用户名: 密码: 验证码:
云南个旧锡矿集中区地质地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
个旧锡多金属矿是世界级超大型矿床,包括马拉格、松树脚、高松、老厂和卡房五大矿田。矿床类型较为齐全,主要有接触带型矿床、脉状矿床和层状矿床等。由于长期的开采,目前已面临资源严重不足的局面,本次研究的目的在于为个旧锡多金属矿床地质-地球化学综合找矿模型的建立提供新的理论依据和认识,从中探索我国危机矿山新一轮找矿的新理论和新思维。本文重点以老厂矿田中的接触带锡铜矿床和脉状矿床为研究对象,采用化学分析、ICP-MS、X射线粉晶衍射分析、电子探针等测试手段,对本区与成矿相关的基性-超基性火山岩、花岗岩、夕卡岩、电气石-石榴石等进行了系统的地质地球化学研究,研究表明:
     个旧矿区中三叠纪个旧组地层中的火山岩为钙碱性玄武岩-拉斑玄武岩系列,岩石为辉石-角闪石-长石-绿泥石-金云母组合;本区的花岗岩为过铝质花岗岩,主要与燕山期碰撞造山作用有关,锡多金属成矿与形成时代最晚、分异较好的花岗岩(如老卡岩体)关系密切;
     本区夕卡岩中的有用共(伴)生组份随着夕卡岩类型及其矿物组合的不同具有明显的分带性。在夕卡岩水平分带中,石榴石带和辉石带交替出现的现象主要与岩浆期后热液对碳酸盐岩围岩的渗滤交代作用有关,同时还与碳酸盐岩围岩中存在大理岩和灰质白云岩互层带有关。
     不同产状的电气石及其环带状结构分别与来自岩浆期后热液和盆地流体及其混合所产生的“化学振荡”作用有关;在夕卡岩水平分带中,石榴石化学成分的变化除与岩浆热液在演化过程中自身的物理-化学条件发生变化外,可能还与岩浆热液在对围岩进行渗滤交代的过程中有盆地流体的加入有关。
     在本区不同类型的夕卡岩(矿石)中,Sn与∑LREE及Cs、Nb、Rb、Sr等大离子亲石元素之间具线性正相关关系,而与U、Th等放射性元素呈明显的负相关性。锡在石榴石夕卡岩矿石中主要以类质同象的方式存在于钙铁榴石中,且随Fe/Fe+Al比值的增大而增大,少数则以锡石(SnO_2)包裹体的形式存在。
The Gejiu tin-polymetallic district consisting of five ore fields (Malage, Songshujiao, Gaosong, Laochang and Kafang) in Yunnan province, is one of the most important tin-producing region in the world. The district mainly contains skarn, vein-type and stratabound carbonate-hosted ore. Now, the mine resource in Gejiu tin-polymetallic district has become serious lack for long-time mining. The aim of this study is to provide some new information for the establishing of gechemical model in Gejiu tin-polymetallic district and to research some new theory and new thinking in the second round exploitation for the old mines in our country. In this paper, the petrology, mineralogy and geochemistry of basic-ultrabasic volcanic rock, granite and skarn related to the Sn-Cu skarn-type ore and the vein-type ore in Laochang ore field have been researched systematically, some conclusions are summarized as follows:In Gejiu tin-polymetallic district, the middle Triassic volcanic rocks belonging to calc-alkaline basalt-tholeiite serie, mainly consist of pyroxene, hornblende, feldspar, chlorite and phlogopite; All the granites are peraluminous granites related to the Yanshanian collision-orogeny. Laoka granite closely related to the tin-polymetallic deposits emplaced in the post- orogenic.The metal elements show obviously vertical zones with the variety of skarn types in dimensional extension; The occurrence of garnet skarn and diopside skarn alternately developed in the horizontal zones of the contact between granite and carbonatite are mainly related to two factors: one factor is the infiltration metasomatism of post-magmatic hydrothermal solution, the another is the metrical strata of marble and calcic-dolomite developed in country rocks. The infiltration metasomatism of post-magmatic hydrothermal solution makes the marbles to form garnet skarn zone and the calcic-dolomites to form diopside skarn zone.Schorl in the granite and dravite in carbonatite are respectively related to the magmatic fluid and basin fluid, while the tourmaline with optical and chemical zones in vein ore is mainly due to the mix of post-magmatic hydrothermal solution and basin fluid; The chemical composition variety of garnet in the horizontal zones are mainly related to the post-magmatic hydrothermal solution and the accessorial fluid from sedimentary basin.In different type skarns including altered granite and massive skarn, there are positive linear correlations between Sn and ∑LREE, majority LILEs (such as Cs, Nb, Rb and Sr) or negative linear correlations between Sn and radioactive elements (such as U, Th). In garnet skarn, Sn mainly substituted Fe into andradites and its concentration always increased with the enlargement of Fe/Fe+Al ratio, minority of Sn existed in andradites as cassiterite (SnO_2) inclusions.
引文
1 翟裕生.矿床学的百年回顾与发展趋势[J].地球科学进展.2001,16(5):719~725.
    2 翟裕生.金属成矿学研究的若干进展[J].地质与勘探,1997,33(1):13~18.
    3 涂光炽.九十年代固体地球科学及超大型矿床研究若干进展[J].矿物学报.1997,17(4):357~363.
    4 毛景文,王登红.花岗岩有关稀有金属矿床研究新进展[J].矿床地质.1997,16(2):189~192.
    5 李上森,于华.矿床地质研究的一些进展与问题[J].前寒武纪研究进展.1998,21(2):1~11.
    6 唐桂秋.古代锡矿今何在[J].湖南地质.1991,10(3):263~266.
    7 李朝阳.对当前矿床地球化学研究的一点认识[J].地球科学进展.1999,14(6):549~554.
    8 王学求.巨型矿床与大型矿集区勘查地球化学[J].矿床地质.2000,19(1):76~87.
    9 孙国曦,胡文瑄,朱东亚,等.超大型矿床的主要特征及研究进展[J].矿产与地质 2001,15(6):683~687.
    10 赵振华,刘秉光,李朝阳.我国与寻找超大型矿床有关的基础研究进展[J].地球科学进展.2001,16(2):184~188.
    11 Chappell B. W and White A. J. R. Two contrasting granite type [J]. Pacific Geology, 1974 (8):173~174.
    12 Ishihara S. The magnetite-seres and ilmenite-series granitic rocks [J]. Mining Geology, 1977(27):293~305.
    13 Loiselle M. C., Wones D. R. Characteristics and origin of anorogenic granites[J]. Abstr 92nd geol Soc Amer Meet, 1979. 11:468.
    14 Pitcher W. S. Granite type and tectonic environment, in: Hsu K J, ed. Mountain Building Presses, London: Academic Press, 1983, 19~40.
    15 徐克勤,胡受奚,孙明志等.论花岗岩的成因系列-以华南中生代花岗岩为例[J].地质学报,1983(2):107~118.
    16 Pearce J. A., Harris N. B. W., Tindle A. G. Trace discrimination diagrams for the tectonic interpretation of granitic rocks[J]. J. Petrol. 1984, 25 (4):956~983.
    17 Bowden R. A. B. Petrogeoetic interpretation of granitoid rock series using multicationic parameters[J]. Chem. Geol., 1985:43~55.
    18 Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46:605~626.
    19 王德滋,周金城.我国花岗岩研究的回顾与展望[J].岩石学报,1999,15(2):161~169.
    20 Defant M. J. and Drummond M. S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347:662~665.
    21 钱青.Adakite岩的地球化学特征及成因[J].岩石矿物学杂志[J].2001,20(3):297~306.
    22 张旗,王焰,刘伟,等.埃达克岩的特征及其意义[J].地质通报,2002,21(7):431~435.
    23 翟明国.埃达克岩和大陆下地壳重熔的花岗岩类[J].岩石学报,2004,20(2):193~194.
    24 Hutchinson R. W. Evidence of exhalative origin for Tasmanian tin deposit [J]. Trans, Canadian Ins. Min, Metall. 1979, 82:116~130.
    25 Plimer I. R. Exhalative Sn and W deposits associated with mafic volcanism as precursors to Sn and W associated with granites [J]. Mineralium Deposite, 1980,15:275~289.
    26 Mulligan R. Geology of Canadian tin occurrences [J]. Canade geol. Survey Econ. Geol. Rept. 1975, 28:155.
    27 Relvas J. M. R. S., Tassinari C. C. G., Munha J. et al. Mutiple sources for ore-forming fluids in the Neves Corvo VHMS Deposit of the Iberian Pyrite Belt (Portugal): strontium, eodymium and lead isotope evidence [J]. Mineraiium Deposita. 2001, 36:416~427.
    28 Linnen R. L. Depth of emplacement, Fluid provenance and metallogeny in granitic terranes: a comparison of western Thailand with other tin belts[J]. Mineralium Deposita], 1998.33:461~476.
    29 Jackson K. J. and Helgeson H. C. Chemical and thermodynamic constraints on the Hydrothermal transport and deposition of tin: Ⅰ. Calculation of the solubility ofcassiterite at high pressure and temperature [J]. Geochim. et Cosmochim. Acta, 1985, 49:1~22.
    30 Eugster H. P. Minerals in hot water [J]. Am. Mineralogist, 1986, 71, 655~673.
    31 Taylor J. R., Wall V. J. Cassiterite solubility, tin speciation, and transport in a magmatic aqueous phase [J]. Economic geology, 1993, 88:437~460.
    32 王涛.花岗岩研究与大陆动力学[J].地学前缘,2000,(7):137~146.
    33 Lehmann B., Dietrich A., Wallianos A. From rocks to ore[J]. International Journal of Earth Sciences. 2000, 89 (2):0284~0294
    34 Lehmann B., Ishihara S., Michel H., et al. The Bolivian Tin province and regional Tin distribution in the Central Andes: A Reassessment[J]. Economic geology, 1990, 85:1044~1058.
    35 Redwood S. D., Rice C. M. Petrogeoesis of Miocene basic shoshonitic lavas in the Bolivian Andes and implications for hydrothermai gold, sliver and tin deposits[J]. Journal of south American earth science. 1997,10 (3-4):203~221.
    36 Sillitoe R. H., Steele G. B., Thompson J. F. H., et al. Advanced argillic iithocaps in the Bolivian tin-silver belt [J]. Mineralium Deposita. 1998, 33:539~546.
    37 Wallianos A., Dietrich A., Lehmann B., et al. Trace element analyses of melt inclusions as probes for the evolution of Bolivian tin porphyry deposits [J]. Nuclear instruments and methods in physics research B. 1999,158:621~627.
    38 Edwards K. A. H., Macklin M. G., Miller J. R., et al. Sources, distribution and storage of heavy metals in the Rio Pilcomayo, Bolivia [J]. Journal of geochemical exploration. 2001, 72:229~250.
    39 Miuller B., Frischknecht R., Seward T. M., et al. A fluid inclusion reconnaissance study of the Huanuni tin deposit (Bolivia), using LA-ICP-MS mecro-analysis [J]. Mineralium Deposita. 2001,36:680~688.
    40 王德滋.刘昌实.沈渭洲.等.江西岩背斑岩锡矿区火山—侵入杂岩[J].南京大学学报.1993,29(4):638~650.
    41 Watanabe M., Nishido H., Hoshino K., et al. Metallogenic epochs in the inner zone of southwest Japan [J]. Ore geology reviews. 1998. 12:267~288.
    42 Barbarin B. Genesis of the two main types of peraluminous granitoids. Geology. 1996 (24):295~298.
    43 Sylvester P. J. Post-coilisional peraluminous granites [J]. Lithos, 1998, 45:29~44.
    44 Muzio R., Artur A. C. Petrological features of the Santa Teresa Granitic Complex Southeastern Uruguay[J]. Journal of South American Earth Sciences. 1999.12:501~510.
    45 廖忠礼,莫宣学,潘桂棠,等.过铝花岗岩的研究动向和进展-兼论西藏过铝花岗岩[J].沉积与特提斯地质,2004,24(2):22~29.
    46 邓晋福,赵海玲,赖绍聪,等.白云母/二云母花岗岩形成与陆内俯冲作用[J].地球科学,1993,19(2):139~147.
    47 李家和.个旧锡矿花岗岩特征及成因研究[J].云南地质,1985,4(4):327~350.
    48 Nabelek P., Bartlett C. D. Petrologic and geochemical links between the post-collisional Proterozoic Hamey Peak leucogranite, South Dakota, USA, and its source rocks [J]. Lithos, 1998, 45:71~85.
    49 Cox J., Searle M., Pedersen R. The petrogenesis of leucogranitie dykes intruding the northern Semail ophiolite, United Arab Emirates: field relationships, geochemistry and Sr/Nd isotope systematics [J]. Contrib Mineral Petrol, 1999, 137:267~287.
    50 Acosta A., Pereira M.. D., Shaw D. M. Influence of volatiles in the generation of crustal anatectie melts [J]. Journal of Geochemical Exploration. 2000, 69—70:339~342.
    51 Sharma K. K., Rashid S. A. Geochemical evolution of peraluminous paeoproterozoic bandal orthogneiss NW, Himalaya, Himachal Pradcsh, India: implications for the ancient crustal growth in the Himalaya [J]. Journal of Asian Earth Sciences, 2001, 19:413~428.
    52 Visona D., Lombardo B. Two-mica and tourmaline leucogranites from the Everest-Makalu region (Nepal-Tibet). Himalayan leucogranite genesis by isobaric heating? [J]. Lithos, 2002, 62:125~150.
    53 孙涛,周新民,陈培荣等.南岭东段中生代强过铝花岗岩成因及其大地构造意义,中国科学,2003,33(12):1209~1218.
    54 洪大卫.花岗岩研究的最新进展及发展趋势[J].地学前缘,1994,1(1):79~86.
    55 刘家远.华南前寒武纪花岗岩的构造演化、成因类型及与成矿的关系,安徽地质,1994,4(1-2):39~48.
    56 Schwartz M. O., Rajah S. S., Askury A. k., et al. The southeast Asian tin belt [J]. Earth-science review, 1995. 38:85~293.
    57 Hutchison, C. S. Geological evolution of southeast Asia. Clarendon, Oxford, 1989, 368 pp.
    58 Yokart B., Barr S. M., Jones A. E. W., et al. Late-stage alteration and tin tungsten mineralization in the Khuntan Batholith, northern Tailand [J]. Journal of Asian earth sciences. 2003.21:999~1018.
    59 Fan P. F. Accreted terranes and mineral deposits of lndochina[J]. Journal of Asian earth sciences. 2000, 18:343~350.
    60 郭福祥,廖良芬.滇西中新生代锡矿带与大地构造演化的关系[J].桂林冶金地质学院学报.1990,10(1):45~48.
    61 李光勋.滇西锡矿带区域控岩控矿构造和矿田构造浅析[J].云南地质,1989,8(1):11~23.
    62 Mattle P. Tectonics and plate tectonics model for the Variscan belt of Europe [J]. Tectonophysics, 1986, 126:329~374.
    63 Cuney M., Marignac C., Weisbrod A. The beauvoir topaz-lepidolite albite granite (Massif Centrai, France): the disseminated magmatie Sn-Li-Ta-Nb-Be Mineralization[J]. Economic geology, 1992, 87:1766~1794.
    64 Raimbault L., Cuney M., Azeneott C., et al. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at bcauvoir, French Massif Central[J]. Economic geology, 1995, 90:548~576.
    65 Marignac C., Cuney M. Ore deposits of the French Massif Central: insight into the metallogenesis of the Variscan collision belt[J]. Mineralium Deposita, 1999, 34:472~504.
    66 London D., Manning D. A. C. Chemical variation and significance of tourmaline from southwest England[J]. Economic geology, 1995, 90:495~519.
    67 郝立波,段国正,李殿超,等.大兴安岭锡多金属成矿带花岗岩地球化学特征[J].世界地质.1999,18(2):66~72.
    68 Maniar P. D., Piccoli P. M. Tectonic discrimination of granitoids [J]. Geol Soe Am Bull, 1989,101,635~648.
    69 Keller P., Robles E. R., Perez A. P., et al. Chemistry, paragenesis and significance of tourmaline in pegmatites of the Southern Tin Belt, central Namibia [J]. Chemical Geology. 1999, 158:203~225.
    70 Michael S. J., Mlynarczyk, Ross L. Sherlock, Anthony E. Williams-Jones. San Rafael, Peru: geology and structure of the worlds richest tin lode [J]. Mineralium Deposita. 2003, 38:555~567.
    71 Dostal J., Chatterjee A.K. Origin of topaz-bearing and related peraluminous granites of the Later Devonian Davis lake pluton, Nova Scotia, Cannada: crystal versus fluid fraetionation[J]. Chemical geology. 1995, 123:67~88.
    72 Halter W. E., Jones A. E. W., Kontak D. J. Modeling fluid-rock interaction during greisenization at the East Kemptville tin deposit: implications for mineralization[J]. Chemical geology. 1998.150:1~17.
    73 Sun S-S., Higgins N. C. Neodymium and strontium isotope study of the Blue Tier Batholith, NE Tasmania, and its bearing on the origin of tin-bearing alkali feldspar granites [J]. ore geology reviews. 1996, 10:339~365.
    74 马杏恒.论伸展构造[J].地球科学,1982,(30):15~22.
    75 刘和甫.伸展构造及其反转作用,地学前缘[J].1995,2(1-2):113~124.
    76 Quesada C. A reappraisal of structure of the Spanish segment of the Iberian Pyrite Belt[J]. Miner Deposita, 1998, 33:31~44.
    77 Mitjavila J., Marti J., Soriano C. Magmatic evlution and tectonic setting of the Iberian Pyrite Belt volcanism. J Petrol, 1997, 38:727~755.
    78 Benzaazoua M., Marion P., Bourgeois L. L., et al. Mineralogical distribution of some minor and trace dents during a laboratory flotation processing of Neves-Corvo ore (Portugal) [J]. International journal of mineral processing. 2002. 66:163~181.
    79 Thomas R., Webster J. D. Strong tin enrichment in a pegmatite-forming melt[J]. Mineralium eposita. 2000. 35:570~582
    80 隗合明.秦岭凤太矿田层控铅锌(铜)矿床的主要成矿特征及成矿模式[J].地质科学,1992,(3):225~235.
    81 薛春纪.秦岭泥盆纪热水沉积[M],西安:西安地图出版社,1997,1~134.
    82 方维萱,刘方杰,胡瑞忠,等.凤太泥盆纪拉分盆地中硅质铁白云岩-硅质岩特征及成岩成矿方式[J].岩石学报,2000a,16(4):700~710.
    83 方维萱,卢继英.陕西银硐子-大西沟菱铁银多金属矿床热水沉积岩相特征及成因[J].沉积学报,2000b,18(3):431~438.
    84 蒋少涌.加拿大Sullivan超大型Pb-Zn-Ag矿床中几个指示成矿环境的特征矿物研究[J],高校地质学报,2000,6(2):173~177.
    85 Mulligan R. Geology of Canadian tin occurrences[J]. Canada geol. Survey Econ. Geol. Rept. 1975, 28:155.
    86 韩发,沈建忠.大厂锡矿床硅、氧同位素地球化学[J].矿物学报.1994,14(2):172~180.
    87 Pas ava J., Kri bek B., Dobe s P., et al. Tin-polymetailic sulfide deposits in the eastern part of the Dachang tin field (South China) and the role of black shales in their origin [J]. Mineralium Deposita, 2003.38:39~66.
    88 周怀阳.论个旧-大厂地区火山喷气沉积—花岗岩热液叠加改造型锡石硫化物矿床的地质特点及成矿地质条件(博士论文).南京:南京大学,1988.
    89 Schwartz M. O., Surjono. The Strata-Bound Tin Deposit Narn Salu, Kelapa Kampit, Indonesia[J]. Econ. Geol. 1990, 85(1):76~98.
    90 Collins W. J., Beams. S. D., White A. J. R., et al. Nature and Origin of A-type granites with particular reference to south-eastern Australia[J]. Contr. Mineral. Petrol., 1982, 80:189~200.
    91 Whalen J. B., Carrie K. L., Chappell B. W. A type granite: geochemical characteristics, discrimination and petrogenesis [J]. Contr. Mineral. Petrol., 1987, 19:407~419.
    92 Eby G. N. The A-type granitoids: a review of their occurrence and chemic characteristics and speculations on their petrogenesis [J]. Lithos, 1990. (26):115~134.
    93 Eby G. N. Chemical subdivision of the A-type granitoids: Petrogenetie and tectonic implications [J]. Geology. 1992 (20):641~644.
    94 刘昌实,陈小明,陈培荣,等.A型岩套的分类、判别标志和成因[J].高校地质学报,2003,9(4):573~591.
    95 刘家远,喻亨祥,吴郭泉.新疆北部卡拉麦里富碱花岗岩带的碱性花岗岩与锡矿[J].有色金属矿产与勘查.1997,6(3):128~135.
    96 Botelho N. E, Moura M. A. Granite-ore deposit relationship in central Brazil [J]. Journal of south armerican earth sciences. 1998, 11(5):427~438.
    97 Pollard, P. J., Anderw, A. S., Taylor, R. G. Fluid inclusion and stable istope evidence for interaction between granites and magrnatie hydrothermal fluids during formation of disseminated and pipe-style mineralization at the Zaaiplaats tin mine[J]. Economic Geology, 1991, 86:121~141.
    98 McNaughton N. J., Pollard P. J., Groves D. T., et al. A long-lived hydrothermal system in bushvekd granites at the Zaaiplaats tin mine:lead isotope evidence [J]. Economic geology,1993, 88:27~43.
    99 Robert B. Trumbull. Tin mineralization in the Arehean Sinceni rare element pegmatite field, Kaapvaal Craton, Swaziland[J]. Economic geology. 1995, 90:648~657.
    100 Lehmarm B., Harmanto. Large-scale tin depletion in the Tanjungpandan tin granite, belittmg island, Indonesia[J]. Economic geology, 1990, 85:99~111.
    101 Einaudi M. T., Meinert L. D., Newberry R. T. Skarn deposits [J]. Econ. Geol., 1981, 75th Anniv., 317~319.
    102 许顺山,吴淦国,邓军.岩浆侵位机制研究综述[J].地质科技情报,1998,17(4):8~14.
    103 宋子新,钱祥麟.花岗岩成因机制研究综述[J].地质科技情报,1996,15(3):19~25.
    104 吴良士,邹廷铸.高湖岩体侵位机制及其对地球化学特征的影响[J].地质地球化学,1999,27(3):31~39.
    105 赖绍聪.岩浆作用的物理过程研究进展[J].地球科学进展,1999,14(2):153~158.
    106 Hutton D. H. W., Reavy R. J. Strike-slip tectonics and granite petrogenesis [J]. Tectonics, 1992, 11:960~967.
    107 Paterson S. R., Fowler T. K. Extensional pluton emplacement models: do they work for large plutonic complexes? [J]. Geology, 1993, 21:781~784.
    108 梁金城,冯佐海.桂东南南渡-莲塘花岗岩体的构造及侵位机制[J].桂林冶金地质学院学报,1994,14(3):222~232.
    109 Nardi L. V. S., Frantz J. C. The Cordilheira intrusive suite: Late Proterozoie peraluminous granitoids from southern Brazil [J]. Journal of South American Earth Sciences, 1995, 8(1):55~63.
    110 Searle M. P. Emplacement of Himalayan leucogranites by magma injection along giant sill complexes: examples from the Cho Oyu, Gyachung Kang and Everest leucogranites (Nepal Himalaya) [J]. Journal of Asian Earth Sciences, 1999,17:773~783.
    111 万天丰,Teyssier C.,曾华霖等.山东玲珑花岗质岩体侵位机制[J].中国科学,2000,30(4):337~334.
    112 Petford N., Kerr R. C., Lister J. R. Dike transport of granitoid magmas [J]. Geology, 1993, 21:845~848.
    113 吴良士.江西九瑞地区两种岩浆侵位类型及其成矿特征[J].矿床地质,1998,17(1):36~46.
    114 Norton D. L., Dutow B. L. Complex behavior of magma-hydrothermal processes: Role of supercritical fluid [J]. Geochimica et Cosmochimica Acta, 2001, 65(21):4009~4017.
    115 赵一鸣.环太平洋地区的夕卡岩矿床[J].矿床地质,1991,10(1):41~51.
    116 赵一鸣.矽卡岩矿床研究的某些重要新进展[J].矿床地质.2002.21(2):113~120.
    117 常印佛,刘学圭.关于层控式夕卡岩型矿床[J].矿床地质,1983,2(1):11~20.
    118 陈臻.铜山岭“层间矽卡岩型”多金属矿床成因探讨[J].矿床地质,1986,5(2):36~42.
    119 Das B. K. Occurrence of skarn rocks in Chaur area, Himalaya India[J]. Curr Sci, 1986, 55(4):182~185.
    120 崔彬.铜官山层控矽卡岩型铜矿床的蚀变分带及其成因[J].矿床地质,1987,6(1):35~44.
    121 Layne G. D., Spooner E. T. C. The skarn deposit, southern Yukon territory: Ⅰ. geology, paragenesis, and fluid inclusion microthermometry [J]. Economic geology, 1991, 86:29~47.
    122 赵一鸣.我国一些重要夕卡岩Pb-Zn多金属矿床的交代分带[J].矿床地质,1997,16(2):120~129.
    123 赵一鸣,林文蔚,毕承思,张轶男.中国含金夕卡岩矿床的分布和主要地质特征[J].矿床地质,1997,16(3):193~203.
    124 赵一鸣,张轶男,毕承思.含金夕卡岩矿床产出构造环境和地质地球化学评价标志[J].地学前缘(中国地质大学,北京).1999,6(1):181~193.
    125 赵一鸣,张轶男,林文蔚.我国夕卡岩矿床中的辉石和似辉石特征及其与金属矿化的关系[J].矿床地质,1997,16(4):318~329.
    126 赵一鸣,李大新,毕承思,董永观.我国含银矽卡岩矿床的分布和地质特征[J].矿床地质,2001,20(2):153~162.
    127 Naito K., Fukahori Y., Peiming H., et al. Oxygen and carbon isotope zonations of wall rocks around the Kamioka Pb-Zn skarn deposits, central Japan: application to prospecting [J]. Journal of Geochemical Exploration, 1995, 54:199~211.
    128 陈衍景,常兆山.中国夕卡岩型金矿床地质研究和勘查的进展与问题[J].有色金属矿产与勘查,1996,5(3):129~139.
    129 毛景文.超大型钨多金属矿床成矿特殊性-以湖南柿竹园矿床为例[J].地质科学,1997,32(3):351~363
    130 Vlad S. N. Calcic skarns and transversal zoning in the Banat mountains, Romania: indicators of an Andean-type setting[J]. Mineralium Deposita, 1997, 32:446~451.
    131 Ashley P.. M., Willott B. R. Zinc-lead skarn deposits at Leadviile, New South Wales, Australia, and their distinction from volcanic-hosted massive sulphides [J]. Mineralium Deposita, 1997, 32:16~33.
    132 Demange M., Berson F., Fonteilies M., et al. Wollastonite-garnet skarns ofDemir Tepe, Tahtakopru (province of Bursa, Turkey) [J]. Earth & planetary Sciences, 1998, 326:771~778.
    133 Lee C. H., Lee H. K., Kim S. J. Geochemistry and mineralization age of magnesian skarn-type iron deposits of the Janggun mine, Reoublic of Korea[J]. Mineralium Deoosita. 1998, 33:379~390.
    134 吴言昌,常印佛.关于岩浆矽卡岩问题[J].地学前缘,1998.5(4):291~301.
    135 杨斌,罗德宣,张起钻.试论大厂锡多金属矿田矿化蚀变分带特征[J].广西地质,1999,12(3):17~23.
    136 Thompson J. F. H., Sillitoe R. H., Baker T,, et al. Intrusion-related gold deposits associated with tungsten-tin provinces[J].Mineralium Deposita, 1999, 34:323~334.
    137 Nicolescu S., Cornell D. H. P-T conditions during skarn formation in the Ocna de Fier ore district, Romania [J]. Mineralium Deposita, 1999a, 34:730~742.
    138 Nicolescu S., Cornell D. H., Bojar A. V. Age and tectonic setting of BocsAa and Ocna de Fier-Dognecea granodiorites (southwest Romania) and of associated skarn mineralization [J]. Mineralium Deposita, 1999b, 34:743~753.
    139 Zhao Yiming, Zhang Yinan, Bi Chengsi. Geology of gold-bearing skarn deposits in the middle and lower Yangtze River Valley and adjacent regions [J]. Ore Geology Reviews, 1999, 14:227~249.
    140 Pan Yuanming, Dong Ping. The Lower Changjiang YangzirYangtze River metallogenic belt, east central China: intrusion-and wall rnck-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits [J]. Ore Geology Reviews, 1999, 15:177~242.
    141 Cartwright I., Buick I.S. Millimeter-scale variation in metamorphic permeability of mables during transient fluid flow: an example from the Reynolds Range, Central Austrilian[J]. Contrib Mineral petrol, 2000, 140:163~179.
    142 Xu G., Lin X. Geology and geochemistry of the Changlongshan skarn iron deposit, Anhui Province, China[J]. Ore Geology Reviews, 2000, 16:91~106.
    143 Amelia M., Logan V. Mineralogy and geochemistry of the Gualilan skarn deposit in the Precordillera of western Argentina[J]. Ore Geology Reviews, 2000, 17:113~138.
    144 Buick I. S., Cartwright I. Stable isotope constraints on the mechanism of fluid flow during contact metamorphism around the Marulan Batholith, NSW, Australia [J]. Journal of Geochemical Exploration, 2000, 69-70:291~295.
    145 罗小军.连龙西支沟矽卡岩型锡银多金属矿成矿作用及预测[J].矿物岩石地球化学通报,2000,19(4):391~392.
    146 马润则,魏显贵,肖渊甫.米仓山地区一种与超基性岩有关的矽卡岩[J].四川地质学报,2000,20(1):17~22.
    147 廖宗廷,马婷婷,李玉加.永平矿区层状矽卡岩的成因及成矿意义[J].同济大学学报,2001,29(11):1322~1326.
    148 王莉娟,岛崎英彦,王京彬,等.黄岗粱矽卡岩型铁锡矿床成矿流体及成矿作用[J].中国科学,2001,31(7):553~
    149 Wang Shiqi, Patrick J. Williams. Geochemistry and origin ofProterozoic skarns at the Mount Elliott Cu-Au (-Co-Ni) deposit, Cloncurry district, NW Queensland, Austrilian[J]. Mineralium Deposita, 2001, 36:109~124.
    150 Gilg H. A., Lima A., Somma R., et al. Isotope geochemistry and fluid inclusion study of skarns from Vesuvius[J]. Mineralogy and Petrology, 2001, 73:145~176.
    151 Singoyi B., Zaw K. A petrological and fluid inclusion study of magnetite-scheelite skarn mineralization at Kara, Northwestern Tasmania: implications for ore genesis [J]. Chemical Geology, 2001, 173:239~253.
    152 Somarin A. K., Moayyed M. Granite-and gabbrodiorite-associated skarn deposits of NW Iran [J]. Ore Geology Reviews, 2002, 20:127~138.
    153 Buick I. S., Cartwright I. Fractured-controlled fluid flow and metasomatism in the contact aureole of the Marulan Batholith (New South Wales, Australia)[J]. Contrib Mineral Petrol, 2002, 143:733~749.
    154 Dupont A., Auwera J. V, Pin C., et al. Trace element and isotope (Sr, Nd) geochemistry of porphyry-and skarn-mineralising Late Cretaceous intrusions from Banat, western South Carpathians, Romania[J]. Mineralium Deposita, 2002, 37:568~586.
    155 周涛发,袁峰,岳书仓,等.安徽月山矿田夕卡岩型矿床形成的水岩作用[J].矿床地质,2002,21(1):1~9.
    156 Partida E. G., Chavez A. C., Levresse G., et al. Genetic implications of fluid inclusions in skarn cheminey ore, Las Animas Zn-Pb-Ag (-F) deposit, Zimapan, Mexico [J]. Ore geology reviews. 2003.23:91~96.
    157 Figueroa D. M., Moreno M. V., Valencia V.A., et al. Major and trace element geochemistry and ~(40)Ar/~(39)Ar geochronology of Laramide plutonic rocks associated with gold-bearing Fe skarn deposits in Guerrero state, southern Mexico [J]. Journal of South American Earth Sciences, 2003, 16:205~217.
    158 Chiaradia M. Formation and evolution processes of the Salanfe W-Au-As-skarns (Aiguilles Rouges Massif, western Swiss Alps)[J]. Mineralium Deposita, 2003, 38:154~168.
    159 Baker T., Lang J. R. Reconciling fluid inclusion types, fluid processes, and fluid sources in skarns: an example from the Bismark Deposit, Mexico[J]. Mineralium Deposita, 2003, 38:474~495.
    160 南京大学地质学系.地球化学[M].北京:科学出版社,1979:197~309.
    161 [A]. [C]. 1955. 2. 335~456.
    162 [M]. 1982, 1~103.
    163 於崇文,蒋耀凇,肖正域.热液成矿分带的溶解-沉淀波结构[J].地球科学,1995,20(5):540~550.
    164 [A]. [C]. 1968, 220~300.
    165 [J]. 1980, 22(3):58~73.
    166 艾霞,冯建忠.内蒙大井银锡多金属矿床成矿地质特征及成因探讨[J].有色金属矿产与勘查.1992,5(4):284~292.
    167 张德全.大井银铜锡矿体-一个潜火山热液矿床的特征和成因[J].火山地质与矿产.1993,14(1):37~47.
    168 王国政.内蒙古大井-安乐锡矿稀土元素特征与成矿关系探讨[J].黑龙江地质.1999,10(4):24~31.
    169 王莉娟,王玉往,王京彬,等.大井矿床锡铜矿体成矿流体研究及其成因意义[J].岩石学报,2000,16(4):609~614.
    170 刘玉强.内蒙古毛登锡铜矿床地质及成因[J].矿床地质.1996,15(2):133~143.
    171 王国政.内蒙古安乐锡铜矿床地质特征及成因[J].矿床地质.1997,16(3):260~271.
    172 白大明,刘光海.浩布高铅锌铜锡矿床地物化综合找矿模式探讨[J].有色金属矿产与勘查.1996,5(6):361~367.
    173 毕承思,沈湘元,徐庆生,等.新疆贝勒库都克锡矿带含锡花岗岩地质特征[J].岩石矿物学杂志.1993,12(3):213~223.
    174 陈富文,李华芹,蔡红.新疆于梁子锡矿田成岩成矿作用同位素年代学研究及矿床成因探讨[J].矿床地质 1999,18(1):91~97.
    175 赵东林,杨家喜,胡能高,等.新疆东准噶尔老鸦泉含锡花岗岩体同位素年代学特征[J].西安工程学院学报 .2000,22(2):15~17.
    176 张文生.新疆锡矿化类型及成矿规律研究[J].新疆地质.1997,15(3):254~260.
    177 张子敏,马汉峰,蔡根庆.南天山独山锡矿床的成矿特征及成矿模式[J].新疆地质.2001,19(1):49~53.
    178 兰天佑,岳书仓.新疆喀孜别克锡矿床地质地球化学研究[J].合肥工业大学学报.1994,17(1):160~164.
    179 朱三光.锡矿地质研究进展及层控锡矿床实例[J].江苏地质科技情报.1989,(2):1~7.
    180 罗君烈.滇西锡矿的花岗岩类及其成矿作用,矿床地质[J].1991,10(1):81~96.
    181 李宗玉.丝光坪锡矿地质特征及矿床成因初探[J].地质与勘探,1991,27(11):23~27.
    182 张文源.滇西石缸河石英脉型锡矿床的成矿地质特征[J].有色金属矿产与勘查.1993,2(6):327~334.
    183 张文源.滇西铁厂锡矿床的成矿地质特征和成因探讨[J].有色金属矿产与勘查,1996,5(6):334~339.
    184 陆建军,朱金初,刘昌实.滇西云龙混合岩及其与锡矿化的关系[J].大地构造与成矿学.1989,13(3):264~275.
    185 于际民,蒋少涌,潘家永,等.滇西云龙锡矿流体包裹体及稳定同位素研究[J].矿物岩石地球化学通报,2001,20(4):373~375.
    186 夏志亮.腾冲大松坡云英岩型锡矿矿床地质[J].云南地质,2003,22(3):313~320.
    187 唐良栋.腾冲-粱河地区来利山锡矿床成因类型探讨[J].云南地质.1992,11(3):283~288.
    188 吕伯西,段建中,高子英,等.云南西盟佤山电英岩之研究[J].科学通报,1989,(23):1807~1810.
    189 管士平.川西若洛隆-措莫隆复式花岗岩体岩石学及其有关锡矿成矿的物理化学条件[J].特提斯地质.1999,3:58~72
    190 管士平,陈明.川西义敦措莫隆含锡花岗岩铁叶云母矿物学研究[J].沉积与特提斯地质.2001,21(1):50~62.
    191 叶韵琴.西藏类乌齐锡矿床锡石标型特征[J].矿物岩石.1990,10(4):48~56.
    192 申屠保勇,王增.藏东类乌齐赛北弄锡矿床地质特征及成因类型[J].矿物岩石.1991,11(4):74~82.
    193 向天秀,雍永源,贾保江.西藏赛北弄锡矿床锡石的成因矿物学研究[J].西藏地质.1992,(1):69~79.
    194 黄瑞华.中国东部大陆莫霍面形态与锡矿分布关系初探[J].地质与勘探.1991,27(4):14~18.
    195 韩发,R.W.哈钦森.大厂锡-多金属矿床热液喷气沉积成因的证据—容矿岩石的微量元素及稀土元素地球化学[J].矿床地质.1989,8(3):33~42.
    196 韩发,R.W.哈钦森.大厂锡多金属矿床喷气沉积成因的证据—矿床地质地球化学特征[J].矿床地质.1990,9(4):309~324.
    197 陈毓川,黄民智,徐钰,等.大厂锡石-硫化物多金属矿带地质特征及成矿系列[J].地质学报.1985,(3):228~240.
    198 叶俊,徐克勤,周怀阳,等.广西大厂锡矿田泥盆系蚀变海相火山岩[J].地质论评.1989,35(3):249~253.
    199 雷良奇,曾允浮.热水沉积和岩浆气液叠加与大厂超大型锡.多金属矿床[J].地球化学.1993,(3):252~260.
    200 叶绪孙,严云秀,何海洲.广西大厂超大型锡矿成矿条件与历史演化[J].地球化学.1999,28(3):213~221.
    201 宋焕斌.云南东南部都龙锡石—硫化物型矿床的成矿特征[J].矿床地质,1989,8(4):29~38.
    202 王学焜.麻栗坡新寨锡矿床地质地球化学特征[J].云南地质,1994,13(1):1~16.
    203 陈锦荣.郴县红旗岭锡矿床锡石的成因矿物学研究[J].湖南地质.1992,11(4):299~304.
    204 陈荣华,刘昌新,许世广.郴州市金船塘锡铋矿床地质特征及成矿规律探讨[J].湖南地质.1997,16(2):101~105.
    205 朱正书,徐克勤,朱金初.野鸡尾斑岩锡矿床的地质特征及找矿意义[J].地质找矿论丛.1990a,5(2):1~11.
    206 蔡锦辉,毛晓冬,蔡明海,等.湘南骑田岭白腊水锡矿床成矿地质特征[J].地质与勘探.2002,(2):54~59.
    207 毛景文,李红艳,B Guy,等.湖南柿竹园矽卡岩-云英岩型W-Sn-Mo-Bi矿床地质和成矿作用[J].矿床地质.1996,15(1):1~15.
    208 彭振安.界牌岭锡矿床蚀变矿化分带及其成因探讨[J].矿产与地质.1991,5(4):293~299.
    209 侯建强.宜章界牌岭锡多金属矿床地球化学异常模式[J].瑚南地质.1999,18(2.3):100~106.
    210 王京彬.湘源锡矿床的特征及其成因探讨[J].地质与勘探.1990,26(9):17~20.
    211 朱正书.江西会昌岩背锡矿床地质特征及矿床类型的划分[J].矿床地质.1990b,9(4):325~331.
    212 刘昌实,沈渭洲,熊小林,等.江西岩背斑岩锡矿区火山侵入杂岩稀土元素特征和成岩模拟[J].岩石矿物学杂志.1994,13(3):193~203.
    213 熊小林,朱金初,刘昌实,等.江西岩背斑岩锡矿蚀变分带及其主要蚀变岩的地球化学特征[J].矿床地质.1994,13(1):1~10.
    214 沈渭洲,王德滋,刘昌实,等.岩背斑岩锡矿特征和成因[J].高校地质学报.1996,2(1):85~91.
    215 徐贻赣,许建样,刘孔隆.会昌县淘锡坝锡矿地质特征、成因初探及找矿意义[J].江西地质.2001,15(2):119~124.
    216 邹佛连,周亮.江西会昌铜坑嶂锡铜矿矿床地质特征及成矿条件分析[J].江西地质.1992,6(4):289~298.
    217 曹汉生,曾学华.曾家垅含锡矿物特征及地质意义[J].江西地质.1994,8(3):190~194.
    218 李毅,杨佑.茅坪钨锡矿床基本地质特征[J].矿产与地质.1991,5(4):284~292.
    219 梅勇文.上湾隐伏锡矿床的预测和发现[J].地质与勘探.1992,28(7):1~7.
    220 宋慈安.广西长营岭钨锡矿床原生晕分带形成的动力学机制[J].桂林冶金地质学院学报.1991,11(4):404~415.
    221 钱建平,张力,董忠.广西珊瑚长营岭钨锡矿床矿液流向的确定及其意义[J].地质与勘探.1993,29(5):6~10.
    222 刘慷怀.广西珊瑚锡矿稀土元素的地球化学[J].桂林冶金地质学院学报.1990,10(3):251~260.
    223 刘文龙,袁奎荣.广西新路-水岩坝锡矿床的矿质来源与锡的萃取机制[J].桂林冶金地质学院学报.1989,9(3):283~291.
    224 董子成.广西簸箕岭花岗岩及其与六合坳锡矿床的关系[J].桂林冶金地质学院学报.1989,9(1):35~44.
    225 董子成.广西新路锡矿田的稀土元素地球化学特征[J].桂林冶金地质学院学报.1991,11(8):277~286.
    226 唐章焕.水溪庙花岗岩型锡矿床地质特征与成矿规律[J].西南矿产地质.1991,5(2):29~33.
    227 张达,吴淦国,陈柏林,等.福建龙岩中甲锡多金属矿床地质特征及成因机理[J].有色金属矿产与勘查.1999,8(3):129~135.
    228 姜耀辉,陈鹤年,陈三元.福建崇安-宁化地区金锡多金属成矿地球化学研究[J].火山地质与矿产.1995,16(3):44~54.
    229 王德滋,刘昌实,沈渭洲,等.浙江泰顺洋滨黄玉斑岩地球化学特征和成因[J].地球化学.1994,23(2):115~124.
    230 沈渭洲,刘昌实,闵茂中,等.浙江洋滨斑岩锡矿的同位素地质研究[J].矿床地质.1994,13(2):186~192.
    231 张慧敏.江苏吴县东山曹坞西氢化带锡矿物质成分研究及其意义[J].江苏地质.1994,18(2):114~118.
    232 胡祥昭.银岩含锡花岗斑岩的岩石学特征及成因探讨[J].地球化学.1989,(3):251~259.
    233 马秀娟.长埔锡矿床成矿流体性质与演化[J].地球学报.1995,(4):386~396.
    234 王文斌,谢华光.广东长埔-吉水门锡矿带某些成矿规律和矿床成因[J].矿床地质.1996,8(4):11~19.
    235 梁硬干.广东厚婆坳银锡铅锌矿床地球化学特征[J].广东有色金属地质.1993(2):21~29.
    236 陈炳辉.粤西锡坪云英岩型锡矿成矿特征和成矿机理[J].广东地质.1994,9(2):9~17.
    237 王德滋,陈绍海,刘昌实,等.粤东塌山含锡花岗斑岩原生铝质矿物特征和成因[J].矿物学报.1995,15(3):249~253.
    238 王会平.阳春锡山钨锡矿床地质特征及成因探讨[J].广东有色金属地质.1990,(2):25~33.
    239 吕继溶,钟盛文.江西赣南锡矿床地质特征与前景[J].南方冶金学院学报.1997,18(4):248~254.
    240 许以明,侯茂松,廖兴钰,等.郴州芙蓉矿田锡矿类型及找矿远景[J].湖南地质.2000,19(2):98~100.
    241 龚述清,黄革非,胡志科,等.大义山岩体东南部锡矿类型及找矿远景浅析[J],华南地质与矿产.2002,1:67~72.
    242 罗小亚,蒋希伟,魏绍六,等.湖南地区锡矿地质工作现状及其找矿思考[J].湖南地质.2001,20(4):303~308.
    243 魏绍六,曾钦旺,许以明,等.湖南骑田岭地区锡矿床特征及找矿前景[J].中国地质.2002,29(1):67~75.
    244 黄革非,龚述清,蒋希伟,等.湘南骑田岭锡矿成矿规律探讨[J].地质通报.2003,22(6):445~451.
    245 陈湘立,金艳辉.湘南地区内生锡矿床锡的赋存状态[J].地质与勘探.2003,39(4):46~49.
    246 施琳,唐良栋,赵珉,等.腾冲-梁河地区原生锡矿床类型及成矿机理[J].云南地质,1991,10(3):290~322.
    247 黄瑞玺.中国南方岩溶砂锡矿的分布[J].桂林冶金地质学院学报,1990,10(1):85~90.
    248 毛景文.锡在地球中初始富集与锡矿床成矿关系[J].河北地质学院院报.1991,14(1):47~60.
    249 税哲夫,朱立军,李明琴,等.滇桂东西向构造-成矿带九毛锡矿床成矿作用研究[J].云南地质,1988,7(2):160~173.
    250 朱征,唐嗣俊.广西九毛锡矿特征及成矿机理探讨[J].西南矿产地质.1991,5(3):19~26.
    251 陈毓川,毛景文,王平安.桂北地区金属矿床成矿历史演化程式[J].地质学报.1994,68(4):324~338.
    252 陈骏等.锡的地球化学[M].南京:南京大学出版社,2000.144~151.
    253 刘元镇,钟铿,马林清.广西锡矿成因类型及分布规律[J].广西地质.1984,创刊号,11~19.
    254 李立主.四川岔河锡矿床地质特征及找矿标志[J].云南地质.1984,3(1):59~71.
    255 谭榜平,张成江.四川岔河锡矿地质地球化学特征及成因分析[J].矿物岩石.2001,21(1):67~70.
    256 谢应雯,张玉泉.横断山区锡矿化花岗岩的地质特征及其REE地球化学初步研究[J].地球化学.1989,(4):287~303.
    257 周卫宁,傅金宝,许文渊,等.广西成锡花岗岩黑云母的标型特征[J].矿山地质.1989,(4):63~69.
    258 刘忠业.广东锡矿控矿条件与成矿规律[J].广东有色金属地质.1989,(2):1~5.
    259 杨世瑜.滇东南锡矿带成矿区矿床勘查模式探讨[J].地质论评.1989,35(3):262~270.
    260 杨世瑜.滇东南锡矿带矿床类型及其组合特征[J].矿床地质.1990,9(1):35~48.
    261 刘文龙,袁奎荣.广西平桂地区隐伏花岗岩预测及深部找矿[J].桂林冶金地质学院学报.1990,10(4):329~337.
    262 游建胜.广西新路锡矿田地洼花岗岩与脉岩的地质地球化学特征[J].大地构造与成矿学.1990,15(3):187~198.
    263 黄海波.广西都庞岭花岗岩体基本特征[J].中国区域地质.1990,(3):231~236.
    264 郑跃鹏.含锡花岗岩类包裹体特征及其在岩体成矿性评价中的应用[J].矿产与地质.1991,5(4):306~310.
    265 官容生.滇东南构造岩浆带花岗岩体的含矿性探讨[J].矿物岩石,1991,11(1):92~11.
    266 干国粱,陈志雄.广西都庞岭地区锡矿床锡石主要、微量及稀土元素的组成特点及赋存状态[J].矿物学报.1992,12(1):58~68.
    267 蔡宏渊.稀土元素地球化学在锡矿床成因及找矿研究中的应用[J].矿产与地质.1991,5(4):262~271.
    268 蔡宏渊.中国锡矿床的稀土元素地球化学特征[J].矿产与地质.1995,9(4):227~233.
    269 罗君烈.滇东南锡、钨、铅锌、银矿床的成矿模式[J].云南地质.1995,14(4):319~332.
    270 陈子龙,曾骥良.与超大型锡矿床相关的花岗岩熔融实验结果及其成矿学意义[J].大地构造与成矿学.1995,19(3):248~257.
    271 黄民智,原森民.广西丹池锡多金属成矿带的带状分布及演化模型[J].现代地质.1995,9(4):488~494.
    272 谢华光,李文达,毛建仁,等.赣南.粤西中生代岩浆杂岩与W、Sn、Nb、Ta的成矿[J].火山地质与矿产.1996,17(3-4):51~61.
    273 朱立军.广西九毛锡矿床矿物包裹体及成矿机理研究[J].贵州工学院学报.1989,18(3):52~59.
    274 朱立军.广西九毛锡矿超基性岩中锡石成因矿物学研究[J].矿物岩石.1989,9(4):14~21.
    275 李标楚.苏州地区铁矿床中的锡矿化特征及其成因初探[J].江苏地质.1990,(3):15~20.
    276 毛景文,李红艳,B.Guy,L.Raimbault.湖南柿竹园矽卡岩-云英岩型W-Sn-Mo-Bi矿床地质和成矿作用[J].矿床地质.1996,15(1):1~15.
    277 张志信,肖景霞.我国锡矿的成矿地质特征及成矿远景区划浅析[J].云南地质.1984,3(1):1~10.
    278 史清琴.滇东南锡石硫化物矿床的成矿规律[J].云南地质.1984,3(2):159~164.
    279 罗君烈.对云南区域成矿的几点认识[J].云南地质.1984,3(2):109~112.
    280 杨世瑜.试论云南锡矿床控矿构造类型[J].云南地质.1987,6(3):227~240.
    281 范成均.云南锡矿带之划分及其区域成矿地质特点[J].云南地质.1988,7(1):1~12.
    282 王义昭,熊家镛,林尧明.云南地质构造的若干特点[J].云南地质.1988,7(2):105~110.
    283 戴福盛.个旧西矿区构造体系的成生发展及控矿特征[J].矿产与地质,1990a(2):35~42.
    284 彭程电,王任重.个旧超大型锡铜多金属矿床区域地学背景研究[J].西南矿产地质.1996,(1-2):1~5.
    285 方维萱,胡瑞忠,高振敏.扬子地块南缘及邻区大陆动力成矿系统、成矿系列特征与找矿方向[J].矿物学报,2001,21(4):561~570.
    286 方维萱,胡瑞忠,谢桂青,等.云南哀牢山地区构造岩石地层单元及其构造演化[J].大地构造与成矿学,2002,26(1):337~344.
    287 冯贤仁.个旧含锡花岗岩副矿物类型、成因及其与矿化关系问题[J].云南地质.1982,1(2):129~133.
    288 汪志芬.关于个旧锡矿成矿作用的几个问题[J].地质学报.1983,57(2):154~163.
    289 陈吉琛,施琳,谢蕴宏.云南S型和I型两类花岗岩划分对比的初步探讨[J].云南地质,1983,2(1):28~37.
    290 黄福生等.个旧锡矿花岗岩的氢氧同位素稳定同位索研究[J].岩石矿物及测试,1983(4):241~246.
    291 伍勤生,许俊珍,杨志.个旧含锡花岗岩的Sr同位素特征及找矿标志的研究[J].地球化学,1984,(4):293~302.
    292 戴福盛.个旧锡矿区两个成岩系列的演化[J].岩石矿物学杂志,1990b,9(3):224~233.
    293 官容生.滇东南构造岩浆带花岗岩体的含矿性探讨[J].矿物岩石.1991,11(1):92~11.
    294 王新光,朱金初,沈渭洲.个旧锡矿的成矿物质来源[J].桂林冶金地质学院学报.1992,12(2):164~170.
    295 杨世瑜,颜以彬.云南的锡矿床与花岗岩类在时空分布上的关系[J].云南地质.1994,13(2):149~157.
    296 徐云端,李玉新.个旧矿区发现一种富锡矿类型—花岗岩锡矿体[J].1997,矿产与地质,11(58):99~102.
    297 崔勇.云锡卡房18-2号花岗岩含锡矿床地质特征与矿床成因研究及找矿方向[J].矿产与地质.2000,14(3):175~177.
    298 赵一鸣,李大新.云南个旧锡矿花岗岩接触带的交代现象[J].中国地质科学院院报,1987,237~252.
    299 Zhao Yiming, LiDaxin. Mineralization and alteration zoning in the Gejiu tin orefield, Yunnan, China[J]. Scientia Geologica Sinica, 1995,4(2):179~192.
    300 黄廷然.个旧原生锡矿典型矿床概论[J].云南地质.1984,3(1):36~46.
    301 康玉廷.云南锡矿微量元素地球化学特征[J].云南地质.1984,3(2):131~140.
    302 肖景霞,钟立志.个旧老厂锡铍多金属细脉带矿床地质特征及成矿富集规律[J].云南地质.1988,7(3):272~282.
    303 江祝伟,周大鹏.个旧松树脚矿田6号东锡矿床的矿液运移特征[J].地质学报.1989,63(2):159~168.
    304 杨坪,刘新华.个旧东区矽卡岩型铜、锡矿床地质特征及分布规律[J].西南矿产地质.1991,5(3):13~18.
    305 刘新华.云南个旧老厂塘子凹矿段接触带铜锡矿床地质特征[J].西南矿产地质.1993,3:16~25.
    306 魏明秀.我国个旧夕卡岩型锡矿床的地质-地球化学研究[J].地球化学.1993,(2),146~154.
    307 毛义坤.个旧砂锡矿床的控矿地质条件及其工业类型划分[J].云锡科技.1994,21(3):15~18.
    308 庄永秋,王任重,扬树培,等.云南个旧锡铜多金属矿床[M].北京:地震出版社,1996,1~145.
    309 Jiang Zhuwei, Nicholas H. S. O., Barr T. D., et al. Numerical modeling of fault-controlled fluid flow in the genesis of Tin deposits of the Malage ore field, Gejiu mining district, China[J]. Economic geology, 1997, 29:228~247.
    310 段永生.个旧矿区老厂矿田矽卡岩型铜锡多金属矿床地质特征及找矿方向[J].云南地质科技情报,1997,(2):12~17.
    311 邓贵安.老厂花岗岩破碎带型锡矿床地质地球化学特征[J].矿产与地质.1998,12(4):230~236.
    312 李石锦.云南个旧矿区富锡、铜矿体成矿学浅析[J].大地构造与成矿学.1998,22(2):148~155.
    313 王雅丽,李磊.个旧老厂细脉型锡矿床微量元素的多元统计分析[J].云南地质.1997,16(1):76~84.
    314 王雅丽,李磊.个旧老厂细脉型锡矿床包裹体地球化学特征研究[J].云南地质.1999,18(1):36~46.
    315 周建平,徐克勤,华仁民,等.滇东南锡多金属矿床成因商榷[J].云南地质.1997,16(4):309~349.
    316 周建平,徐克勤,华仁民,等.个旧等锡矿中沉积组构的发现与矿床成因新探[J].自然科学进展.1999,9(5):419~412.
    317 武俊德.竹林接触带矿床地质特征及找矿预测[J].矿产与地质.2000,14(3):185~187.
    318 秦德先,田毓龙,朱大明,等.个旧锡矿33号群地质特征与其外围找矿方向[J].矿物学报,2001,21(4):591~595.
    319 马振飞,陈图宏.云南个旧塘子凹锡多金属矿床地质特征[J].矿物学报,2001,21(4):578~584.
    320 谈树成,高建国,晏建国,等.云南个旧矿区南部矿床原生晕垂直分带研究-以龙树脚矿段为例[J].矿物学报,2001,21(4):591~595.
    321 陶琰,马德云,高振敏.个旧锡矿成矿热液活动的微量元素地球化学指示[J].地质地球化学,2002a,30(2):34~39.
    322 贾润幸,方维萱,赫英,等.云南个旧塘子凹锡多金属矿床微量元素地球化学特征[J].矿物学报,2004,24(2):136~142.
    323 Jia Runxing, Fang Weixuan, HeYing, et al. Geochemical Characteristics of Rare Earth Elements in Gejiu Tin Polymetallie Deposits, Yunnan Province, China[J]. Journal of Rare Earths, 2004. 22 (5) 714~720.
    324 於崇文,唐元骏,石平方,等.云南个旧锡-多金属成矿区内生成矿作用的动力学体系[M].武汉:中国地质大学出版社,1988:1~394.
    325 於崇文,蒋耀松.云南个旧成矿区锡石.硫化物矿床原生金属分带形成的动力学机制[J].地质学报.1990,64(3):226~237.
    326 唐尚淘,尹金明.个旧锡矿勘探的数学模型[J].有色金属矿产与勘查.1994,3(2):109~116.
    327 熊光楚,石盛藤.个旧锡矿区物理-地质模型及应用效果[J].地质论评.1994,40(1):19~27.
    328 彭程电.试论个旧锡矿成矿地质条件及矿床类型、模式[J].云南地质.1985,4(1):18~32.
    329 朱金初,王新光,殷成玉.个旧锡矿区不同岩石中锡的富集特征及成矿模式[J].地质找矿论丛.1991,6(2):11~17.
    330 罗君烈.滇东南锡、钨、铅锌、银矿床的成矿模式[J].云南地质,1995,14(4):319~332.
    331 郑庆鳌,杨涤生.云南个旧锡多金属矿成矿演化与成矿模式[J].有色金属矿产与勘查.1997,6(2):82~87.
    332 周怀阳.论个旧-大厂地区火山喷气沉积-花岗岩热液叠加改造型锡石硫化物矿床的地质特点及成矿地质条件(博士论文).南京:南京大学,1988.
    333 金祖德.个旧层间赤铁矿型锡矿热液成因之否定[J].地质与勘探,1991,295:19~20.
    334 彭张翔.个旧锡矿成矿模式商榷[J].云南地质,1992,11(4):362~368.
    335 李希勣,杨庄,施琳等.中国锡矿床,见《中国矿床》委员会,中国矿床[M],中册.北京:地质出版社,1993,105~188.
    336 张欢,高振敏,马德云,等.个旧锡矿区鲕状黄铁矿和胶状结构黄铁矿中锡的分布及其成因意义[J].矿物学报,2004,24(1):87~91.
    337 涂光炽.我国西南地区两个别具—格的成矿带(域)[J].矿物岩石地球化学通报,2002,21(1):1~2.
    338 方维萱.陕西凤县铅硐山大型铅锌矿床矿物地球化学研究[J].矿物学报,1999,19(2):198~205
    339 蔡称心,黄翠虹.化学振荡反应[J].南京师大学报,1999,22(3):43~45.
    340 李明诚,李剑,万玉金,等.沉积盆地中的流体[J].石油学报,2001,22(4):13~17.
    341 王中刚,于学元,赵振华.稀土元素地球化学[J].北京:科学出版社,1989,349~353.
    342 Sun. S. S., McDonough W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A D, Norry M J. magamatism in the ocean Basins. [C]. London: Geological Society Special Publication, 1989, 313~345.
    343 邱家骧.岩浆岩岩石学[M].北京:地质出版社,1985,208.
    344 Lebas M. J. IUJS reclassification of the High-Mg and pocritic volcanic rocks [J]. J Petrol, 2000, 41(10):1467~1470.
    345 张招崇,王福生.一种判别原始岩浆的方法-以苦橄岩和碱性玄武岩为例[J].吉林大学学报,2003,33(2):130~134.
    346 董云鹏,朱炳泉,常向阳,等.滇东师宗.弥勒带北段基性火山岩地球化学及其对华南大陆构造格局的制约[J].岩石学报.2002,18(1):37~46.
    347 邓晋福,罗照华,苏尚国等.岩石成因、构造环境与成矿作用[M].北京:地质出版社,2004:85~129.
    348 潘兆橹,赵爱醒,潘铁虹.结晶学及矿物学(下册)[M].北京:地质出版社,1993,118~176.
    349 杜乐天.地幔流体与玄武岩及碱性岩岩浆成因[J].地学前缘(中国地质大学,北京),1998,5(3):145~156.
    350 石林,解广轰,夏斌.地幔端元组分的微量元素地球化学研究综述[J].地质地球化学,1998,26(2):77~82.
    351 Condie K. C. Geochemical changes in basalts snd andesies across the Archaean-Proterozoic boundary:identification and signficance[J]. Lithos, 1989, 23:1~18.
    352 赵字,张传林,郭坤一,等.西昆仑山东段石炭纪火山岩岩石地球化学特征及其形成的构造背景[J].火山地质与矿产,2001,22(3):186~192.
    353 赵振华,增田彰正,ShabaniMB.稀有金属花岗岩的稀土元素四分组效应.地球化学,1992,(3):221~233.
    354 赵振华,熊小林,韩小东.花岗岩稀土元素四分组效应形成机理探讨-以千里山和巴尔哲花岗岩为例[J].中国科学,D辑,1999,29(4):331~338.
    355 周新民.对华南花岗岩研究的若干思考[J].高校地质学报,2003,9(4):556~565.
    356 C.B.格里戈良,An索洛沃夫,M库津.苏联固体矿产化探规范[M].北京:地质矿产部情报研究所出版,1985,87.
    357 赵琦.原生晕垂直分带的元素比重指数计算法[J].物探与化探,1989(2):157~159.
    358 邱德同.确定矿床原生晕指示元素分带序列的新方法[J].地质与勘探,1989(8):51~53.
    359 解庆林.浓集指数法确定矿床原生晕元素轴向分带序列[J].地质与勘探,1992(6):55.
    360 李扬,邱德同,李峻峰.确定金矿床元素分带序列的新方法[J].地质与勘探,1993(12):47~48.
    361 朴寿成,连长云.一种确定原生晕分带序列的新方法—重心法[J].地质与勘探,1994(1):63~65.
    362 李惠,张文华,刘宝林,等.中国主要类型金矿床的原生晕轴向分带序列研究及其应用准则[J].地质与勘探,1999,35(1):33~35.
    363 李厚民,孙继东,沈远超,等.东昆仑五龙沟金矿床口矿段原生晕特征及模式[J].地质地球化学,2001,29(3):109~116.
    364 刘崇民,李应桂.岩浆熔离型Cu-Ni硫化物矿床元素组合和地球化学评价指标[J].地质与勘探,2001,37(5):6~9,
    365 黄转莹,路润安.陕西省风县铅硐山大型铅锌矿床原生异常分带及分带指数[J].地质与勘探,2003,39(3):39~44.
    366 方维萱.陕西凤太多金属矿床成矿成晕模式及地质地球化学预测系统[J].阮天健,吴昌荣,朱有光.第四界勘查地球化学学术讨论会论文选编[C].武汉:中国地质大学出版社,1991:49~55.
    367 Ethier V. G., Campell F. A. Tourmaline concentrations in Proterozoic sediments of the southern Cordillera of Canada and their economic significance[J]. Can J Earth Sci. 1977, 14:2348~2363.
    368 Henry D. J., Guidotti C. V. Tourmaling as a petroganetie indicator mineral: an example form the staurolite-grade metapelites of NW Malne[J]. Am mineral, 1985, 70:1~15.
    369 毛景文,陈毓川,陈晴勋,等.中国桂北地区两类电英岩及其对成矿环境的指示[J].岩石矿物学杂志.1990,9(4):289~299.
    370 Slack J. F., Palmer M. R., Stevens B. P. J. et al. Origin and significance of tourmaline-rich rocks in the Broken Hill district, Australia[J]. Economic geology, 1993, 88:505~541.
    371 Rozendaal A., Bruwer L. Tourmaline nodules: indicators of hydrothermal alteration and Sn-Zn-(W) mineralization in the Cape Granite suite, South Africa[J]. Journal of African earth sciences. 1995,21(1):141~155.
    372 Smith M. P., Yardley B. W. D. The boron isotopic composition of tourmaline as a guide to fluid processes in the southwestern England orefield: An ion microprobe study [J]. Geochimica et Cosmochinica Acta, 1996, 60 (8):1415~1427.
    373 Deb M., Tiwary A., Palmer M. R. Tourmaline in Proterozoic Massive Sulfide Deposits from Rajasthan, India[J]. Mineralium Deposita. 1997, 32:94~99.
    374 Pesquera A., Velasco F. Mineralogy, geochemistry and geological significance of tourmaline-rich rocks from the Paleozoic Cinco Villas massif(western Pyrenees, Spain) [J]. Contrib Mineral Petrol. 1997, 129:53~74.
    375 Wolf M. B., London D. Boron in granitic magmas: stability of tourmaline in equilibrium with biotite and cordierite [J]. Contrib Mineral Petrol,1997, 130:12~30.
    376 薛春纪,蒋少涌,李延河.东秦岭泥盆纪山阳-柞水成矿区电气石矿物化学和硼同位素组成[J].地球化学,1997,26(1):36~44.
    377 Jiang S. Y., Palmer M. R., Peng Qiming, et al. Chemical and stable isotopic compositions of Proterozoic metamorphosed evaporites and associated tourmalines from the Houxianyu borate deposit, eastern Liaoning, China [J]. Chemical Geology, 1997, 135:189~211.
    378 Jiang S. Y., Hart Fa, Shen Jianzhong, et al. Chemical and Rb-Sr, Sm-Nd isotopic systematics of tourmaline from the Dachang Sn-polymetallie ore deposit, Guangxi Province, P.R.China[J]. Chemical geology. 1999. 157:49~67.
    379 Jiang S. Y. Boron Isotope geochemistry ofhydrotbermal ore depositd in China: A preliminary study [J]. Phys. Chem. Earth (A), 2001, 26 (9-10):851~858.
    380 Anani C. Sandstone petrology and provenance of the Neoproterozoie Voltaian Group in the southeastern Voltaian Basin, Ghana [J]. Sedimentary Geology, 1999, 128:83~98.
    381 Trumbull R. B., Chaussidon M. Chemical and boron isotopic composition ofmagmatie and hydrothermal tourmalines from the Sinceni granite-pegmatite system in Swaziland[J].Chemical Geology. 1999, 153:125~137.
    382 Lehmann B., Dietrich A., Heinhorst J., et al. Boron in the Bolivian tin belt[J]. Mineralium Deposita, 2000, 35:223~232.
    383 Harraz H. Z., Sharkawy M. F. S. Origin of tourmaline in the metamorphosed Sikait pelitic belt, south Eastern Desert, Egypt[J]. Journal of African Earth Sciences.2001, 33(2):391~416.
    384 张辉.岩浆-热液过渡阶段体系中不相溶元素地球化学及其机制-以新疆阿尔泰3号伟晶岩脉研究为例.中国科学院博士学位研究生学位论文,2001,43~96.
    385 Deksissa D. J., Koeberl C. Geochemistry and petrography of gold-quartz-tourmaline veins of the Okote area, southern Ethiopia: implications for gold emploration [J]. Mineralogy and Petrology. 2002, 75:101~122.
    386 Ertl A., Hughes J. M. The crystal structure of an aluminum-rich schorl overgrown by boron-rich olenite from Koralpe, Styria, Austria[J]. Mineralogy and petrology, 2002, 75:69~78.
    387 Kawakami T., Ikeda T. Boron in metapelites controlled by the breakdown of tourmaline and retrograde formation of borosilicates in the Yanai area, Ryoke metamorphic belt, SW Japan [J]. Contrib Mineral Petrol. 2003, 145:131~150.
    388 Yu J. M., Jiang S. Y. Chemical compositions of tourmaline from the Yuniong tin deposit, Yunnan, China: implications for ore genesis and mineral exploration [J]. Mineralogy and petrology, 2003, 77:67~84.
    389 Deer, W. A., HoWie, R. A., Zussman. J. Rock-Forming Minerals, 1982 vol. 1A: Orthosilicates, Longman, New York, 2nd ed., 919.
    390 梁祥济.钙铝-钙铁系列石榴子石的特征及其交代机理,岩石矿物学杂志,1994,13(4):342-351.
    391 刘树文,沈其韩,耿元生.冀西北两类石榴基性麻粒岩的变质演化及Gibbs方法分析[J].岩石学报,1996,12(2):261~275.
    392 郭敬辉,翟明国,李永刚,等.恒山西段石榴石角闪岩和麻粒岩的变质作用、PT轨迹及构造意义[J].地质科学.1997,34(3):311~325.
    393 卢良兆,靳是琴,胡大干,等.同化集安群石榴子石和黑云母微区化学成分特征及其对变质作用P-T-t轨迹的指示意义[J].矿物学报.1998,18(1):1~11.
    394 张宏福,M.A.Menzies,周新华,等.石榴石的成分环带与地幔交代及变形作用[J].科学通报.1999,44(22):2437~2444.
    395 张泽明,杨勇,张建新.阿尔金西段榴辉岩中石榴石的成分环带及其动力学意义[J].科学通报.1999,44(16):1769~1773.
    396 赵明,王赐银.东疆哈尔里克变质带中石榴子石的特征[J].高校地质学报.2000,6(2):215~219.
    397 尹京武,李铉具,崔庆国,等.湖南省柿竹园矽卡岩矿床中石榴石特征[J].地球科学.2000,25(2):163~171.
    398 肖成东,刘学武.东蒙地区夕卡岩石榴石稀土元素地球化学及其成因[J].中国地质.2002,29(3):311~316.
    399 张建新,孟繁聪,戚学祥.柴达木盆地北缘大柴旦和锡铁山榴辉岩中石榴子石环带对比及地质意义[J].地质通报.2002,21(3):123~129.
    400 陆琦,刘惠芳.柿竹园多金属矿床的分形时.空结构—以矽卡岩矿物中Sn等成矿元素分布特征为例[J].地球科学,2001,26(2):123~128.
    401 高学民,林振宏,刘兰,等.冲绳海槽中部表层沉积物的成因矿物学研究[J].青岛海洋大学学报,2002,30(1):165~172.
    402 陈能松,孙敏,杨勇,等.变质石榴石的成分环带与变质过程[J].地学前缘,2003,10(3):315~320.
    403 王汝成,胡欢,张爱城,等.西华山花岗岩中石榴子石的钇环带构造及其岩石学意义[J].科学通报.2003,48(8):869~873
    404 Lasagea A. C., Richardson S. M., Holland H. D. The mathatics of action diffusion snd exchange between silicate minerals during retrograde metamorphism[A]. Engergetie of geological processes[C]. New York, Heideberg, Berlin: Verlag, 1977, 353~386.
    405 Lasagea A. C. The treatment of multicompnent diffusion and ion-pairs in diagenetic fluxes [J]. Amer J Sei, 1979, 279:324~346.
    406 Spear F. S. Metamorphic fractional crystallation and internal metasomatism by diffusional homogenization of zoned gamets[J]. Comtrib Mined Petrol, 1988, 99:507~517.
    407 Takeuchi M. Changes in garnet chemistry show a progressive denudation of the source areas for Permian-Jurassic sandstones, Southern Kitakami Terrane, Japan [J]. Sedimentary, geology, 1994, 93:85~105.
    408 Santos de lima E., Vannucci R., Bottazzi P., et al. Reconnaissance study of trace element zonation in garnet from the Central Structural Domain, Northeastern Brazil: an example of polymetamorphic growth [J]. Journal of South American Earth Sciences, 1995, 8(3-4):315~324.
    409 Lanzirotti A. Yttrium zoning in metamorphic garnets [J]. Geochimica et Cosmoehimica Aeta. 1995, 59(19):4105-4110.
    410 Aitherr R., Kalt A. Metamorphic evolution of ultrahigh-pressure garnet peridotites from the Variscan Vosges Mts. (France) [J]. Chemical Geology, 1996, 134:27~47.
    411 Dunai T. J., Roselieb K. Sorption and diffusion of helium in garnet: implications for volatile tracing and dating [J]. Earth and Planetary Science Letters, 1996, 139:411~421.
    412 Alcock J. Effect of grossular on garnet-biotite, Fe-Mg exchange reactions: evidence from garnet with mixed growth and diffusion zoning[J]. Contrib Mineral Petrol. 1996, 124:209~215.
    413 O'Brien P. J. Garnet zoning and reaction textures in overprinted eclogites, Bohemian Massif, European Variscides: A record of their thermal history during exhumation [J]. Lithos, 1997, 41:119~133.
    414 Reinhardt J. Thermobarometry and P-T path ofgarnet-aluminosilieate-bearing gneisses from the KTB drill core (Continental Deep-Drilling Project, Germany) [J]. Geol Rundsch. 1997, Suppl.:S167~S183.
    415 Becker H. Petrological constraints on the cooling history of high-temperature garnet peridotite massifs in lower Austria [J]. Contrib Mineral Petrol. 1997, 128:272~286.
    416 Marco R., Alessandro B., Roberto C. Thermodynamic analysis of garnet growth zoning in eclogite facies granodiorite from M. Mucrone, Sesia Zone, Western Italian Alps [J]. Contrib Mineral Petrol. 1999,137:289~303.
    417 Argles T. W., Prince C. I., Foster G. L., Vance D. New garnets for old? Cautionary tales from young mountain belts [J]. Earth and Planetary Science Letters, 1999, 172:301~309.
    418 Glaser S. M., Foley S. F. Detlef Gunther. Trace element compositions of minerals in garnet and spinel peridotite xenoliths from the Vitim volcanic field, Transbaikalia, eastern Siberia [J]. Lithos, 1999, 48:263~285.
    419 Ganguly J., Dasgupta S., Cheng Weiji, et al. Exhumation history of a section of the Sikkim Himalayas, India: records in the metamorphic mineral equilibria and compositional zoning of garnet[J]. Earth and Planetary Science Letters, 2000, 183:471~486.
    420 Estrada J. R. Homogenization of high-T garnets during deformation, fluid flow and metasomatism Catalonian Coastal Ranges, NE Iberian Peninsula [J]. Journal of Geochemical Exploration, 2000, 69-70:557~560.
    421 Green T. H., Blundy J. D., Adam J., et al. SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2-7.5 GPa and 1080-1200□ [J]. Lithos, 2000, 53:165~187.
    422 Me Cammon C. A., Griffin W. L., Shee S. R., et al. Oxidation during metasomatism in ultramafic xenoliths from the wesselton kimberlite, South Africa: implications for the survival of diamond [J]. Contrib Mineral Petrol. 2001, 141:287~296.
    423 Sautter V., Duchene S., Marques F. O. New analytical and numerical geospeedometers tested on garnet pyroxenites from Braganca Nappe Complex (NE Portugal) [J]. Tectonophysics, 2001, 342:39~59.
    424 Borghi A., Cossio R., Mazzoli C. A mineralogical application of micro-PIXE technique: Yttrium zoning in garnet from metamorphic rocks and its petrologic meaning [J]. Nuclear Instruments and Methods in Physics Research B, 2001,189:412~417.
    425 Borghi A., Cossio R., Olmi F., et al. EPMA major and trace elements analysis in garnet and its petrological application[J]. Mikrochim. Acta,2002, 139:17~25.
    426 Thoni M. Sm-Nd isotope systematics in garnet from different iithologies (Eastern Alps): age results, and an evaluation of potential problems for garnet Sm-Nd chronometry [J]. Chem. Geol, 2002, 185:255~281.
    427 Fernando G. W. A. g., Hauzenberger C. A., Baumgartner L. P., et al. Modeling of retrograde diffusion zoning in garnet: evidence for slow cooling of granulites from the Highland Complex of Sri Lanka[J]. Mineralogy and Petrology. 2003, 78:53~71.
    428 Zhang H. F., Menzies M. A., Mattey D. Mixed mantle provenance: diverse garnet compositions in polymict peridotites, Kaapvaal craton, South Africa [J]. Earth and Planetary Science Letters, 2003, 216:329~346.
    429 Derridj A., Ouzegane K., Kienast J. R., et al. P-T-X evolution in garnet pyroxenites from Tin Begane (Central Hoggar, Algeria) [J]. Journal of African Earth Sciences, 2003, 37:257~268.
    430 Zhang P,. Y., Zhai S. M., Fei Y. W., et al. Titanium solubility in coexisting garnet and clinopyroxene at very high pressure: the significance ofexsolved futile in garnet [J]. Earth and Planetary Science Letters, 2003, 216:591~601.
    431 Somarin A. K. Garnet composition as an indicator of Cu mineralization: evidence from skarn deposits of NW Iran [J]. Journal of Geochemical Exploration, 2004, 81:47~57.
    432 赖来仁,李艺.矽卡岩锡矿石中锡的赋存状态与锡物相[J].矿产与地质.1999.13(70):86~90.
    433 王忠诚,吴浩若,邝国敦.桂西晚古生代海相玄武岩的特征及其形成环境.岩石学报,1997,13(2):260~265.
    434 张旗,钱青,王焰,等.扬子地块西南缘晚古生代基性岩浆岩的性质与古特提斯洋的演化[J].岩石学报,1999,15(4):576~583.
    435 徐义刚,钟孙霖.峨眉山大火成岩省:地幔柱活动的证据及其熔融条件[J].地球化学.2001,30(1):1~9.
    436 韩吟文,马振东.地球化学[M].北京:地质出版社,2003:181~211
    437 董云鹏,朱炳泉.滇东南建水岛弧型枕状熔岩及其对华南古特提斯的制约[J].科学通报,1999,44(21):2323~2328.
    438 张伯友,赵振华,石满全,等.芩溪二叠纪岛弧型玄武岩的首次厘定及大地构造意义.科学通报,1997,42(4):413~416.
    439 马文璞.华南陆域内古特提斯形迹、二叠纪造山作用和互换构造域的东延.地质科学,1996,31(2):105~113
    440 殷鸿福,吴顺宝,杜远生,等.华南是特提斯多岛洋体系的一部分[J].地球科学,1999,24(1):1~12.
    441 吴根耀,吴浩若,钟大赉,等.滇桂交界处古特提斯的洋岛和岛弧火山岩[J].现代地质,2000,14(4):393~400.
    442 吴根耀.滇桂交界区印支期前陆褶皱冲断带[J].地质科学,2001,36(1):64-71
    443 吴根耀,马力,钟大赉等.滇桂交界区印支期增生弧型造山带:兼论与造山作用耦合的盆地演化[J].石油实验地质,2001,23(1):8~18.
    444 锺大赉,吴根耀,季建清,等.滇东南发现蛇绿岩[J].科学通报,1998,43(13):1635~1370.
    445 丘元禧,张伯友.华南古特提斯东沿问题的探讨[J].中国区域地质,2000,12(2):175~180.
    446 Kesler S. E. Metaliogenic evolution of convergent margins:Selected ore deposh models[J], Ore geology reviews. 1997, 12:153~171.
    447 曾骥良,莫志雄等.个旧花岗岩的融化实验及其成因机理和找矿标志的讨论[J].冶金工业部地质研究所学报,1983,(3):58~65.
    448 李人澍.成矿系统分析的理论与实践[M].北京:地质出版社,1996,19~20
    449 翟裕生.论成矿系统[J].地学前缘,1999,6(1):13~27.
    450 芮宗瑶,王龙生,王义天.成矿系统的始态、终态及其过程[J].矿床地质,2002,21(2):137~148.
    451 吴春明,耿元生.变质作用精细过程研究进展[J].地球科学进展.2001,16(6):785~794.
    452 肖益林,傅斌,郑永飞.激光探针分析在氧同位素地球化学研究中的应用[J].1998,5(1-2):283~294.
    453 张照志,赵磊,孟庆祝,等、电子探针化学测年技术及其在地学中的应用[J].现代地质,2001,15(1):69~73.
    454 吴平霄,吴金平,肖文丁,等.斜长石环带的成因机制[J].地质地球化学.1997,(3):40~49.
    455 吴平霄,吴金平,李才伟,等.斜长石韵律环带的结晶速率方程及其动力学机制[J].岩石学报.1998,14(3):388~394.
    456 马建秦,李朝阳,张复新.秦岭煎茶岭金矿床含金富砷黄铁矿增生环带研究[J].矿物学报.1999,19(2):139~147.
    457 杨进辉,马红梅,周新华,等.山东蓬莱金矿黄铁矿成分环带的成因及成矿意义[J].地质科学,2000,35(2):168~174.
    458 吴琼英.粤西地区锡矿床锡石标型特征[J].广东有色金属地质.1992,(1):42~48.
    459 赵东林,胡能高,安三元.东秦岭秦岭岩群中角闪石环带所记录的P-T-t轨迹,矿物岩石[J].1997,17(3):27~30.
    460 姜文波,张立飞.利用钠质角闪石成分环带计算蓝片岩的P-T-t轨迹—以新疆阿克苏前寒武纪蓝片岩为例,岩石学报.[J].2001,17(3):469~475.
    461 方文,游振东,王汝成,等.大别山北部石榴辉石岩透辉石中石英和单斜顽火辉石的出溶[J].科学通报,2001,46(10):850~854.
    462 刘树文,张进江,郑亚东.小秦岭变质核杂岩同变形期的P-T路径[J].科学通报.1998,43(3):312~318.
    463 赵成浩,顾连兴,杜建国,等.大别山榴辉岩富流体退变质阶段的白色云母[J].岩石矿物学杂志,2003,22(2):157~161.
    464 仝来喜,张振禹,刘小汉,等.东南极拉斯曼丘陵柱晶紫苏堇青麻粒岩中堇青石的矿物学特征[J].1997,13(3):395~405.
    465 洪文兴,朱祥坤.独居石微粒微区成分分布的研究[J].高校地质学报,2000,6(2):167~172.
    466 董传万,徐夕生,陈小明,等.福建平潭角闪辉长岩结晶过程的矿物学记录[J].矿物学报.1997,17(3):285~290.
    467 戚学祥,张建新,李海兵等.北祁连南缘右行韧性走滑剪切带糜棱岩矿物的化学成分及其对形成环境的响应[J].现代地质,2004,18(1):54~63.
    468 Bi Xian-wu, Hu Rui-zhong. REE geochemistry of primitive ore in Ailaoshan gold belt, southwest china[J]. Chinese journal of geochemistry, 1998, 17(1):91~96.
    469 Zhan Mingguo, Lu Yuanfa, Dong Fangliu, et al. Genesis of Yangla Banded Skarn-Hosted Copper Deposit in Tethys Orogenic Belt of Southwestern China[J]. Journal of China University of Geosciences, 1999, 10(1):58~61.
    470 Chen Tian-hu, Yang Xue-ming, Yue Shu-cang, et al. Geochemistry of rare elements in Xikeng Ag Pb Zn ore deposit, South Anhui, China[J]. Journal oft'are earths, 2000, 18(3):169~173
    471 Lai Jian-qing, Wu Cheng-jian, Peng sheng-lin. REE characteristics and genesis of alkaline—rich porphyry, Yunnan province[J]. J. Cent. Southuniv. Technil. 2001, 8(1):45~49.
    472 Yuan Feng, Zhou Taofa, Liu Xiaodong, et al. Geochemistry of rare earth elements of Anhui copper deposit in Anhui province[J]. Journal of rare earths, 2002, 20(3):223~227.
    473 Xu Cheng, Liu Congqiang, Qi Liang, et al. Geochemistry of carbonatites in Maoniuping REE deposit, Sichuan Province, China. Science in china (Series D), 2003, 46(3):246~256.
    474 洪大卫.华南花岗岩的黑云母和矿物相及其与矿化系列的关系[J].地质学报.1982,(2):149~164.
    475 赫英.西华山花岗岩中的包体和成因[J].西北大学学报(自然科学版),1995,25(3):241~244.
    476 Wang Cansheng, Xia Weihua Granite-related mineralizing fluids and ore-forming metals: review. [J]. Earth science frontiers(china university of geosciences, Beijing), 1994, 1(3-4):35~44.
    477 Flynn R T, Burnham CW. An experimental determination of rare earth partition coefficients between a chloride-containing vapor phase and silicate melts[J]. Geochim. et Cosmochim. Ac ta., 1978, 42:685.
    478 Humphris S. E. The mobility of rare earth element in the crust. In: Henderson P, ed. Rare Earth Element Geochemistry. Amsterdam: Elsevier, 1984, 317.
    479 Cantrell K. J., Bryne R. H. Rare earth element complexation by carbonate and oxalatcions. Geochim. Cosmochim. Acta, 1987, 51:587.
    480 Moiler P., Parekh P. P., Schneider H. J. The application of Tb/Ca-Tb/La abundance ratios to problems of fluorite genesis[J]. Mineral Deposita, 1976, (11):111~116.
    481 Chcslcy J. T. Samarium-Neodymium Direct of Fluorite [J]. Science, 1991, 252:949~951.
    482 马振东,陈颖军.华南扬子与华夏陆块古-中元古代基底地壳微量元素地球化学示踪探讨[J].地球化学,2000,29(6):525~531.
    483 王联魁,王慧芬,黄智龙.Li-F花岗岩液态分离的微量元素地球化学标志[J].岩石学报,2000,16(2):145~152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700