用户名: 密码: 验证码:
主要梨品种细胞质遗传多态性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梨属于蔷薇科的梨亚科,品种很多,长期以来在分类上存在很多的问题。本论文的目的是研究主要梨品种细胞质遗传多态性。采用PCR-RFLP方法,对提取出的总DNA用10对叶绿体通用引物进行扩增,对PCR产物用限制性内切酶AluⅠ, HaeⅢ, HinfⅠ, Hin6Ⅰ, RsaⅠ, MvaⅠ和TaqI进行酶切,对19种梨(包括新疆梨系统、白梨系统、西洋梨系统、秋子梨系统、杜梨、沙梨系统)的叶绿体基因组trnS-trnfM非编码区进行克隆、测序。应用DPS v7.05和DNAMAN、DNAStar、ClustalX-1.83、PHYLIP-3.68软件进行分析。通过序列比对,再进行聚类分析,最后依据所得结果确定所测分子序列的亲缘关系,构建系统进化树。
     结果显示:10对引物中只有7对(cp01,cp 02,cp 03,cp 04,cp 06,cp 09,cp 10)能在梨属植物上扩增出一条特异性谱带,这说明梨属植物叶绿体基因组序列十分保守,3个引物对(cp05, cp07, cp08)不能在梨属植物上扩增出谱带。931份引物对/酶切组合中,cp09/MvaⅠ, cp03/Hin6Ⅰ的酶切位点有显著差异。
     对梨属植物的cpDNA trnS-trnfM区域进行克隆、测序,所得的序列长度为:库尔勒香梨和鸭梨的序列最长(1642bp),苹果梨、早酥梨、慈梨、象牙、翠伏的序列最短(1272bp)。
     用DNAMAN软件对序列进行比对分析:库尔勒香梨与白梨系统的同源性为:85.01%,与新疆梨系统的同源性为:78.60%,与西洋梨系统的同源性为:78.28%,与沙梨系统的同源性为:77.47%,与秋子梨系统的同源性为:77.91%。
     根据ClustalX软件完全比对的结果,用PHYLIP-3.68软件的邻接法对cpDNA trnS-trnfM区域序列变异位点构建系统进化树。黑酸梨和京白聚为一类,伏茄和身不知聚为一类,冬巴和新世纪聚为一类。库尔勒香梨和新疆句句梨、金川雪梨、京白、黑酸梨聚为一类。
     本实验的主要结论:库尔勒香梨与苹果梨,鸭梨,早酥,慈梨,砀山梨,金川雪梨,新疆句句梨,锦丰的平均距离系数较小,与其他梨的平均距离系数较大。
     早酥是苹果梨和身不知杂交出来的品种。早酥与苹果梨的同源性为:99.45%,与身不知的同源性为:97.76%。锦丰是苹果梨和慈梨杂交出来的品种。锦丰与苹果梨的同源性为:78.76%,锦丰与慈梨的同源性为:78.71%。和父本相比,后代和母本的同源性较高。库尔勒香梨在与18种梨的序列比对中,和砀山梨的同源性最高为:98.36%。库尔勒香梨与白梨系统和新疆梨系统的亲缘关系较近,与沙梨系统和秋子梨系统的亲缘关系较远。
     因此,本实验的意义是结合分子生物学和生物信息学对19个梨品种进行细胞质分析,搞清白梨系统、新疆梨系统、西洋梨系统、杜梨、沙梨系统和秋子梨系统的胞质基因的遗传多样性。以期为研究梨属植物亲缘关系提供进一步的遗传学证据。
There were many species of Pyrus. Because many interspecific hybrids were fertile,there were so many questions on Pyrus relationships for a long time.This experiment researched on the genetic diversity of nineteen cultivars in Pyrus derived from cpDNA PCR-RFLP.Ten universal primer pairs of chloroplast genome were used to amplify cpDNA non-coding regions in nineteen Pyrus species. The PCR products were digested by seven restriction enzymes. To clone and sequence the cpDNA non-coding regions in nineteen Pyrus species. DPS v7.05 was used to account Jaccard, the dendrogram was constructed by UPGMA. DNAMAN、DNAStar、ClustalX-1.83 and PHYLIP-3.68 were used to build the system tree.According to the sequences,we could make sure the relationship among these Pyrus.
     The result showed that seven primer pairs(cp01, cp02, cp03, cp 04, cp06, cp09, cp 10)generated special bands from Pyrus. The combination have 931 between primer pairs and restriction enzymes.The fragements digested of cp09/MvaI, cp03/Hin6I were different.
     The trnS-trnfM region in chloroplast genome were cloned and sequenced in nineteen species of Pyrus. The nucleotide sequences of Korla pear and Yali were longest(1642bp),and the shorest sequences(1272bp) were Pingguoli,Zaosuli,Cili,Xiangya,Cuifu.
     The nucleotide sequences were aligned with DNAMAN software. The identity of the Korla pear and P.bretschneideri Rhed. was 85.01%, the identity of the Korla pear and P.sinkiangensis Yu was 78.60%, the identity of the Korla pear and P.communis L.was 78.28%, the identity of the Korla pear and P.pyrifolia (Burm.) Nakai was 77.47%, the identity of the Korla pear and Pyrus ussuriensis Maxim. was 77.91%.
     According to the aligment, the trnS-trnfM region in chloroplast genome were built in neigorbor way of the PHYLIP-3.68 software.According the phylogenetic tree,Heisuanli and Jingbaili were group,Fuqie and Shenbuzhi were group,Dongba and Xinshiji were group, the Korla pear,Jujuli,Jinchuanxueli, Heisuanli and Jingbaili were group.
     The conclusions were as follows:the average distance coefficient of the Korla pear with Yali,Dangshanli,Pingguoli,Cili,Jinchuanxueli,Jinfeng and Jujuli were smaller; that of Korla pear with the other cultivars were bigger. the Korla pear and P.sinkiangensis Yii had nearer relationships. the Korla pear and P.pyrifolia (Burm.) Nakai had farer relationships.
     Zaosu was hybridized by Pingguoli and Shenbuzhi. The identity of the Zaosu and Pingguoli was 99.45%, The identity of the Zaosu and Shenbuzhi was 97.76%. Jinfeng was hybridized by Pingguoli and Cili. The identity of the Jinfeng and Pingguoli was 78.76%, The identity of the Jinfeng and Cili was 78.71%.Contrasted to the male parent,the offsprings were closed with the female parent. The identity of the Korla pear and the Dangshanli were 98.36%,which were hingest in the another Pyrus species.Hence, the Korla pear was closed with P.bretschneideri Rhed.and P.sinkiangensis Yu.
     Therefore,the meaning of the paper was able to analyse the relationships with biology and bioinformatics.We were able to study the polymorphism in Pyrus.The evidents were provided to research the relationships of the Pyrus.
引文
[1]俞德俊.中国果树分类学[M].北京:农业出版社.1979.22.
    [2]蒲富慎.梨的育种[M].台肥:安徽科学技术出版社,1987.27-52.
    [3]辛树帜.中国果树史研究[M].北京:农业出版社,1983,57.
    [4]Korban S S,Skirvin R M. Nomenclature of the cultivated apple[J]. HortScience, 1984,19 (2):177-180.
    [5]Koehne E. Die gattungen der pomaceen[M]. Berlin,1890.
    [6]RehdPr A. Manual of cultivated trees and shrubs (2nd ed)[M]. Macmillan, New York, USA,1940.
    [7]菊池秋雄.果榭圈芸学(上卷)果榭睡颊各谕[M].东京:养贤堂,1948.
    [8]Challice J S, Westwood M N. Numerinal taxonomic studies of the genus Pyrususing both chemical and botanical characters [J]. Bot J Linn Soc,1973,67:121-148.
    [9]滕元文,柴明良,李秀根.梨属植物分类的历史回顾及新进展[J].果树学报2004,21(3):252-257.
    [10]Parani M, Lakshmi M, Ziegenhagen B, Fladung M,Senthilkumar P, Parida A. Molecular phylogeny of mangroves VII PCR-RFLP of trnS-psbC and rbcL gene regions in 24 mangrove and mangrove-associate species [J]. Theor Appl Genet,2000,100:454-460.
    [11]Banno. Isoenzymes and RAPD markers to identify the parenthood of Japanese pear 'Kuratsuki'[J].J Jap Soc Hort Sci,2000,69(2):208-213.
    [12]Teng Y W, Tanabe K, Tamura F, et al. Genetic relationships of pear cultivars in Xingjiang, China, as measured by RAPD marks[J].J Hort Sci Blot,2001,76(6):771-779.
    [13]杨槐俊.孢粉学在部分梨属植物分类研究中的应用[J].果树科学,1985,2(3):2-9.
    [14]邹乐敏,张西民,张志德,等.根据花粉形态探讨梨属植物的亲缘关系[J].园艺学报,1986,13(4):219-224.
    [15]姚宜轩,许方.我国梨属植物花粉形态的比较观察[J].莱阳农学院学报,1990,7(1):1-8.
    [16]刘志虎,何天明,钟芳.梨花粉量的测定与分析[J].甘肃林业科技,2003,28(1):34-35.
    [17]蒲富慎,林盛华,宋文芹,等.中国梨属植物核型研究I[J].武汉植物学研究,1985,3(1):381-387.
    [18]蒲富慎,林盛华.中国梨属植物核型研究II[J].园艺学报.1986,13(2):87-90.
    [19]潘立忠,马兵钢,牛建新,等.梨品种间花粉发育的比较分析[J].新疆农业科学,2001,38(5):240-242.
    [20]马兵钢,牛建新,冯建荣,等.同工酶在梨属系统发育分析中的应用[J].石河子大学学报(自然科学版),2003,7(2):119-123.
    [21]曲柏宏,金香兰,陈艳秋,等.梨属种质资源的RAPD分析[J].园艺学报,2001,28(5):460- 462.
    [22]曲柏宏,金香兰,陈艳秋,等.苹果梨分类地位的RAPD鉴定[J].吉林农业大学学报,2003,25(3):292-295.
    [23]王丙旭.RAPD在梨种质资源亲缘关系和品种鉴定中的应用[D].长春:吉林农业大学,1998.1-5.
    [24]马兵钢,牛建新,潘立忠,等.RAPD-PCR对梨属植物品种鉴定的研究[J].西北农业学报,2004,13(1):84-88.
    [25]马兵钢,牛建新,吴忠华.覃伟铭.新疆主要梨品种亲缘关系的分子标记分析[J].石河子大学学报,2004,22(2):97-102.
    [26]马兵钢,牛建新,潘立忠,冯建荣,鲁晓燕.应用RAPD技术分析新疆主要梨品种的遗传关系[J].果树学报,2004,24(6):521-525.
    [27]赵国芳.ISSR对梨属(PyrusL.)栽培品种基因组的指纹分析[D].河北:河北农业大学,2003:36-37.
    [28]胡德昌.柿及其部分近缘种mtDNA和cpDNA多态性分析[D].武汉:华中农业大学,2007,
    [29]Mejnartowicz M. Inheritance of chloroplast DNA in Populus[J]. Theor Appl gonefl, 1991,82(4):477~480.
    [30]Rajora 0 P Dancik B P. Choroplast DNA inheritance in Populus[J]. Theor Appl Gellet, 1992,84:280-285.
    [31]Duminil J, Pemonge MH, Petit 1RJ. A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA[J].Mol Ecol Notes,2002,2:428~430.
    [32]马捷琼,刘缠民.细胞质DNA[J].生物学教学2003,28(6):49-50.
    [33]刘大钧.细胞遗传学[M].北京:农业出版社,2004.
    [34]Maier M G, Thompson W F. Complete sequence of the maize chloroplast genome:Gene content, hotspots of divergence and fine tuning of genetic information by transcript editing[J]. J Mol Biol,1995,251:614~628.
    [35]Ogihara Y, Isona K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N, Takumi S, Ikeo K, Gojobori T, Murai K, Matsuoka Y, Ohnishi Y, Tajiri H, Tajiri H, Tsunewaki K. Strucural features of a wheat plastome as revealed by compete sequencing of chloroplast DNA[J].Mol Gen Genet,2002,266:740~746.
    [36]Yonemori K,Parfitt D E, Kanzaki S,Sugiura A, Utsunomiya N, Subhadrabandhu S. RFLP analysis of an amplified region of cpDNA for phylogeny of the Genus Diospyors[J]. J Japan Soc Hort Sci,1996,64:771~777.
    [37]Badenes M L, Parfitt D E. Phylogenetic relationships of the cultivated Prunus species from an analysis of chloroplast DNA variation [J]. Theor Appl Genet,1995,90: 1035-1041.
    [38]Demesure B, Comps B, Petit R.J. Chloroplast DNA phylogeograph of the common beech (Fagus sylvatica L.) in Europe [J]. Evolution,1996,50:2515~2520.
    [39]Pierre Taberlet,et al Universal primer for amplification of three non—coding regions of chlororplast DNA[J]. Plant Molecular Biololgy,17:1105-1109.
    [40]Sugiura M. The chloroplast genome[J]. Plant Molecular Biology,1992,19:149-168.
    [41]Xu D H, Abe J,Sakai M,Kanazawa A,Shimamoto Y. Sequence variation of non-coding regions of chloroplast DNA of soybean and related wild species and its implications for the evolution of different chloroplast haplotypes[J]. Theor Appl Genet,2000, 101:724-732.
    [42]Shaw J, Small R L. Chloroplast DNA phylogeny and phylogeography of the North American plums(Prunes subgenus Prunus section Prunocerasus, Rosaceae) [J].Am J Bot,2005,92:2011-2030.
    [43]Small R L, Lickey E B, Shaw J, Hauk W D. Amplification of noncoding chloroplast DNA for phylogenetic studies in lycophytes and monilophytes with a comparative example of relative phylogenetic utility from Ophioglossaceae[J]. Mol Phylogenet Evol,2005,36:509-522.
    [44]Wang a, Yang M, Liu J. Molecular phylogeny, recent radiation and evolution of gross morphology of the rhubarb genus Rheum (Polygonaceae) inferred from chloroplast DNA trnL-F sequences[J]. Annals of Botany,2005,96:489-498.
    [45]李健仔,李思光,罗玉萍.叶绿体DNA分析技术及其在植物系统学研究中的应用[J].江西科学,2002,20(3):182-188.
    [46]李建仔等,猕猴桃属植物叶绿体基因PCR—RFLP分析[J].植物研究,2003,7(23).
    [47]李作洲.猕猴桃属植物的分子系统学研究[D].武汉:中国科学院武汉植物园,2006.
    [48]林伯年,沈德绪.利用过氧化物同工酶分析梨属种质特性及亲缘关系[J].浙江农业大学学报,1983,9(3):235-242.
    [49]Kimura T, Iketani H, Kotobuki K,Matsuta N, Ban Y,Hayashi T, Yamamoto T. Genetic characterization of pear varieties revealed by chloroplast DNA sequences [J]. J Hort Sci Biotech,2003,78:241-247.
    [50]膝元文,柴明良,李秀根.梨属植物分类的历史回顾及新进展[J].果树学报,2004,21(3):252-257.
    [51]Sauris P. Chloroplast DNA study in sweet cherry cultivars(Prunus avium L.)using PCR-RFLP method[J]. Gen Resour Crop Evol,2003,50:489-495.
    [52]Cheng Y J, Guo W W, DengX X. Molecularc haracterization of cytoplasmic and nuclear genomes in phenotypically abnormal Valencia orange(Citrus sinensis)+Meiwa kumquat(Fortunella crassifolia) intergeneric somatic hybrids [J]. Plant Cell Rep, 2003,21:445-451.
    [53]Shaw J, Small R L. Chloroplast DNA phylogeny and phylogeography of the North American plums(Prunus subgenus Prunus section Prunocerasus, Rosacease) [J].Am J Bot,2005,92:2011-2030.
    [54]Nicolosi E,Deng Z N,Gentile A, Malfa L. Citrus phylogeny and genetic origin of important species as investigated by molecular markers[J]. Theor Appl Genet,2000, 100:1155-1166.
    [55]Palmer J D.Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation[J]. Am Nat,1987,130:6-29.
    [56]Wu W, Zheng Y L,Chen L, et al. PCR-RFLP analysis of cpDNA and mtDNA in the genus Houttuynia in some areas of China[J]. Hereditas,2005,142:24-32.
    [57]Xu D H, Abe J, Kanazawa A, et al. Identification of sequence variations by PCR-RFLP and its application to the evaluation of cpDNA diversity in wild and cultivated soybeans[J]. Theor Appl Genet,2001,102:683-688.
    [58]盖树鹏,孟祥栋.分子标记技术及其在作物育种中的应用[J].农业生物技术科学,2003,19(6):11-15.
    [59]刘平,彭士琪,刘孟军,等.分子标记在果树上的应用及前景展望[J].河北农业大学学报,2002,25(1):100-105.
    [60]贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29:1-10.
    [61]Wu W, Zheng Y L, Chen L, Wei Y M, Yan Z H, Yang R W. PCR-RFLP analysis of cpDNA and mtDNA in the genus Houttuynia in some areas of China[J]. Hereditas,2005,142:24-32.
    [62]Taberlet P, Gielly L, Pauto G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA[J]. Plant Mol Biol,1991,17:1105-1109.
    [63]Demesure B, Sodiz N,Petit R J. A set of universal primers for amplification of polymorphic noncoding regions of mitochondrial and cpDNA in plants[J]. Mol Ecol, 1995,4:129-131.
    [64]Hiratsuka J,Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C R, Men B Y, Li Y Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M. The complete sequence of the rice(Oryza sativa)chloroplast genome:intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of cereals[J]. Mol Gen Genet,1989,217:185-194.
    [65]Nicolosi E, Deng Z N, Gentile A, Malfa L. Citrus phylogeny and genetic origin of important species as investigated by molecular markers [J]. Theor Appl Genet,2000, 100:1155-1166.
    [66]Palmer J D. Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation[J].Am Nat,1987,130:6-29.
    [67]Panda S, Martin J P, Aguinagalde I. Chloroplast DNA study in sweet cherry cultivars (Prunus avium L.) using PCR-RFLP method [J]. Genet Res Crop Evol,2003,50:489-495.
    [68]Besnard G and Berville A. On chloroplast DNA variations in the olive(Olea europaea L.) complex: comparison of RFLP and PCR polymorphisms [J]. Theor Appl Genet,2002, 104:1157-1163.
    [69]Powell W, Morgante M,McDevitt R, Vendramin G G,Rafalski J A. Polymorphic simple sequence repeat regions in chloroplast genomes:Applications to the population genomes of pines [J]. Proc Natl Acad Sci USA,1995,92:7759~7763.
    [70]Weising K, Gardner R C.A Set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms [J]. Genome,1999,42:9~19.
    [71]Ishii T and McCouch S R. Microsatellites and microsynteny in the chloroplast genomes of Oryza and eight other Gramineae species[J]. Theor Appl Genet,2000,100:1257~1266.
    [72]Xu D H.Abe J, Gai J Y, Shimamoto Y. Diversity of chloroplast DNA SSRs in wild and cultivated soybeans:evidence for multiple origins of cultivated soybean [J]. Theor Appl Genet,2002,105:645~653.
    [73]Mengoni A, Ruggini C,Vendramin G G,Bazzicalupo M. Chloroplast microsatellite variations in tetraploid alfalfa[J]. Plant Breed,2000,119:509~512.
    [74]Cheng Y J, Guo W W, Deng X X. cpSSR a new tool to analyze chloroplast genome of Citrus somatic hybrids [J]. Acta Bot Sin,2003,45:906~909.
    [75]Decroocq V, Eyquard J P, Fave M G, Hagen L S,Pierronnet A. Microsatellite markers in the hexaploid Prunus domestica species and parentage lineage of three European plum cultivars using nuclear and chloroplast simple sequence repeats[J].Mol Breed,2004,13:135~142.
    [76]Lin S H, Fang C Q, Song W Q, et al.AFLP molecular markers of 10 species of Pyrus in China [J]. Acta Hort,2002,587:233~236.
    [77]沈德绪.中国大陆梨育种的现状和展望(上)[M].兴农(台湾),1994.(5):60-67.
    [78]沈德绪.中国大陆梨育种的现状和展望(下)[M].兴农(台湾),1994.(6):62-67.
    [79]蒲富慎.梨品种[M].农业出版社,1989.
    [80]柴明良,沈德绪.中国梨育种的回顾和展望[J].果树学报,2003,20(5):379-383.
    [81]张钊,王野苹.香梨品种种源问题的探讨[J].果树学报,1993,10(2):113-115.
    [82]陈卫东.库尔勒香梨起源的探讨[J].新疆林业,1999(1):37-38.
    [83]高启明,李疆,李阳.库尔勒香梨研究进展[J].经济林研究,2005,23(1):79-82.
    [84]马兵钢,赵宗胜,冯建荣,等.梨属DNA提纯方法的比较研究[J].石河子大学学报,2000,4(4):26-32.
    [85]甘桂兰,程新,李昆太.DPS数据处理软件在发酵培养基优化中的应用[J].中国酿造,2008,(21):69-71.
    [86]唐启义,冯明光.DPS数据处理系统:实验设计、统计分析及数据挖掘[M].北京:科学出版社,2007.
    [87]吴世安,吕海亮,杨继,等.叶绿体DNA片段的RFLP分析在黄精族系统学研究中的应用[J].植物分类学报,2000,38(2):97-110.
    [88]吴菲菲,张志宏,代红艳,张叶,常琳琳.利用cp DNA PCR—RFLP分析中国山楂属植物的亲缘关系[J].沈阳农业大学学报,2008-12,39(6):664-668.
    [89]聂继云,张红军,马智勇,等.聚类分析在我国果树研究中的应用及问题分析[J].果树科学,2000,17(2):128-130.
    [90]燕安,朱登云.叶绿体基因组在系统发育学及基因工程领域的应用[M].细胞生物学杂志,2004,26(2):153-156.
    [91]萨姆布鲁克J,费里奇E F,曼尼阿蒂斯T.金冬雁,黎孟枫,译2版.分子克隆实验指南[M].北京:科学出版社,1995.
    [92]奥斯伯F,布伦特R,金斯顿R E编,等.颜子颖,王海林,译.精编分子生物学实验指南[M].北京:科学出版社,2001.
    [93]卢圣栋著.现代分子生物学实验技术[M].北京:高等教育出版社,1993.
    [94]梁国栋著.最新分子生物学实验技术[M].北京:科学出版社,2001.
    [95]格瑞森姆W等著.刘进元,乌青余等译.植物分子生物学实验指南[M].北京:科学出版社,2002.
    [96]张维铭主编.现代分子生物学实验手册(第二版)[M].北京:科学出版社,2003.
    [97]张革新.简明生物信息学教程[M].北京:化学工业出版社,2006.
    [98]许忠能.生物信息学[M].北京:清华大学出版社.2008.
    [99]罗静初.生物信息概论[M].北京:北京大学出版社,2002.
    [100]钟扬等.序列与基因组分析(分析)[M].北京:高等教育出版社,2003.
    [101]沈世镒.生物序列突变与比对的结构分析[M].北京:科学出版社,2003.
    [102]王禄山,高培基.生物信息学应用技术[M].北京:化学工业出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700