用户名: 密码: 验证码:
沿空巷道窄帮蠕变特性及其稳定性控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沿空巷道窄帮的长期稳定特性将直接影响沿空巷道围岩结构的整体稳定性,其有效控制也是成功开发该项技术的关键。论文基于沿空巷道基本顶四种断裂结构形式,以沿空巷道窄帮稳定性的时间效应研究为切入点,综合采用理论分析、物理模拟、数值模拟、实验室岩块实验、工业性试验等研究方法,对窄帮应力变形规律、窄帮蠕变特性、窄帮破坏准则及稳定性控制技术进行了较系统的分析,取得了以下主要研究成果:
     (1)基于沿空巷道基本顶四种断裂结构形式,建立了相应的窄帮稳定性分析的结构力学模型,推导出窄帮上的静载荷计算公式,并明确了窄帮应力与变形规律。
     (2)动载效应数值分析表明,基本顶断裂回转产生动载效应对窄帮的稳定性影响最大,且不论断裂线位于窄帮的内侧还是外侧,窄帮上部应力与横向变形都最大,极易在该部位先发生破坏。
     (3)建立了混凝土人造帮蠕变模型与本构关系方程。基于最小势能原理稳定性分析得出混凝土人造帮蠕变失稳最短时间;混凝土人造帮蠕变极限载荷及其破坏载荷与其配比强度成正比关系;基于蠕变特性及尺寸效应确定了人造帮强度须提高20%~30%左右、高宽比宜为1:1     (4)采用正交八面体对混凝土人造帮进行受力分析,得到双剪应力函数和双剪强度理论,并通过实验验证了混凝土人造帮破坏形态是受两组剪应力共同作用的结果,最大剪应力“X”形分布特征与其“X”形破坏断面是一致的。
     (5)研制出10,000 kN大尺寸蠕变试验系统。对大尺寸人造帮蠕变特性、锚栓强化人造帮蠕变特性、不同构筑方式人造帮蠕变特性的实验分析表明,人造帮蠕变极限载荷及其破坏载荷与水灰比成反比关系;锚栓(杆、筋)能有效约束人造帮横向变形,扩大人造帮承压区面积,提高人造帮整体承载性能和稳定性;人造帮的稳定性与其构筑方式关系密切,整体构筑比分块构筑稳定性强,采用“软+硬”结构比常规“全硬”结构的稳定性强。
     (6)建立了“软+硬”窄帮结构效应力学模型,解释了该结构与顶底板之间的协调变形机理。上部“软”结构通过大变形吸收顶板能量,有效改善窄帮应力分布特征,能适应基本顶断裂回转下沉给定变形的要求;下部“硬”结构能提供足够的支护阻力,从而确保了人造帮的整体稳定性。
     上述研究成果在4个典型试验地点进行了工程应用,取得了满意的技术经济效果,可指导该项技术在类似条件下的推广应用。
     该论文有图228幅,表40个,参考文献162篇。
The long-term stability feature of the gob-side entry’s narrow side directly affects its overall stability and it is also difficult to successfully develop the pillarless mining technology. Taking the time effect research of stability of the gob-side entry’s narrow side as a pointcut, law of the stress and deformation, creep property, failure criterion and stability control technology of the narrow side based on four species main roof’s fracture forms, have been systematically analyzed by theoretical analysis, physical simulation, numerical simulation, laboratory rock block experiment, and industrial experiment methods etc. Innovative achievements of this dissertation have been displayed as follows:
     (1) Based on the main roof’s four species fracture structure form, the corresponding mechanical model of the stability analysis of the narrow side is established, and the calculation formula of the static load on the narrow side is derived, and the law between stress and deformation is clarified.
     (2) The numerical analysis of the dynamical effect shows that the dynamical effect produced by the main roof’s fracture and rotation mostly affects the stability of the narrow side. Whether the fracture line of the main roof located inside or outside of the narrow side, the stress and lateral deformation are the largest of its upper part, and this part is most likely to be destroyed firstly.
     (3) The self-defining nonlinear creep model and the constitutive equations of concrete artificial side are built. The concrete artificial side’shortest time of the creep failure was obtained based on the minimum potential energy principle. The creep limit load and creep failure load of concrete artificial side are proportional to its strength ratio. The strength of the artificial side should be increased 20%~30% and its appropriate aspect ratio should be in between 1 and 2 based on the creep property and size effect.
     (4) Twin shear stress function and twin shear strength theories were obtained after the orthogonal octahedron was adopted to analyze the stress of the concrete artificial side. Experiments verified that two sets of the shear stress together resulted in the failure modes of the concrete artificial side, and the distribution pattern of the maximum shear stress in the concrete artificial side accorded with its failure pattern appeared“X”shape.
     (5) Large-size creep experimental system with 10,000 kN was independently developed. The creep property experimental analysis on the Large-size artificial sides, Large-size artificial sides with anchor bolts strengthen, and Large-size artificial sides with different building ways, was carried out. The results show that the creep limit load and creep failure load of artificial side are inverse proportional to water-cement ratio. After being strengthened by the anchor bolts, the anchor bolts effectively constrained the progress of artificial side’s lateral deformation, and expanded the artificial side’s pressure district area, and improved the artificial side’s overall bearing capacity and its stability. The stability of artificial side was closely related to its building ways, and the stability of integral building artificial side was stronger than that of blocking piled artificial side, and the stability of the soft-hard structure artificial side was stronger than that of hard structure artificial side.
     (6) The soft-hard structure effect mechanical model of narrow side was built, and the compatible deformation mechanism that the structure was coordinated with the roof and floor is explained. The upper soft structure can absorb the energy in the roof by its large deformation, and the artificial side’s stress distribution characteristics is improved, and can adapt to the given deformation caused by the fracture and rotation and subsidence of main roof. The hard structure at the bottom of the backfill wall can afford the adequate supporting resistance, and the stability of the entire backfill wall is insured.
     The above research results were successfully carried out by the engineering application research at four typically experimental sites, and the satisfactory economic and social benefits were obtained, and can promote the use of the technology under the similar conditions.
     228 pieces of figures, 40 pieces of tables and 162 pieces of consult documents have been quoted in this dissertation.
引文
[1]毛节华,许惠龙.中国煤炭资源预测与评价.北京:科学出版社,1999
    [2]范韶刚.试论中国煤炭工业可持续发展.见:地下开采现代技术理论与实践.北京:煤炭工业出版社,2002
    [3]李全生.面向21世纪开采技术创新方向探讨.见:地下开采现代技术理论与实践.北京:煤炭工业出版社,2002
    [4]国家煤矿安全监察局.中国煤炭工业年鉴.北京:煤炭工业出版社,2001~2008
    [5]陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994.
    [6]陆士良.无煤柱区段巷道的矿压显现及适用性研究[J].中国矿业学院学报,1980(4):1~22.
    [7]孙恒虎,赵炳利.沿空留巷的理论与实践[M].北京:煤炭工业出版社,1993.
    [8]丁焜,童有德.我国无煤柱开采的发展与展望(上)[J].煤炭工程,1984(3):11~16.
    [9]丁焜,童有德.我国无煤柱开采的发展与展望(下)[J].煤炭工程,1984(4):1~6.
    [10]唐建新,李来化,魏作安,等.倾斜煤层近距离下跨上山无煤柱开采技术[J].矿山压力与顶板管理,2003.1:70~73.
    [11]孙恒虎,宋存义.高水速凝材科及其应用[M].徐州:中国矿业大学出版社,1994.
    [12]袁亮.低透气性煤层群无煤柱煤与瓦斯共采理论与实践[M].北京:煤炭工业出版社,2008.
    [13]冯光明.超高水充填材料及其充填开采技术研究与应用[D].徐州:中国矿业大学矿业工程学院,2009.
    [14]张东升,王红胜,马立强.预筑人造帮置换窄煤柱二步骤沿空掘巷新技术[J].煤炭学报,2010.10,1589~1593.
    [15]王红胜,张东升,马立强.预置充填带置换小煤柱无煤柱开采技术[J].煤炭科学技术,2010.4,38(4),1~5.
    [16]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003
    [17]钱鸣高.采场上覆岩层岩体结构模型及其应用[J].中国矿业大学学报,1982(2):1~11.
    [18] Qian Minggao.A study of the behavior of overlying strata in long wall mining and its application to strata control[M].Strata Mechanics,Elsevier Scientific Publishing Company,1982.13~17.
    [19]钱鸣高,李鸿昌.采场上覆岩层活动规律及其对矿山压力的影响[J].煤炭学报.1982(2):1~12.
    [20] Qian Minggao,He fulian.The Behaviour of the Main Roof in Longwall Mining Weighting Span,Fracture and Disturbance[J].Journal of Mines,Metals and Fuels,1989:240~246
    [21]钱鸣高,缪协兴,何富连.采场“砌体粱”结构的关键块分析[J].煤炭学报,1994,19(6):557~563.
    [22]钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报,1995,14(2):97~106.
    [23] M.G.Qian.F.L.He, X.X.Miao.The System of Strata Control around Longwall Face in China[G].Mining Science and Technology.Published by A.A.Balkema,1996:15~18.
    [24]钱鸣高,缪协兴.岩层控制中关键层的理论研究[J].煤炭学报,1996.21(3):225~230.
    [25]茅献彪,缪协兴,钱鸣高.采动覆岩中关键层的破断规律研究[J].中国矿业大学学报,1998,27(1):39~42.
    [26]钱鸣高.茅献彪,缪协兴.采场覆岩中关键层上载荷的变化规律[J],煤炭学报.1998,23(2):135~230.
    [27]钱鸣高,许家林.覆岩采动裂隙分布的“O”形圈特征研究[J].煤炭学报,1998.23(5):466~489.
    [28]钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(4):343~348.
    [29]钱鸣高,缪协兴,何富连.采场“砌体粱”结构的关键块分析[J].煤炭学报,1994,19(6):557~563.
    [30]钱鸣高.砌体梁的“S-R”稳定及其应用[J].矿山压力与顶板管理,1994(3):6~10.
    [31]钱鸣高,何富连,王作棠,等.再论采场矿山压力理论[J],中国矿业大学学报,1994,23(3):1~12.
    [32]宋振骐,蒋宇静.采场顶板控制设计中几个问题的分析探讨[J].矿山压力与顶板管理,1986(1):1~9.
    [33]卢国志,汤建泉,宋振骐.传递岩梁周期裂断步距与周期来压步距差异分析[J].岩土工程学报,2010,32(4):538~541.
    [34]柏建彪.沿空掘巷围岩控制[M].徐州:中国矿业大学出版社,2006.
    [35]陆士良.无煤柱巷道的矿压显现与受力分析[J].煤炭学报,1981(4):29~37
    [36]陆士良.无煤柱护巷的矿压显现[M].北京:煤炭工业出版社,1982.
    [37]朱德仁.长壁工作面基本顶的破断规律及其应用[D].徐州:中国矿业大学矿业工程学院,1987.
    [38]刘长友等.缓倾斜特厚煤层综放工作面两侧煤体的位移规律[J],矿山压力与顶板管理,1997(3):13~17.
    [39]马其华,郭中平,樊克恭等.综放面矿压显现特点与沿空掘巷可行性[J],矿山压力与顶板管理,1997(3):150~152.
    [40]管学茂,张义顺,张长根等.综放面沿空掘巷正业性试验研究[J],煤矿设计,1998(8):150~152.
    [41]翟明华,王云海,张顶立等.综放回采巷道锚网支护的模拟研究[J],矿山压力与顶板管理,1998(2):49~51.
    [42]漆泰岳.沿空留巷支护理论研究及实例分析[D]徐州:中国矿业大学矿业工程学院,1996.
    [43]漆泰岳,郭育光,侯朝炯.沿空留巷整体浇注护巷带适应性研究[J],煤炭学报,1999,24(3):256~260.
    [44]漆泰岳,郭育光,侯朝炯.沿空留巷整体浇注护巷带主要参数及其适应性[J],中国矿业大学学报,1999,28(2):122~125.
    [45]何廷峻.工作面端头悬顶在沿空巷道中破断位置的预测[J],煤炭学报,2000,25(1):28~31.
    [46]李化敏.沿空留巷顶板岩层控制设计[J],岩石力学与工程学报,2000,19(5):651~654.
    [47]王卫军,侯朝炯,柏建彪等.综放沿空巷道顶煤受力变形分析[J],岩土工程学报,2001,23(2):209~211.
    [48]李学华.综放沿空掘巷围岩大小结构稳定性的研究[D].徐州:中国矿业大学矿业工程学院,2000.
    [49]侯朝炯,李学华.综放沿空掘巷围岩大、小结构的稳定性原理[J],煤炭学报,2001,26(1):1~7.
    [50]柏建彪.综放沿空掘巷围岩稳定性原理及控制技术研究[D].徐州:中国矿业大学矿业工程学院,2002.
    [51] A. N. Wilson. An Hypothesis Concerning Pillar Stability [J]. Mining Engineer, No.6, 1972.
    [52] B. N. Whittaker. Design Loads for Gateside Packs and Support System [J]. Mining Engineer, Feb. ,1977.
    [53] B. N. Whittaker. Design and Stability of Pillar in Longwall Mining [J]. Mining Engineer, No.7, 1979.
    [54] Smart. B. G. D, Davies. D. O, etc. Application of the Rock-Strata-Title Approach to Pack Design in an Arch-Sharped Roadway [J]. Mining Engineer, Dec., 1979.
    [55] B. C. Williams. Packing Technology [J]. Mining Engineer, No.3, 1988.
    [56]吴健,孙恒虎.巷旁支护载荷和变形设计[J].矿山压力与顶板管理,1986,No.2:2~11.
    [57]陈名强.巷旁支护带理想力学特性的探讨[J].焦作矿业学院学报,1988,No.2,3:78~88.
    [58]周华强,侯朝炯,漆太岳.巷旁充填体控顶机理的相似材料模拟试验[J].矿山压力与顶板管理,1991,No.4:23~28.
    [59]郭育光,柏建彪,侯朝炯.沿空留巷巷旁充填体主要参数研究[J].中国矿业大学学报,1992,21(4):1~11.
    [60]涂敏.沿空留巷顶板运动与巷旁支护阻力研究[J].辽宁工程技术大学学报,1999,18(4):347~351.
    [61]柏建彪,周华强,侯超炯等.沿空留巷巷旁支护技术的发展[J].中国矿业大学学报,2004,33(2):183~186.
    [62]张东升.综放大断面沿空留巷技术[D].徐州:中国矿业大学理学院,2001.
    [63]张东升,毛献彪,马文顶.综放沿空留巷围岩变形特征的试验研究[J].岩石力学与工程学报,2002,21(3):331~334.
    [64]张东升,马立强,冯光明,等.综放巷内充填原位沿空留巷技术[J].岩石力学与工程学报,2005,24(7):1164~1168.
    [65]马立强,张东升,陈涛等.综放巷内充填原位沿空留巷充填体支护阻力研究[J].岩石力学与工程学报,2007,26(3):544~550.
    [66]阚甲广.典型顶板条件下沿空留巷围岩结构分析及控制技术研究[D].徐州:中国矿业大学矿业工程学院,2009.
    [67]张东升,茅献彪,马文顶.综放沿空留巷围岩变形特征的试验研究[J].岩石力学与工程学报,20012,21(3),331~334.
    [68]缪协兴,张东升,殷庆芳等.综放沿空留巷充填巷帮变形机理分析[J].第六次全国岩石力学与工程学术大会论文集,2000,748~750.
    [69]张东升,缪协兴,茅献彪.综放沿空留巷围岩变形影响因素的分析[J].中国矿业大学学报,2001,30(3),261~264.
    [70]张东升,唐鹏宇,谢文兵.充填体接顶质量对综放沿空留巷围岩变形的影响[J].矿山压力与顶板控制,2001,No.3,44~45.
    [71]张东升,缪协兴,冯光明等.综放沿空留巷充填体稳定控制[J].中国矿业大学学报,2003,32(3),232~235.
    [72]张东升,马立强,缪协兴等.综放沿空留巷围岩变形影响因素的分析[J].中国矿业大学学报,2006,35(1),1~6.
    [73] Weber W, Ann. Physical Chemistry [J], Int. J. Rock. Min. Sci, 1835, 247(34): 28~32
    [74] Thomson W. Properties of rock deformation [J], London: Proe. Roy. Soc., 1865, 289(14): 19~32
    [75] Maxwell J C, Hysteretic fracturing end chronic theory for rock [J], London: Phil. Trans. Roy. Soc.,1867, 157(49): 32~36
    [76] Boltzmann L. Rock Deformation [M]. Sitzgsber. Akad. Wiss. Wien, 1884, 275
    [77] Bingham E C. Rheology of materials [M], U. S. Bur. of Standards Bull., 1916, 309
    [78]王芝银,李云鹏.岩体流变理论及其数值模拟[M].北京:科学出版社,2008.
    [79]耶格JC,库克NGW.岩石力学基础.中国科学院工程力学研究所译.北京:科学出版社,1981.
    [80] Maranini E, Brignoli M. Creep behavior of a weak rock experimental characterization. Int J Rock Mech Mine Sci, 1999,36(1): 127~138.
    [81] Ito H, Sasajima S. A ten year creep experiment on small rock specimens. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1987, 24(2): 113~121
    [82] Ito H. The phenomenon and examples of rock creep//Hudson J A. Comprehensive Rock Engineering, vol. 3.Oxford: Pergamon Press, 1993: 693~708.
    [83]傅冰骏.陈宗基院士生平.岩石力学与工程动态,2002,(3):1~9.
    [84]李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验[J].岩石力学与工程学报,1995,16(1):39~47.
    [85] LI Yongsheng, XIA Caichu. Time-dependent tests on intact rocks in uniaxial compression. Int J Rock Mech Mine Sci and Geomech Abstr, 200, 37:467~475.
    [86]张向东,郑雨天,肖裕性.第三系软弱岩体蠕变理论[J].东北大学学报,1997,18(1):31~35
    [87]金丰年.岩石拉压特征的相似性[J].岩土工程学报,1998,20(3):31~33.
    [88] XU Ping,YANG Tingqing. A study of the creep of granite. In: Proc. of IMMM’95. Beijing: International Academic Publishers, 1995, 245~249.
    [89]徐平,夏熙伦.三峡工程花岗岩蠕变特性试验研究[J].岩土工程学报,1996,18(4):63~67.
    [90]夏熙伦,徐平,丁秀丽.岩石流变特性及高边坡稳定性流变分析[J].岩石力学与工程学报,1996,15(4):312~322.
    [91] Sun Jun、Hu Y Y. Time-dependent effects on the tensile strength of saturated granite at Three Gorges Project in China. Int J Rock Mech Mine Sci, 1997, 34: 381~384.
    [92]山下秀,杉木文男,今井忠南,等.岩石蠕变及疲劳破坏过程和破坏极限研究[J].辽宁工程技术大学学报,1999,18(5):452~455.
    [93]李建林.岩石拉剪流变特性的试验研究[J].岩土工程学报,2002,22(3):299~303.
    [94]许宏发.软岩强度和弹模的时间效应研究[J].岩石力学与工程学报,1997,16(3):246~251.
    [95]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [96]陈有亮,孙钧.岩石蠕变断裂特性分析[J].同济大学学报,1996,24(5):504~508.
    [97]陈有亮,刘涛.岩石流变断裂扩展的力学分析[J].上海大学学报,2000,6(6):491~496.
    [98]陈有亮.岩石蠕变断裂特性的试验研究[J].力学学报,2003,33(4):480~484.
    [99]邓广哲,朱维申.岩体裂隙非线性蠕变过程特性与应用研究[J].岩石力学与工程学报,1998,17(4):358~365.
    [100]邓广哲,朱维申.蠕变裂纹扩展与岩石长期强度效应试验研究[J].试验力学,2002,17(2):177~183.
    [101]张晓春、杨挺青、缪协兴.岩石裂纹演化及其力学特性的研究进展[J].力学进展,1999,29(1):97~104.
    [102]张晓春,胡光伟,杨挺青.岩石板梁结构时间相关变形的稳定性分析[J].武汉交通科技大学学报,1999,23(2):158~160
    [103]曹树刚,边金,李鹏.软岩蠕变试验与理论模型分析的对比[J].重庆大学学报,2002,25(7):96~98.
    [104]万志军,周楚良,罗兵全等.软岩巷道围岩非线性流变数学力学模型[J].中国矿业大学学报,2004,33(4):468~472.
    [105]黄先伍,茅献彪,李天珍.基于Burgers模型的岩层弯曲变形分析[J].采矿与安全工程学报,2006,23(2):146~150.
    [106]崔希海.岩石流变扰动效应及试验系统研究[D].山东科技大学,2007.
    [107]孙钧,张德兴.深层隧道围岩的黏弹-黏塑性有限元分析[J].同济大学学报,1981,(1):18~25.
    [108]王芝银,刘怀恒.粘-弹-塑性有限元分析及其在岩石力学与工程中的应用[J].西安矿业学院学报,1985,5(1):86~105.
    [109]张玉军,刘谊平.正交各向异性岩体中地下洞室稳定的粘弹-粘塑性三维有限元分析[J].岩土力学,2002,23(3):278~283.
    [110]陈卫忠,王莉莉,杨典森等.裂隙岩体蠕变损伤力学模型及应用[J].岩土力学前沿,2004,88~99.
    [111]陈卫忠,伍国军,戴永浩等.废弃盐穴地下储气库稳定性研究[J].岩石力学与工程学报,2006,25(4):845~554.
    [112]褚卫江,徐卫亚,杨圣奇等.基于FLAC3D岩石黏弹塑性流变模型的二次开发研究[J].岩土力学,2006,27(11)
    [113]王芝银,杨志法,李云鹏等.石窟顶板流变断裂过程的数值模拟与反演分析[J].岩石力学与工程学报,2006,25(1):9~14.
    [114]王卫军,侯朝炯,柏建彪,等.综放沿空巷道顶煤受力变形分析[J].岩土工程学报,2001,23(2):209~211.
    [115]柏建彪,王卫军,侯朝炯.综放沿空掘巷围岩控制机理及支护技术研究[J].煤炭学报,2000,25(5):478~481.
    [116]李学华.综放沿空掘巷围岩大小结构稳定性的研究[D].徐州:中国矿业大学,2000.
    [117]张东升,唐鹏宇,谢文兵.充填体接顶质量对综放沿空留巷围岩变形的影响[J].矿山压力与顶板管理,2001,No.3:44~45.
    [118]张东升,缪协兴,茅献彪.综放沿空留巷顶板活动规律的模拟分析.中国矿业大学学报,2001,30(3):261~264.
    [119]张东升,茅献彪,马文顶.综放沿空留巷围岩变形特征的试验研究[J].岩石力学与工程学报,2002,21(3):331~334.
    [120]张东升,缪协兴,冯光明,等.综放沿空留巷充填体稳定性控制[J].中国矿业大学学报,2003,32(3):232~235.
    [121]张东升,马立强,冯光明,缪协兴.综放巷内充填原位沿空留巷技术[J].岩石力学与工程学报,2005,24(7):1164~1168.
    [122]张东升,马立强,茅献彪.综放(采)大断面原位沿空留巷技术[M].徐州:中国矿业大学出版社,2009.
    [123]朱浮声.岩石的强度理论与本构关系.力学与实践.1997(5):8~14.
    [124]张晓春,缪协兴.岩石蠕变及结构失效的研究进展.流变学进展.华中理工大学出版社.1999.11
    [125]张向东,郑雨天,肖裕行.第三系软弱岩体蠕变理论[J].东北大学学报.1997(1):31~35.
    [126]夏熙伦,徐平,丁秀丽.岩石流变特性及高边坡稳定性流变分析[J].1996(4):312~322.
    [127]李青麒.软岩蠕变参数的曲线拟合计算方法.岩石力学与工程学报[J].1998(5):559~564.
    [128]朱子龙,李建林,王康平.三峡工程岩石拉剪蠕变断裂试验研究[J].武汉水利电力大学学报.1998(3):16~19.
    [129]朱珍德,王玉树.巷道围岩流变对巷道稳定性的影响[J].力学与实践.1998(1):26~29.
    [130]Н.П.巴仁.无煤柱护巷[M].北京:煤炭工业出版社,1979.
    [131]ю.л.胡金,M.и.乌斯基诺夫,A.B.布拉依采夫等.煤层无煤柱开采[M].徐州:中国矿业大学出版社,1991.
    [132]李栖风.无煤柱开采[M].北京:煤炭工业出版社,1986.
    [133]李晋平.综放沿空留巷技术及其在潞安矿区的应用[D].北京:煤炭科学研究总院,2005.
    [134]何全洪.高水材料巷旁充填留巷效果分析[J].矿山压力与顶板管理.1998(3):37~38.
    [135]冯光明.高水材料巷旁充填矿压观测与研究[J].矿山压力与顶板管理.1998(4):13~15.
    [136]耿建平.高水材料巷旁充填沿空留巷技术探讨[J].山西建筑.2003(8):30~38.
    [137]陈书宏,赵有功,谢文兵.充填体特性对综放沿空留巷围岩稳定性的影响[J].矿山压力与顶板管理.2001(2):60~63.
    [138]易宏伟,柏建彪,侯超炯.高水灰渣速凝充填材料的研制及应用[J].煤炭工程师,1996(6):36~39.
    [139]张士祥,宫显斌.高水速凝材料巷旁充填试验研究[J].煤矿现代化,1996(4):13~18.
    [140]周华强,侯朝炯,易宏伟等.国内外高水巷帮充填技术的研究与应用[J].矿山压力与顶板管理,1991,8(4):2~6.
    [141]刘鸿昌.矿山压力的相似模拟试验[M].徐州:中国矿业大学出版社,1988.
    [142]钱鸣高,朱德仁,王作棠.老顶岩层断裂形式及对工作面来压的影响[J].中国矿业大学学报,1986,15(2):9~l7.
    [143]钱鸣高,缪协兴,何富连.采场“砌体梁”结构的关键块分析[J].煤炭学报,1994,19(6):557~563.
    [144]缪协兴,钱鸣高.采场围岩整体结构与砌体梁力学模型[J].矿山压力与顶板管理,1995,NO.3-4:3~12.
    [145]中华人民共和国建设部.《混凝土结构设计规范》(GB 50010-2002).北京:中华人民共和国建设部,2002.
    [146]刘雄.岩石流变学概论[M].北京:地质出版社,1994.
    [147]杨挺青.粘弹性力学[M].武昌:华中理工大学出版社,1992.
    [148]朱伯芳.混凝土结构徐变应力分析的隐式解法[J].水利学报,1983.5,40~46.
    [149]惠荣炎,黄国兴,易冰若.混凝土的徐变.北京:中国铁道出版社,1988.
    [150]欧阳华江,邬瑞锋.混凝土蠕变理论的有效模量法[J].大连理工大学学报,1989,29(3):271~278.
    [151]林洋,宋起根.混凝土的蠕变本构关系及微机实现[J].土木工程学报,1992,25(5):9~16.
    [152]郭少华.混凝土蠕变损伤分析模型[J].西安建筑科技大学学报,1995,27(3):299~303.
    [153]徐涛,林皋,唐春安.拉伸载荷作用下混凝土蠕变-损伤破坏过程数值模拟[J].土木工程学报,2007,40(1):28~33.
    [154]莫勒,喻文健.MATLAB数值计算[M].北京:机械工业出版社,2006.
    [155]丁志坤,吕爱钟.岩石粘弹性非定常蠕变方程的参数识别[J].岩土力学,2004,25(S):37~40.
    [156]金饶,孙训芳.考虑加载历史影响的蠕变率[J].机械强度,2001,23(2):206~209.
    [157]徐芝纶.弹性力学(上册)[M].北京:高等教育出版社,2008.
    [158]俞茂宏,何丽南,宋凌宇.双剪应力强度理论及其推广[J].中国科学,1985,28(12) :1113~1120.
    [159]俞茂宏.双剪理论及其应用[M].北京:科学出版社,1998.
    [160]侯朝炯,周华强,张连信等.ZKD型高水速凝材料的生产及应用[J],煤炭科学技术,1993,21(1):16~19.
    [161]朱德仁,钱鸣高.长壁工作面老顶破断的计算机模拟[J].中国矿业学院学报,1987,No.3:1~9.
    [162]康红普.煤巷锚杆支护理论与成套技术[M].北京:煤炭工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700