用户名: 密码: 验证码:
汞、镉对外生菌根真菌生长、分泌作用和养分吸收的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Effects of Mercury, Cadmium on the Growth, Secretion and Nutritive Absorption of ECM Fungus
  • 作者:张琴
  • 论文级别:硕士
  • 学科专业名称:微生物学
  • 学位年度:2003
  • 导师:黄建国
  • 学科代码:071005
  • 学位授予单位:西南农业大学
  • 论文提交日期:2003-05-01
摘要
外生菌根真菌是土壤中非常重要的一类真菌,能与70~75%的造林树种形成外生菌根。优良的外生菌根真菌与木本植物的根系形成外生菌根后,能促进寄主植物的生长,改善它们的营养状况,提高其抗逆(干旱、病虫害,盐害等)能力。因此,外生菌根真菌被在林业生产和植树造林中广泛应用。
     某些外生菌根真菌能不同程度的通过多种方式增强寄主植物抵御不良环境的能力,估计对减轻重金属的危害也具积极作用,在污染土壤和矿墟的植树造林中可能有着广阔的应用前景。但是,目前所研究的供试菌种(株)和重金属的代表性和数量不足,尚不能完全弄清外生菌根真菌抗(耐)重金属的能力、机理及应用价值,因此,选择更多的有一定研究基础和应用前景的外生菌根真菌作为供试菌种(株),研究它们对重金属的抗(耐)性及其机理很有必要。
     Cd、Hg是人类活动向环境释放较多的重金属。试验选用彩色豆马勃Pisolithus tinctorius 715(1996年从四川西昌桉树红壤中分离获得)和土生空团菌Cenococcum geophilum SIV(上世纪80年代从西班牙欧洲火炬松土壤中分离获得)两种外生菌根真菌作为供试菌种,在培养基中加入不同浓度的Hg或Cd进行培养,研究了它们的生长状况、氮磷钾吸收、H~+及草酸分泌作用等。目的是了解它们对Hg、Cd的抗(耐)能力和有关机理,为在Hg、Cd污染的土壤和矿墟进行植树造林,防止Hg、Cd进一步迁移释放,污染其它陆生或水生生态环境提供科学依据。研究结果如下:
     1.在培养液中加入较低浓度的Hg,外生菌根真菌的生长受到轻微抑制;继续增加Hg的浓度,外生菌根真菌表现出一定的耐受性,生长量不因Hg浓度的提高而显著降低;当Hg的浓度超过一定的阈值后,外生菌根真菌的生长速率迅速降低或停止。Hg对两种外生菌根真菌生长的影响有所差异,Pt 715的生长对Hg比Cg SIV相对敏感。
     2.Cg SIV的生长对Cd十分敏感,随着培养液中Cd的浓度逐渐增加,Cg SIV的生长量也随之降低,二者呈直线负相关(y=81.61-3.88X,r=-0.987)。但是,Pt 715对Cd表现出极高的抗(耐)性。在Cd浓度为15mg/L时,Cg SIV的生长量比对照降低74.40%,而在Cd浓度为140mg/L时,Pt 715的生长量仍为对照的73.64%。
     3.Hg、Cd对外生菌根真菌生长的抑制作用因重金属元素不同而异。对Pt 715而言,Hg
    
    张琴:汞、隔对外生菌根真菌生长、分泌作用和养分吸收的影响 一中文摘要一
     对其生长的抑制作用大于Cd,二者的毒性指数分别为:1.614(Hg)和0.576(Cd人
     对 Cg SIV而言人d对其生长的抑制作用大于 Hg,二者的毒性指数分别为:0.931(Hg)
     和4.59(Cd)。
    4.外生菌根真菌吸收阳离于和分泌有机酸会释放H\重金属对外生菌根真菌H”分泌的
     影响因菌种不同而异。较低浓度的蝴对 Cg SS的 H”分泌无显著影响,但降低 Pt715
     的H“分泌数量,高浓度的Hg同时显著抑制Pt715和Cg SIV的H”分泌。在培养液
     中加入 Hg后,外生菌根真菌的生长量和 H”分泌量的关系可用回归方程 y二 0.567+
     0027X,r=O.987(Cg SIV)和 y o.653+O.08’7X, r=0.998(Pt 715)表示,说明 Hg
     对H”分泌的影响与生长同步,即生长量降低减少了H”的分泌量。
     低浓度的 Cd促进 Cg SS但抑制 Pt715的 H”分泌,但较高浓度 Cd却显著抑制 Cg SIV
     而促进Pt715的 H“分泌。培养基加 Cd处理下,菌根真菌分泌的 H“数量与生长量间
     无显著相关性,说明Hg、Cd两种重金属对H”分泌的影响机理不同。
    5.在不添加重金属的处理中,两种外生菌根真菌分泌草酸的能力差异显著,Pt 715明
     显大于 Cg SIV。Hg、Cd可促进 Cg SIV但抑制 Pt 715的草酸分泌作用。向培养液中
     添加 Hg或 Cd,Cg SIV的草酸分泌率显著增加,培养液中草酸的数量无显著改变(Hg)
     或显著升高(Cd人但 Pt 715的草酸分泌率和培养液中草酸的数量均显著降低。草酸
     对重金属有很强的络合能力,在重金属胁迫的条件下,许多抗(耐)能力强的微生物
     通过增加草酸分泌以络合重金属,降低它们的危害作用。但本项研究未能支持这种理
     论,看来供试外生菌根真菌可能通过某些其它机制抵抗Hg、h对生长的危害作用。
    6.Cd、Hg两种重金属对外生菌根真菌菌丝体内的氮、磷、钾含量或吸收量的影响因
     菌种和金属元素不同而异,但从总体上看,重金属不会显著降低氮、磷、钾含量和
     吸收量。
     在培养液中加入 Hg之后,Cg SIV菌丝的氮、磷含量和吸收量显著增加,含钾量和
     吸收量无显著变化;Hg对 Pt 715菌丝体内的氮、磷、钾含量,以及磷、钾吸收量
     无显著影响,但对吸氮量有一定影响。
     在培养液中加人 Cd之后,Cg SIV菌丝的磷、钾含量无显著变化,含氮量随培养液
     中 Cd浓度上升而增加灯4.20+12.16X,r=0.956人与此同时,Cg SIV的吸氮
     量显著升高,吸磷量显著降低,吸钾量无显著变化,其中磷素的吸收量与培养液中
     Cd的浓度呈显著负相关ha30.23—7.49X,r=一0.906人对Pt 715而言,菌丝体
     内的氮、钾含量显著升高,磷含量随培养液中 Cd浓度上升而缓慢降低h纶7.34
Ectomycorrhizal fungi, a group of important fungi in soil, can form symbioint with 70-75% of the trees for artificial reforestation. Selected mycorrhizal fungi could benefit potentially the growth, nutrient status of the host plants as well as their resistance to drought, salt and diseases caused by insects and microorganisms after the infection of the host roots. Therefore, they are widely used in forestry and artificial forestation.
    Some ectomycorrhizal fungus could, to some extent, improve the abilities of their hosts to resist adverse conditions by variable ways. It seems thus reasonable to suggest that they could effectively alleviate the toxicities of heavy metals and be applied in artificial forestation for the soils and ore debris contaminated by heavy metals. The mycorrhizal fungus and heavy metals studied previously in regard to toxicology are, however, too limited to summarize the fungal resistance to heavy metals. It is not thoroughly clear to understand the abilities of mycorrhizal fungi to resist heavy metal pollution, mechanisms related and potentiality in application in that case. It is thus necessary for us to use more mycorrhizal fungal species and strains intensively studied, which could be applied potentially in artificial forestation in the future, to investigate their resistance to heavy metal toxicities and mechanisms.
    Cd and Hg are heavy metals largely released, compared to other ones, into environment by human activities. In the present experiment, Pisolithus tinctorius 715, isolated from an eucalyptus growing red soil in Xichang, China, in 1996, and Cenococcum geophilum SIV, isolated from pine growing soil in Spain in 1970s, were adopted. Cd and Hg were added into culture solutions with different concentration gradients. The fungal growth, efflux of protons and oxalate and influx of nitrogen, phosphorus and potassium were observed. The objectives were (i) to realize their resistances to Cd and Hg and the possible mechanisms, (ii) to provide some information for the artificial forestation for soils and ore debris contaminated and (iii) to prevent the continual release of the heavy metals from polluting other territorial and aquatic ecology systems. Following are the results obtain in our experiment.
    Mycorrhizal fungal growth was slightly inhibited in low Hg concentrations and depressed less with the concentrations increased, indicating the resistance and adaptation to Hg toxicity. But the growth reduced suddenly or stopped as the concentrations go beyond critical ones. Fungal species varied in growth rate under Hg stress. Pt 715 was sensitive and Cg SIV was less sensitive to Hg stress. Cg SIV was quite susceptible to Cd in growth. The
    
    
    
    biomass lowered with Cd concentration increased. Negative correlation was found between biomass and Gd concentration gradients (y = 81.61 - 3.88X, r = -0.987). However, Pt 715 was much less susceptible to Cd compared to Cg SIV. The biomass of Cg SIV cultivated in 15mg Cd / L culture solution reduced 74.40% on the base of blank control, while it reached 73.64% of blank when Pt 715 in 140mg Cd / L solution.
    Mycorrhizal fungal growth was depressed variously in culture solutions with Cd or Hg added. The growth inhibition of Pt 715 by Hg was more obvious than Cd. The toxic indexes were 1.614 for Hg and 0.576 for Cd. In contrast, it behaved otherwise for Cg SIV. The toxic indexes were 0.931 for Hg and 4.59 for Cd.
    Efflux of organic acids and protons companied with influx of cation ions in mycorrhizal fungi in the growing period. The fungal species differentiated in proton efflux in heavy metal solutions. The proton efflux by Cg SIV changed very little if any in low Hg culture solutions compared with the blank treatment in contrast to Pt 715, which emitted less protons in this case. The efflux of protons by both Pt 715 and Cg SIV was, however, depressed in high ones. There were positive linear correlations between the proton efflux and fungal biomass, i.e. y = 0.567 + 0.027X for Cg SIV (r = 0.987) and y =0.653 + 0.087X for Pt 715 (r = 0.998). The re
引文
1.鲍士旦 主编.土壤农化分析,2000(第三版).北京:中国农业出版社,
    2.保罗巴C. J. 等 著,姚一建,李玉 主译.菌物学概论—4版,2002.北京:中国农业出版社,书名原文:Introductory Mycology
    3.常学秀,段昌群,王焕校.根分泌作用与植物对金属毒害的抗性.应用生态学报,2000,11(2);315—320
    4.陈怀满 主编.土壤和环境微生物学,1990(第一版).北京:北京农业大学出版社
    5.弓明钦,陈应龙,仲崇禄 编著.菌根研究及应用.1997.北京:中国林业出版社
    6.弓明钦,陈羽,王凤珍等.外生菌根对桉树青枯病的防治效应,林业科学研究,1999,12(4):339~345
    7.郭秀珍,毕国昌 编.林木菌根及应用技术,1989,北京:中国出版社.
    8.花晓梅.林木菌根生物工程.世界林业研究.2001,Vol l4,No.1:22~29
    9.黄艺,陶澍.过量铜锌对外生菌根真菌的生长、碳氮和铜积累的影响.微生物学报.2002,42(6);737~743
    10.黄艺,陶澍.过量铜锌对外生菌根菌牛乳牛肝菌生物量、呼吸和糖酵解酶活性的影响。植物生理学报,2001,27(4):303~308
    11.黄会一.木本植物对土壤镉的吸收、积累、耐性.中国环境科学,1989,9(5):323—330
    12.孔繁翔,尹大强,严国安.环境生物学.2000.北京:高等教育出生版社
    13.雷增普,金均然,王昌温.外生菌根对植物根部病害病原菌拮抗作用的研究.1989,25(6);502~507
    14.李法云,臧树良,罗义.污染土壤生物修复技术.生态学杂志,2003,22(1):35—39
    15.李天杰等 编著,土壤环境学:土壤环境污染防治与土壤生态保护.1996.北京:高等教育出版社
    16.吕全,雷增普.外生菌根真菌提高板栗木抗旱性能及其机理的研究.林业科学研究,2000,13(3):249—256
    17.刘兆荣,陈忠明,赵广英等 编.环境化学教程.2003,北京:化学工业出版社,
    18.沈德中 编著,污染环境的生物修复,2002,北京:化学工业出版社
    19.孙铁珩,周启星,李培军等 主编.污染生态学.2001,北京:科学出版社
    20.王有智,黄亦存,四种外生菌根真菌产生植物激素的研究.微生物学通报,1997,24(2):72-74
    21.王庆仁,崔岩山,董艺婷.植物修复—重金属污染土壤整治的有效途径.生态学报,2001,21(2):326—331
    22.韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展.生态学报,2001,21(7):1196—1203
    13.魏树和,周启星,张凯松等.根际圈在污染土壤修复中的作用与机理分析.应用生态学报,2003,22(1):143—147
    24.吴炳云,梁乃中.外生菌根对油松苗木抗旱性的影响.北京林业大学学报,1991,13增刊Ⅱ:281—299
    25.徐冰,李白,秦岭等.不同外生菌根真菌对难溶性磷的活化.吉林农业大学学报,2000,22(4):76—80
    26.杨国亭,宋关玲,高兴喜.外生菌根在森林生态系统中的重要性.(Ⅰ)—外生菌根对宿主树木的影响.东北林业大学学报.1999,27(6):72~77
    27.袁玲,方德华,汪智慧等.钾对外生菌根真菌的分泌作用及氮、磷、钾含量的影响.生态学报,2001,21(2):254—258
    28.赵志鹏,郭秀珍.外生菌根真菌纯培养中生理活性物质代谢的研究.林业科学.1990,26(5):465~469
    29.周崇莲,齐玉臣.外生菌根与植物营养.生态学杂志,1993,12(1):37—44
    30. Aggangan, N S, Dell B., Malajczuk N. (1998) Effects of chromium and nikel on the growth of the ectomycorrhizal fungu Pisolithus and formation of ectomycorrhizas on Eucalyptus urophylla S. T. Blake. Geoderma, 84: 1-3
    31. Anderson T A. (1993) Bioremediation in rhizosphere. Environ. Sc. Technol., 27(13): 2630-2635.
    32. Arocena, J. M. et al. (1999) Chemical and mineral compositon of ectomycorrhizosphere soils of Subalpine fir [Abies lasiocarpa (Hook.) Nutt.] in the Ae horizon of a luvisol. Can. J. Soil Sci., 79: 25~35
    33. Ashford A E, Peterson J L, Cainney J W G and Allaway W G. (1988) Structure and permeability of the fungal sheath in Pisonia mycorrhiza. Protoplasma, 147: 149~161
    34. Baum C, Weih M, Verwijst T, Makeschin F. (2002) The cffects of nitrogen fertilization and soil properties on
    
    mycorrhizal formation of Salix viminalis. FOREST ECOLOGY AND MANAGEMENT, 160(1-3): 35-43
    35. Bending G D., Read D J. (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants. Ⅵ: Activities of nutrient moblising enzymes in birch litter colonized by Paxillus involutus (Fr.) Fr. New phytologist., 130:411~417
    36. Beyrle H. (1995) The role of phytohormones in function and biology of mycorrhizad. In: Varma A, Hock B, eds. Mycorrhizad Structure Function. Molecelar Biology. Berlin: Spring-Vefiag, 365~390
    37. Blandez D., C. Jacob. K. Turanau et al. (2000a) Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycol res, 104(11): 1366-1371
    38. Blandez D., Bernard botton and Michel Chalot. (2000b) Cadmium uptake and subcellar compartmentation in the ectornycorrhizal fungus Paxillus involutus. Microbioloy, 146: 1109~1117
    39. Bradley, R., Burt, A. J. & Read, D. J. (1981) Mycorrhizal infection and resistance and heavy metal toxicity in Calluna uulgaris. Nature London., 292: 335~337.
    40. Bradley R., Burt A. J. & Read, D. J. (1982) The biology of mycorrhiza in the Erieaceae. Ⅷ. The role of mycorrhizal infection in heavy metal resistance. New Phytol., 91: 197~201
    41. Brown M. T. & Wilkins D. A. (1985) Zinc tolerance of mycorrhizal Betula. New Phytologist., 99: 101~106
    42. Bucking H, Heyser W. (1995) The effect of ectomycorrhizal fungi on Zn uptake and distribution in Seedings of Pinus sylyestris L. Plant and soil, 167: 203~212
    43. Burton K W, Morgan E and Roig A. (1984) The influence of heavy metals upon the growth of sitka-spruce in South Wales forests. Ⅱ. Greenhouse experiments. Plant Soil 78: 271-282
    44. Chakravarty P., Hu Wang SF. (1991) Effect of an ectomycorrhizal fungus Laccaria laccatta, on Fusarium damping off in pinus bankasiana seedLings. Eur J for Path., 21: 97~106
    45. Chaudhry, N. A., Christopher, B. & Taligoola, H. K., (1981) Soaspmal variation of development and distribution of ectomycorrhizae on Pinus caribaea. 5th NACOM Pro ram and Abstracts, P. 34
    46. Clegg S. and G R. Gobran (1995) Effect of aluminium on growth and root reaction of phosphorus stressed Betula pendula seedlings. plant soil, 169: 173-178
    47. Colpaert J. V. Van Assche JA (1992). Zinc toxicity in ectomycorrhizal Pinus Sylvestris. Plant and soil, 143: 201~211
    48. Colpaert, J. V. & Van Asscbe, J. A.(1992b) The effects of cadmium and the cadmium-zinc interaction on the growth of the ectomycorrhizal fungi. Plant and Soil, 145: 237~243.
    49. Cromack K, Solline P. (1979) Calcium oxalate accumlation and soil weathering in mats of the hypogenous fungus Hysterangium crsaaum. Soilogy and Biocbenistry, 11: 463~468
    50. Cumming J R and Weingtein L H. (1990) Aluminum-mycorrhizal interactions in the physiology of pitch pine seedling. Plant and soil, 125: 7~18
    51. Dixon R K. Wright G M. (1980) Water deficits and root growth of ectomycorrhizal white oak seedling. Can J for res, 10: 545~548
    52. Dixon R K. (1983) Comparative water relation of container-grow and bare-root ectomycorrhizal and nonmycorrhizal Quercus velutine Seedlings. Can J Bot, 61: 1559~1565.
    53. Dixon Robert K (1988) Response of ectomycorrhizal Quercus Rubra to soil cadium, nickel and lead Soil Bioichem, 20: 555-559
    54. Duchesen L. C. (1993) Ectomycorrhizal fungi and control of root disease. Mycorrhiza News, 5: 1~5
    55. Duddridge J A., Malibari A., Read D J. (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature. 287: 834~836
    56. Egerton Warburton L. M. and Griffin B. J. (1995) The diffierential tolerance of Pisolithus tinctorius isolates to aluminium in vitro. Canadian journal of botany, 73: 1229-1233
    57. Ernst W. H. O, Schat H. and Verkleij J. A. C (1990) Evolutionary biology of metal resistance in Silene Vulgaris. Evolutionary Trends in plants, 4: 45-51
    
    
    58. Frank, A. B. (1885) Ueber die wurzelsymbio se beruhende Ernahrung gewisscr Baume durch Unterirdische pilze. Bet. Deut. Bot. Ges, 3: 128~145. (In "6th NACDM Proceedings", P_(18-25), translated by Trappe J. M on the root symbiosis-depending nutrition through hypogeous fungi of certain trees.)
    59. Gadd G. M. (1993) Interactions of fungi with toxic metals. New Phytol. 124: 25~60
    60. Gadd G. M. and Griffiths (1978) Microorganism and heavy metal toxicity. Microbial Ecology, 4: 303-317.
    61. Galli U, Meier M and Bmnold C. (1993) Effect of Cadmium on nonrnycorrhizal and mycorrhizal Norway Spruce Seedling and its ectomycorrhizal fungus Laccaria Laccata BK and br Sulfate reduction, thiols and distribution of the heavy metal. New Phytol. 125, 837~843
    62. Griffiths R P., Baham J E., Caldwell B A. (1994) Soil solution chemigtry of ectomycorrhizal mats in forest soil. Soil Biology and Biochemistry, 26: 331~337
    63. Gruhn C M and Miller J R. (1991) Effect of Cu on trinase activity and polyamine content of some ectomycorrhizal fungi. Mycol Res, 95(2): 268~272
    64. Hadley G. (1985) Mycorrhiza in tropical orchids. In Varma A. ed. Proceedings of the Fifth Asian Orchid Congress Seminar, 154~159
    65. Harley J L. (1989) The significance of mycorrhiza. Mycological Research., 92(2): 129~139
    66. Hart, J. J., Welch, R. M., Norell, W. A. et al (1998) Characterization, of cadmium binding, uptake, and translocation in intact seedling of bread and durum wheat cultivars. Plant physiol, 116: 1413~1420
    67. Hartley J, Cairney J. W G, Meharg A A. (1997) Do ectomyconrrhizal fungi exhibit adaptive tolerance to potenrilaay toxic metals in the environment?. Plant and Soil, 189: 303~319
    68. Ho I, Zak B. (1979) Acid phosphatase activity of six ectomyconrrhizai Douglas fir rootlets and some mycorrhizal fungi. Plant and soil., 54: 395~398
    69. Jentschke G, Susanne Winter and Douglasl Godbold. (1999) Ectomyconrrhizas and cadinrn toxicity in Norway spruce seedlings. Tree Physiology 19, 23-30
    70. Jentschke G. and D. L. Godbold. (2000) Metal toxicity and ectomycorrhizas. Physiologia Plantarum, 109: 107~116
    71. Jones D. L. (1998) Organic acid in the rhizosphere-a critical review. Plant and Soil 205: 25-44.
    72. Jones, M. D. & Hutchinson. T. C. (1998) The effects of nickel and copper on the axenic growth of ectomycorrhizal fungi. Canadian Journal of Botany, 66: 119~124
    73. Jongmams A G., Breemen N., Lundstroem U. et al. Rick-eating fungi. Nature. 1997, 389: 628~629
    74. Jonnarth U. A., Patrick A. W. Van Hees et al. (2000) Organic acids produced by mycorrhizal and non-mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metals. New Phyto, 146: 557-567.
    75. Kahle (1993) Reponse of roots of trees to heavy metals. Environ. Exp. Bot. 33: 99-119
    76. Karin Vido, Daniel Spector, Gilles Lagniel et al. (2001) A proteome Analysis of the cadmium Response in Saccharomyces cerevisiae. THE JOURNAL OF BIOLOGICAL CHEMISTRY., 276 (11): 8469-8474
    77. Kelly J. M., Parker G. R. and McFee W. W. (1979) Heavy metal accumulation and growth of seedlings of fire forest species are influenced by soil cadmium level. Journal of Environmental Quality, 8: 361~364
    78. Khasa P. D, Sigler L, Chakravarty P et al. (2002) Effect of fertilization on growth and ectomycorrhizal development of container-grown and bare-root nursery conifer seedlings. NEW FOREST. 22(3): 179-197
    79. Kraigher H., Grayling A., Wang T L. et al. (1991) Cytolinin production by two ectomycorrhizal fungi in liquid culture. Phytochemistry, 30: 2249~2254
    80. Krupa, S. & Fries, N. (1971) Studies on ectomycorrhizae of pine. Ⅰ. Production of volatile organic compounds. Can. J. Bot., 49: 1425
    81. Landeweert R E., Ellis Hoffland, Roger D. Finlay et al. (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. TRENDS in Ecology & Evolution, 16 (5): 248~254
    82. Lapeyrie F, Chilvers G A, Behm C A (1987) Oxalic acid synthesis by the mycorrhizal fungus Paxillus involutus (Batsch ex Fr.) Fr. New Phytol, 106: 139~146
    
    
    83. Lee J, Godon C., Lagiel G. et al. (1999) J. Biol Chem, 274: 16040-16046
    84. Leyral C, Turnau. K, Haselwandter K. (1997) Effect of heavy metal pollution in mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza, 3: 139~153
    85. Ljungquist P O. E K M., Stenstrom E. (1983) Indole-3-acetic acid production by mycorrhizal fungi determined by gas chromatogra-phymass spectrometry. New Phytologist. 94: 401~407
    86. Mark D. H. & Davey (1969) The influence o ectotrophic mycorrhizal fungi on the resistence of pine roots pathogenic infection Ⅲ&Ⅳ, Phytopathology, 59: 549-559
    87. Marx, D. H.(1975) Mycorrhizae and establishment of trees on strip-mined land. Ohio J. Sci., 75: 288~297
    88. Mccreight, J. D. & Schroeder, D. B.(1982). Inhibition of growth of nine ectomycorrhizal fungi by cadmium. Lead and nickel in vitro. Environmental and Experimental Botany 22: 1~7
    89. Morselt A F W, Smits W T M and Limonard T. (1986) Histochemisal demonstration of heavy metal tolerance in ectomycorrhizal fungi. Plant Soil, 96: 417~420
    90. Pan W L, Hopkins A G, Jackson W A (1989) Aluminium inhibition of shoot lateral braches of Gycine max and revrsal by exogeneous cytookinin. Plant Soil, 120: 1-9
    91. Pankow W., Boller., Wiemlen. (1991) The significance of mycorrhizas for protective ecosystems. Experientia, 47: 391~394
    92. Paul C. F. Tam, (1995) Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza Abstract5(3): 181-187.
    93. Peter F. Schweiger, Hervé Rouhier and Bengt Soderstrom (2000) Visualisation of ectomycorrhizal rhizomorph structure using laser Scanning Confocal microscopy. Mycol. Res., 106(3): 349~354.
    94. Sylvia DM, Sinclair WA. (1983) Suppressive influence of Laccaria Laccatta on Fusarium oxysporum and Douglas fires seedings. Phytopathology, 73: 384~389
    95. Thompson G. W.and Richard J. Medve. (1984) Effect of Alminum and Manganese on the Growth of Ecto mycorrhizal Fungi. Applied and Environmental Microbiology, 48(3): 556~560
    96. Trappe J M. (1964) Mycorrhizal hosts and distribution of Cenococcum graniforme. Lcoydia, 27(2): 100-106
    97. Tursnau K, Iottke, J Dexheimer and B Botton (1994) Element distribution in mycelium of Pisolithus arrhizus treated with Cadmium dust. Annals of Botany, 74: 137-142.
    98. Ulrich JM. (1960)Auxin production by mycorrhizal fungi. Physiological Plant.,13: 429~444
    99. Vasudevan P., V Padmsvathy, N Tewari et al. (2001) Journal of Scientific & Industrial Research, 60: 112-120
    100. Vodnik D., A. R. Byrne and N. gogala. (1998) The uptake and transport of lead in some ectomycorrhizal fungi in culture. Mycol. Res. 102(8): 953-958
    101. Yuan Ling, Fang dehua, Wang zhihui et al. (2000a) Bio-Mobilization of Potassium from Clay Minerals: Ⅰ. By Ectormycorrhizas. Pedosphere, 10(4): 339~346
    102. Yuan Ling, Fang dehua, Wang zhihui et al. (2000b) Bio-Mobilization of Potassium from Clay Minerals: Ⅱ. By Ectormycorrhizal fungi. Pedosphere, 10(4): 347~354.
    103. Zak B. (1964) Role of mycorrhizae in forest disease. Annual Review of phytopathology, 15: 203~222

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700