用户名: 密码: 验证码:
一株产植酸酶菌株的选育
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植酸酶的研究已经有近百年的历史,到目前为止,国内外对植酸酶的研究已经深入到了饲料、食品、医药等多个领域,并且都取得了一定成果。美国、芬兰、荷兰和德国等国家已经推出了多种植酸酶制剂;国内的一些学者在植酸酶的研究上也取得了一定成果,然而,在应用的过程中依然存在很多问题。因此,有必要进一步选育新的产植酸酶菌株,最终获得具有实际应用价值的生产菌株。本研究主要做了以下工作:
     1.从6份土壤样品和1份酒糟样品中筛选出61株产植酸酶的菌株,挑选一株透明圈直径与菌落直径比值最大的菌株为出发菌株,对其进行形态学鉴定和18S rRNA基因序列分析,结果表明该菌株属于散囊菌目(Eurotiales),发菌科(Trichocomaceae),蓝状菌属(Tarlaromyces)的黄蓝状菌(Tarlaromyces flavus),其18S rRNA基因与标准菌株相似性为100%。
     2.对所选取的菌株进行产酶条件优化和酶学性质研究。最适培养基组成为:葡萄糖6%;胰蛋白胨0.2%;(NH_4)_2SO_4 0.5%;KCl 0.05%;MgSO_4·7H_2O 0.05%;FeSO_4·7H_2O 0.004%;MnSO_4·H_2O 0.004%。最适发酵产酶条件为:培养温度32℃;发酵培养基最适pH5.5;装液量50ml(500ml锥形瓶):接种量2%;摇床转速80r/min;培养时间8d。对酶学性质进行研究的结果为:最适反应温度55℃;最适反应pH5.5;最适反应时间10min。最终酶活达到294U/ml。
The research of phytase has been last for one hundred years. So far, it has beensuccessfully applied in many fields, such as the feedstuff, the grocery and themedicine. The America, Finland, Holland and Germany et al have been recommendedmany phytase preparations. Domestic scholars also have some achievements onphytase. But there are also some problems on the applications. So, it's necessarily toselect new strains which produce phytase, and finally obtain phytase which havepractical value. The main work this study have done as follows:
     1. Totally, 61 phytase-producing strains have been isolated from 6 soil samplesand 1 distillers'grains sample. Among them, one has the maximum diameter ratio ofits clear zone to its colony. This swain was identified as Tarlaromyces flavus accordingto its morphological properties and the analysis of its 18S rRNA gene sequence. Thesimilarity of its 18S rRNA gene and the standard strain is 100%.
     2. Studied on the enzyme producing condition and enzymological properties. Theoptimum medium was composed of 6%glucose, 0.2%peptone, 0.5%(NH_4)_2SO_4,0.05%KCl, 0.05%MgSO_4·TH_2O, 0.004%FeSO_4·7H_2O, 0.004%MnSO_4·H_2O. Theoptimum producing condition was: cultivate temperature was 32℃; optimum pH ofthe fermentation medium was 5.5; medium quantity was 50mL(500mL conical flask);inoculation proportion was 2%; rotate speed of the shaker was 80r/min; fermentationtime was 8d. The result of study on enzymological properties was: optimum reactiontemperature was 55℃; optimum reaction pH was 5.5; optimum reaction time was10min; and the final enzyme activity was 294U/ml.
引文
1.白东清,乔秀亭,魏东,等.植酸酶对鲤钙磷等营养物质利用率的影晌[J].天津农学院学报,2003,10(1):6-10.
    2.毕士峰,张毅.一种新的食品添加剂一植酸酶[J].食品科学,2000,21(8):9-10.
    3.陈述,李多川,刘开启,等.黄蓝状菌一种几丁质酶的纯化、性质及抗菌活性[J].中国森林病虫,2003,22(3):6-9.
    4.丁宏标,刘建平,李富伟,等.植酸酶的基因工程研究与工业化生产应用[J].中国饲料,2003,21:28-31.
    5.董生杰,张苓花,陈海昌等.产植酸酶菌株的筛选[J].大连轻工业学院学报,1999,18(4):283-287.
    6.郭明元,刘广峰,冯娟.1株军曹鱼病原弧菌的鉴定及其系统发育树分析[J].中国水产科学,2006,13(5):823-828.
    7.韩利刚,袁毅,王罡.丝状真菌组织DNA的提取[J].生物技术,1999,9(6):38-41.
    8.韩延明,杨风,周安国,等.微生物植酸酶或麦麸对断奶到肥育阶段猪的生产性能和骨骼发育的影响[J].畜牧兽医学报,1996,27(3):207-211.
    9.韩延明.猪饲料中利用植峻酶的研究进展[J].四川农业大学学报,1994,12(4):520-523.
    10.黄培堂等译.分子克隆实验指南(第三版)[M].北京:科学出版社,2002:463-486.
    11.黄遵锡.基因工程酵母产植酸酶的应用性质研究[J].饲料研究,2000,14(6):11-14.
    12.余雪冰.毕赤氏酵母植酸酶工程菌高密度培养条件的研究[J].生物技术,2000,6(3):26-29.
    13.江均平.热稳定的曲霉植酸酶[J].微生物学报.1996,36(6):476-478.
    14.康伟,王智,冯雁.植酸酶最新研究进展[J].生命的化学,2005,25(2):94-97.
    15.李田庆,胡圣远,王道本.菌核寄生菌Talaromyces flarvus的生物学特性及寄生菌核规律初探[J].微生物学通报,1995,22(3):131-135.
    16.李佳,刘钟滨.植酸酶的研究进展及应用[J].同济大学学报(医学版),2004,25(6):541-544.
    17.刘国忠,王福勇.植酸酶在蛋鸡饲粮中的应用实验[J].粮食与饲料工业,1998,(9):40.
    18.马丽苹,彭远义.植酸酶的研究进展[J].微生物学杂志.2002,12(5):46-47.
    19.苗雪霞,贾新成.根霉植酸酶的研究Ⅰ.菌株的分离筛选及发酵条件研究[J].菌物系统,1997,16(1):70-73.
    20.彭远义.植酸酶产生菌的选育及高表达工程菌的研究[D].重庆:西南农业大学,2004:1-108.
    21.任世英,王子峰,肖天,等.一株海洋聚磷菌YSR-3的分离与鉴定[J].海洋与湖沼,2006,37(5):437-443.
    22.施安辉,王光玉,李桂杰,等.目前国内外植酸酶研究进展[J].中国酿造,2005,5:5-10.
    23.王芳,张红岗,李燕萍.植酸酶在鹤鹑日粮中的应用[J].山西农业科学,2003,31(1):58-60.
    24.王红宁,吴琦,谢晶等.真菌植酸酶phyh基因研究进展[J],四川农业大学学报.2000,18(1):84-87.
    25.王启明,植酸酶高产菌株筛选及产酶条件和酶学性质研究[D].武汉:华中农业大学,2001:1-50.
    26.魏景超著.真菌鉴定手册[M].上海:上海科学技术出版社,1979:129-136.
    27.吴琦.枯草芽胞杆菌植酸~phyC基因的克隆及其表达研究[D].成都:四川大学,2004:1-127.
    28.邢新苗.产植酸酶青霉M501的发酵条件优化、植酸酶的分离纯化及其性质研究[D].济南:山东大学,2004:1-58.
    29.胥传来,赵玉莲,周康.植酸酶的研制与开发——菌种筛选与酶活提高[J].粮食与饲料工业,1998,12:30-33.
    30.杨建军,李蔚忠.植酸酶的研究概况[J].西部粮油科技,2002,5:44-46.
    31.杨平平,王燕,史宝军,等.植酸酶酶活测定方法的研究[J].饲料工业,2003,24(8):34-36.
    32.姚斌,张春义,王建华等.产植酸酶黑曲霉菌株筛选及其植酸酶基因克隆[J].农业生物技术学报,1998,6(1):1-6.
    33.余以刚,姚惠源.采用高活力植酸酶法制备三磷酸肌醇[J].粮食与饲料工业,1999,(3):38-39。
    34.张志华,洪葵.核酸序列直接分析在真菌鉴定方面的应用[J].华南热带农业大学学报,2006,12(2):39-43.
    35.周帼萍,李文薇,徐丽.植酸酶的研究与应用概况[J].武汉工业学院学报,2002,1:31-35.
    36.朱靖环,杨永红,毛华明.植酸酶的研究与应用进展[J].微生物学杂志.2002,22(1):43-46.
    37. Abul A H J, Gibson D M. Extracellular phytase(E.C.3.1.3.8) from Aspergillus ficuum NRRL: purification and characterization[J]. Prep Bioehem, 1987, 17(1): 63-91.
    38. Boling-Frankenbach S D, Peter C M, Douglas M, et ai. Efficacy of phytase for increasing protein efficiency ratio values of feed ingredients[J]. Point Sci, 2001, 80(11): 1578-1584.
    39. Cromwell G L, Stahiy T S, Coffey R D, et al. Effiency of phytase in improving the bioavailability of phosphorus in soybean meal and corn-soybean meal diets for pigs[J]. Anim Sci, 1993,71:1831-1840.
    
    40. Graf E. Calcium binding to physic acid[J]. Agric Food Chem, 1983,31: 851-855.
    
    41. Josep G, Josepa G, Alberto M S. Developments in Fungal Taxonomy. Clinical Microbiology Reviews, 1999,12(3): 454-500.
    
    42. Kleist S, Miksch G, Hitzmann B, et al. Optimization of the extracellular production of a bacterial phytase with Escherichia coli by using different fed-batch fermentation strategies[J]. Appl Microbiol Biotechnol, 2003,61(5-6): 456-462.
    
    43. Kumar S, Tamura K, Nei M. MEG A3 :integrated software for molecular evolutionary genetics analysis and sequence alignment[M].[S.l.]: Brief Bioinform, 2004, 5(5): 150-163.
    
    44. Lö, Nnerdal B. Dietary factors influencing zinc absorption[J]. J Nutr, 2000, 130(5S Suppl):1378S- 1383S.
    
    45. Lee D, Schroeder J, Gordon D T. Enhancement of Cu bioavailability in the rat by phytic acid[J]. Nutr, 1988,118: 712-717.
    
    46. Lei X, Pao K, Elwyn R M, et al. Supplemental microbial phytase improves bioavailability of dietary zinc to weanling pigs[J]. Nutr, 1993,123:1117-1123.
    
    47. Lim H S, Namkung H, Paik I K. Effects of phytase supplementation on the performance, egg quality, and phosphorous excretion of laying hens fed different levels of dietary calcium and nonphytate phosphorous[J]. Poult Sci, 2003, 82(1): 92-99.
    
    48. Lucca P. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grians, Theor appl genet, 2001, (102): 392-397.
    
    49. Machouart M, Lacroix C, Bui H, et al. Polymorphisms and intronic structures in the 18S subunit ribosomal RNA gene of the fungi Scytalidium dimidiatum and Scytalidium hyalinum[J]. FEMS Microbiology Letters, 2004,238:455-467.
    
    50. Moneca H. Fungal phytase as a potential breadmaking additive. Eur Food Res Technol, 2001, (213): 317-322.
    
    51. Nagashima T, tange T, Anazwa H. Dephosphorytation of phytate by using Aspergillus phytase with a high affinity for phytate[J]. Appl Environ Microbiol, 1999, (10): 4682-4684.
    
    52. Nasi M. Microbial phytase supplementation for improving availability of plants phosphorous in the diets of growing pigs[J]. Agric Sci, 1990,62: 435-442.
    
    53. Nelson T S, Shieh T R, Wodzinski R J, et al. The availability of phytate phosphorus in soya bean meal before and after treatment with a mold phytase[J]. Poult Sci, 1968,47:1842-1848.
    
    54. Nelson T S. The utilization of phytase phosphorus poultry-a review[J]. Point Sci, 1967, 46: 862-871.
    
    55. Omogbenigun F O, Nyachoti C M, Slominski B A. The effect of supplementing microbialphytase and organic acids to a corn-soybean based diet fed to early-weaned pigs[J]. J Anim Sci, 2003, 81(7): 1806-1813.
    
    56. Peter C M, Baker D H. Microbial phytase does not improve protein-ammo acid utilization in soybean meal fed to young chickens [J]. J Nutr, 2001,131(6): 1792-1797 .
    57. Powar V K, Jagannathan V. Purification and properties of phytate-specific phosphatase from Bacillus subtilis[J]. J Bacteriol, 1982, 151: 1102-1108.
    
    58. RamaRao S V, RavindraReddy V, RamasubbaReddy V. Enhancement of phytate phosphorus availablity in the diets of commercial broilers and layers [J]. Animal Feed Science and Technology, 1999, 79: 211-222.
    
    59. Ravindran V, Cabahug S, Ravindra G, et al. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorous levels. II. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention[J]. Br Poult Sci, 2000,41(2): 193-200.
    
    60. Ravindran V, Cabahug S, Ravindra q, et al. Influence of microbial phytase on apparent ideal amino acid digestibility of feedstuffs for broiler[J]. Poult Sci, 1999, 78: 699-706.
    
    61. Ravindran V, Selle P H, Ravindran G, et al. Microbial phytase improves performance, apparent metabolizable energy, and ileal amino acid digestibility of broilers fed a Lysine-deficient diet[J]. Poult Sci, 2001, 80(3): 338-344.
    
    62. Rimbach C, Walter A, Most E, et al. Effect of microbial phytase on zinc bioavailability and cadmium and lead accumulation in growing rats[J]. Food Chem Toxicol, 1998, 36(1): 7-12.
    
    63. Rutherfurd S M, Chung T K, Morel P C, et al. Effect of microbial phytase on ileal digestibility of phytate phosphorus, total phosphorus, and amino acids in a low-phosphorus diet for broilers[J]. Poult Sci, 2004, 83(1): 61-68.
    
    64. Saitou N, Nei M. The neighbour-joined method: a new method for reconstructing phylogenetic trees[J]. Mol Biol Evol, 1987, 4(4): 406-425.
    
    65. Sebastian S, Touchburn S P, Chavez E R, et al. The effects of supplemental microbial phytase on the performance and utilization of dietary calcium, phosphorus, copper, and zinc in broiler chickens fed corn-soybean diets[J]. Poult Sci, 1996, 5(6): 729-736.
    
    66. Sharma C B, Goel M. Myo-inositol hexaphosphate as potential inhibitor of a-amylases of different origins[J]. Phytochemistry, 1978,47:201-204.
    
    67. Simons P C M. Improvement of phosphorus availability by microbial phytase in broiler and pigs.Br. J Nutr. 1990, 64: 525-540.
    
    68. Sogin M L, Thomas D, Barns, et al. Evolutionary relationships within the fungi: Analysis of nuclear small subunit rRNA sequences [J]. Molecular phylogenetics and Evolution, 1992, 9: 231-241.
    
    69. TanveerA, Shahid R, Muhamma S, et al. Effect of microbial phytase produce from a fungus Aspergillus niger on bioavailability of phosphorus and calcium in broiler chickens [J]. Animal Feed Science and Technology, 2000, 83: 103-114.
    
    70. Thompsom J D, Gibson T J, Plewniak F, et al. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nuclieic Acids Res, 1997, 25(24): 4876-4882.
    
    71. Ullah A H J , Gibson M D. Extracellular phytase (E.C.3.1.3.8) from Aspergillus ficuum [J]. Preparative Biochemistry, 1998, 18(4): 443-458.
    72. Ursula K, Ralf G and Klaus DJ. Food Biochem. 1995, 8: 165-183.
    73. Viveros A, Brenes A, Ariya I, AET A L. Effets of microbial phytase supplementation on mineral utilization and serum enzyme activities in broiler chicks fed different levels of phosphorus[J]. Poult Sci, 2002, 81: 1172-1183.
    74. Vu N T, Martha S V D, Michael J W. Debaryomyces mycophilus sp nov, a siderophore-dependent yeast isolated from woodlice[J]. FEMS Yeast Research, 2002, 2: 415-427.
    75. Waldroup P W, Kersey J H, Saleh E A, et al. Nonphytate phosphorus requirement and phosphorus excretion of broiler chicks fed diets composed of normal or high available phosphate corn with and without microbial phytase[J]. Poultry science, 2000, 79:1451-1459.
    76. Yi Z, Komegay B T, Denbow D M. Supplemental microbial phytase improves zinc utilization in broilers[J]. Poult Sci, 1996, 75(4): 540-546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700