utility boilers[D]. Provo: Brigham Young University,1998.
    [41]Wall TF, Liu GS, Wu H-w, et al. The effects of pressure on coal reactions during pulverised coal combustion and gasification[J]. Progress in Energy and Combustion Science,2002,28(5):405-433.
    [42]Kim HB, Oh MS. Changes in microstructure of a high chromia refractory due to interaction with infiltrating coal slag in a slagging gasifier environment[J]. Ceramics International,2008,34(8):2107-2116.
    [43]朱冬梅,聂成元.德士古气化炉渣堵机理探讨[J].化肥工业,2002,9(3):36-38.
    [44]聂成元,朱冬梅Taxaco气化炉渣堵原因及预防措施[J].中氮肥,2002,(4):11-14.
    [45]陈丽,王雷.4喷嘴对置式气化炉耐火砖蚀损影响因素浅析[J].化肥设计,2009,47(4):33-34.
    [46]Rawers J, Iverson L, Collins K. Initial stages of coal slag interaction with high chromia sesquioxide refractories[J]. Journal of Materials Science,2002,37(3):531-538.
    [47]王刚,方旭,孙红刚等.改善水煤浆气化炉内衬耐火材料抗侵蚀性能的探讨[J].煤化工,2009,(4):45-47.
    [48]陈冬霞.煤灰熔渣在耐火砖上的行为研究[D].上海:华东理工大学,2007.
    [49]Montagnaro F, Salatino P. Analysis of char-slag interaction and near-wall particle segregation in entrained-flow gasification of coal[J]. Combustion and Flame,2010,157(5): 874-883.
    [50]Wagner NJ, Matjie RH, Slaghuis JH, et al. Characterization of unburned carbon present in coarse gasification ash[J]. Fuel,2008,87(6):683-691.
    [51]Wu T, Gong M, Lester E, et al. Characterisation of residual carbon from entrained-bed coal water slurry gasifiers[J]. Fuel,2007,86(7-8):972-982.
    [52]Zhao X, Zeng C, Mao Y, et al. The Surface Characteristics and Reactivity of Residual Carbon in Coal Gasification Slag[J]. Energy & Fuels,2010,24(1):91-94.
    [53]Xu SQ, Zhou ZJ, Gao XX, et al. The gasification reactivity of unburned carbon present in gasification slag from entrained-flow gasifier[J]. Fuel Processing Technology, 2009,90(9):1062-1070.
    [54]高旭霞,郭晓镭,龚欣.气流床煤气化渣的特征[J].华东理工大学学报(自然科学版),2009,35(5):677-683.
    [55]Wu H, Wall T, Liu G, et al. Ash Liberation from Included Minerals during combustion of Pulverized coal:The Relationship with char Structure and Burnout[J]. Energy & Fuels, 1999,13(6):1197-1202.
    [56]Sapko MJ, Cashdollar KL, Green GM. Coal dust particle size survey of US mines [J]. Journal of Loss Prevention in the Process Industries,2007,20(4-6):616-620.
    [57]王金玲,高惠民.水煤浆技术研究现状[J].煤炭加工综合利用,2005,(3):28-31.
    [58]王共远,吴国光,李启辉等.水煤浆制备技术的最新进展[J].能源技术管理,2006,(2):57-58.
    [59]任兰柱,崔凤禄,王毅等.异煤种的精细水煤浆制备及其成浆性研究[J].洁净煤技术,2006,12(1):49-52.
    [60]廖胡.气化炉内颗粒物性质及耐火砖蚀损量预测的研究[D].上海:华东理工大学,2010.
    [61]Sowa WA, Hedman PO, Smoot LD, et al. The sensitivity of entrained-flow coal gasification diffusion burners to changes in geometry[J]. Fuel,1992,71(5):593-604.
    [62]Costa M, Costen P, Lockwood FC. Combustion measurements in a heavy fuel oil-fired furnace[J]. Combustion Science and Technology,1991,75(1-3):129-154.
    [63]Kenabar AMA, Beltagui SA, Ralston T, et al. Measurement and modeling of NOx formation in a gas fired furnace[J]. Combustion Science and Technology,1993,93(1).
    [64]马宪国,郑国耀,李道林.高温贫氧燃烧技术的研究与应用[J].动力工程,2001,21(1).
    [65]刘建忠,张光学,周俊虎等.燃煤细灰的形成及微观形态特征[J].化工学报, 2006,57(12):2976-2980.
    [66]于敦喜,徐明厚,姚洪等.利用CCSEM对煤中矿物特性及其燃烧转化行为的研究[J].工程热物理学报,2007,28(5):875-878.
    [67]Liu Y, Gupta R, Wall T. Ash formation from excluded minerals including consideration of mineral-mineral associations[J]. Energy Fuels,2007,21(2007):461-467.
    [68]廖胡,郭庆华,梁钦锋等.多喷嘴对置式气化炉中飞灰性质[J].化工学报,2009,60(11):2918-2923.
    [69]于遵宏,王辅臣.煤炭气化技术[M].北京;化学工业出版社.2010.
    [70]Wu H, Bryant G, Benfell K, et al. An Experimental Study on the effect of System Pressure on Char Structure of an Australian Bituminous Coal[J]. Energy Fuels, 2000,14(2000):282-290.
    [71]Li S. Char-slag transition during pulverized coal gasification [D]:The University of Utah, 2010.
    [72]Oh MS, Brooker DD, Paz EFd, et al. Effect of crystalline phase formation on coal slag viscosity[J]. Fuel Processing Technology,1995,44(95):191-199.
    [73]Hurst HJ, Novak F, Patterson JH. Viscosity measurements and empirical predictions for some model gasifier slags[J]. Fuel,1999,78(4):439-444.
    [74]Hurst HJ, Patterson JH, Quintanar A. Viscosity measurements and empirical predictions for some model gasifier slags-Ⅱ[J]. Fuel,2000,79(14):1797-1799.
    [75]Groen JC, Brooker DD, Welch PJ, et al. Gasification slag rheology and crystallization in titanium-rich, iron-calcium-aluminosilicate glasses[J]. Fuel Processing Technology, 1998,56(1-2):103-127.
    [76]French D, Hurst HJ, Marvig P. Comments on the use of molybdenum components for slag viscosity measurements[J]. Fuel Processing Technology,2001,72(3):215-225.
    [77]Kondratiev A, Jak E. Predicting coal ash slag flow characteristics (viscosity model for the A12O3-CaO-'FeO'-SiO2 system)[J]. Fuel,2001,80(14):1989-2000.
    [78]Wright S, Zhang L, Sun S, et al. Viscosities of calcium ferrite slags and calcium alumino-silicate slags containing spinel particles[J]. Journal of Non-Crystalline Solids, 2001,282(1):15-23.
    [79]Song W, Tang L, Zhu X, et al. Fusibility and flow properties of coal ash and slag[J]. Fuel, 2009,88(2):297-304.
    [80]Song W, Tang L, Zhu X, et al. Flow properties and rheology of slag from coal gasification[J]. Fuel,2010,89(2010):1709-1715.
    [81]Kim Y, Oh MS. Effect of cooling rate and alumina dissolution on the determination of temperature of critical viscosity of molten slag[J]. Fuel Processing Technology, 2010,91(2010):853-858.
    [82]Ilyushechkin AY, Hla SS, Roberts DG, et al. The effect of solids and phase compositions on viscosity behaviour and TCV of slags from Australian bituminous coals[J]. Journal of Non-Crystalline Solids,2011,357(3):893-902.
    [83]Kong L-x, Bai J, Li W, et al. Effect of lime addition on slag fluidity of coal ash[J]. Journal of Fuel Chemistry and Technology,2011,39(6):407-411.
    [84]Tang X, Zhang Z, Guo M, et al. Viscosities Behavior of CaO-Sio2-MgO-A12O3 Slag With Low Mass Ratio of CaO to SiO2 and Wide Range of A12O3 Content [J]. Journal of Iron and Steel Research, International,2011,18(2):1-17.
    [85]Vargas S, Frandsen FJ, Dam-Johansen K. Rheological properties of high-temperature melts of coal ashes and other silicates [J]. Progress in Energy and Combustion Science, 2000,27(2001):237-429.
    [86]Browning GJ, Bryant GW, Hurst HJ, et al. An empirical method for the prediction of coal ash slag viscosity[J]. Energy & Fuels,2003,17(3):731-737.
    [87]Harb JN, Zygarlicke CJ, Richards GH. The effect of particle composition and temperature on the deposition of two Western US coals in a laminar drop-tube furnace[J]. Journal of the Institute of Energy,1993,66(467):91-98.
    [88]Dyk JCv, Waanders FB, Benson SA, et al. Viscosity predictions of the slag composition of gasified coal, utilizing FactSage equilibrium modelling[J]. Fuel,2009,88(2009):67-74.
    [89]Shannon GN, Rozelle PL, Pisupati SV, et al. Conditions for entrainment into a FeOx containing slag for a carbon-containing particle in an entrained coal gasifier[J]. Fuel Processing Technology,2008,89(2008):1379-1385.
    [90]Brink HMt, Eenkhoorn S, Hamburg G. A mechanistic study of the formation of slags from iron-rich coals[J]. Fuel,1996,75(8):952-958.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700