用户名: 密码: 验证码:
温度和寄主对黑粪蚊Scatopse sp.生长发育和代谢酶活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑粪蚊Scatopse sp.是我国食用菌生产中的重要害虫。近年来,随着食用菌产业的迅速发展,其危害越来越严重,严重制约我国食用菌产业的安全生产。目前国内外对该虫生物学、生态学的报道研究资料甚少,对该虫种群数量消长与食用菌种类之间关系的研究尚未见报道。鉴于此,笔者选择陕西关中地区种植规模较大的3种食用菌平菇、木耳和银耳,在室内条件下,研究了不同温度和寄主对该虫生长发育、繁殖和代谢酶活性的影响,以期为该虫的预测预报和有效治理提供科学依据。主要研究结果如下:
     1.对平菇、木耳和银耳3种寄主上黑粪蚊幼虫的发育历期和存活率,蛹重和化蛹率,成虫寿命、雌虫产卵量、雌性比和羽化率及种群趋势指数等指标综合分析结果表明:在供试的3种寄主中,平菇最有利于黑粪蚊的生长发育和繁殖,其次为木耳,而银耳较不适合黑粪蚊的生长发育和繁殖。
     2.在15~30℃范围内,随着温度的升高,黑粪蚊幼虫和蛹的发育历期显著缩短;成虫寿命在20℃时最长,其次为15℃、25℃和30℃。在15℃、20℃、25℃和30℃4个不同温度处理中,20℃最适合黑粪蚊幼虫和蛹的存活,其次为25℃,15℃和30℃相对较差;35℃条件下黑粪蚊不能正常孵化、化蛹和羽化生长发育。1龄、2龄、3龄和4龄幼虫及蛹的发育起点温度分别为1.56℃、1.74℃、4.34℃、2.47℃和2.46℃。
     3.不同食用菌对黑粪蚊幼虫体内酸性磷酸酯酶(ACP)、碱性磷酸酯酶(ALP)和乙酰胆碱酯酶(AchE)这3种解毒酶的活性影响差异显著。其中,ACP和ALP活性以取食银耳的最高,其次为木耳,取食平菇的活力最低。AchE活性以取食平菇的最高,取食银耳的活力最低,取食木耳的居中。
     4.不同温度对黑粪蚊体内SOD和CAT活性影响差异均显著。其中SOD活力以15℃和30℃最高,其次为20℃,25℃最低。CAT活性以15℃最高,其次为20℃和30℃,25℃最低。
Scatopse sp. is the most destructive pests in the production of edible fungi. With the development of edible fungi industry, damage caused by Scatopse sp. has became so destructive that it has been one of the most important constraints of this industry in many areas of China. It is known that there are few reports about the biology and ecology of Scatopse sp., and also no reports about the relationship of its population dynamics to the kinds of edible fungi, no matter in China or abroad. Three kinds of edible fungi, including Pleurotus ostreatus, Auricularia auricular and Tremella fuciformis, which are widely-cultured in Guanzhong area, Shaanxi, China, were selected in this study as fodder of Scatopse sp. larvae. And research was carried out to find out the effects of different kinds of edible fungi on the development and reproduction of Scatopse sp. as well as its population parameters, to construct an original life table of the population. This paper aims to provide a theoretical reference to rational layouts of different kinds of edible fungi so as to achieve a reduction in both the population number of Scatopse sp. and the use of pesticides. Main results were as follows:
     1. The effect of three species of edible fungi on the growth and development of Scatopse Sp. had been determined. The results indicated that Pleurotus ostreatus was best for the growth and development of Scatopse Sp., on which the mean eggs, survival rate, hatch rate and other parameter were relatively high. And then Auricularia auricular, the worst was Tremella fuciformis.
     2. Temperature had obvious effect on the growth and development of Scatopse Sp.. The zone of favorable temperature of Scatopse Sp. was at 15℃~30℃, in which Scatopse Sp. can normally survival, beyond 35℃it can’t survival.
     3. The different edible fungi had significant effect on the activity of ACP, ALP, AChE of Scatopse Sp. of which, the activity of ACP and ALP were the highest when larvae fed on Tremella fuciformis, and then Auricularia auricular the lowest was Pleurotus ostreatus. The activity of AChE was highest when larvae fed on Pleurotus ostreatus, and then Auricularia auricular, the lowest was Tremella fuciformis.
     4. The temperatures significantly affected the activity of SOD and CAT Of which, the avtivity of SOD was the highest at 15℃and 30℃, and then 20℃, the lowest was 25.the activity of CAT was the highest at 15℃, and then 20℃and 30℃, the lowest was 25℃.
引文
[1]张学敏,杨集昆.食用菌害虫的常见类群及防治[J].生物学通报, 1999, 34(4): 19-21.
    [2]弓明钦,陈羽,王凤珍等.云南保山地区松茸主要病虫害调查.食用菌学报, 2002, 9(2): 41-45.
    [3] Hussey N W., Wyatt I J. The interaction between mushroom mycelium and insect pest populations[J]. Mushroom science, 1962, 5: 509-517.
    [4] Hussey N W., Wyatt I J. Cecid control by incorporation of insecticides in composts[J]. Mushroom science, 1959, 4: 280-287285.
    [5] Wyatt I J. Insecticides and spawn strain[J]. Mushroom J., 1973, 3: 112-114.
    [6] Wyatt I J. Principles of insecticide action on mushroom cropping: incorporation into compost[J]. Ann. Appl. Biol., 1977, 85: 375-388.
    [7] Wyatt I J. Principles of insecticide action on mushroom cropping: incorporation into casing[J]. Ann. Appl. Biol., 1978, 88: 89-103.
    [8] Kalberer P P. Control of sciarids flies in mushroom cultures[J]. Mushroom Science, 1978, X(2): 385-395.
    [9] Keil C B., Othman, M. H. Effect of methoprene on Lycoriella mali (Diptera: Sciaridea)[J]. J. Econ. Entomology, 1988, 81(6): 1592-1597.
    [10] Wrighet E M., Chambers R J. The biology of the predatory mite Hypoaspis miles(Acari: Laelapidae), potential biological control agent of Bradysia pauper (Diptera: Sciaridea)[J]. Entomophaga, 1994, 39: 225-235.
    [11]杨集昆,张学敏.食用菌害虫的类群[J].植物保护, 1981,7(2): 43-46.
    [12]杨集昆,张学敏.食用菌害虫的类群[J].植物保护, 1981,7(4): 40-45.
    [13]杨集昆,张学敏.食用菌害虫的类群[J].植物保护, 1981,7(6): 36-40.
    [14]邹萍,高建荣,马恩沛.上海地区食用菌蒲螨研究(蜱螨亚纲:蒲螨总科,矮蒲螨总科)[J].上海农学院学报, 1998, 6(3): 221-226
    [15]张志勇.我国食用菌害虫研究现状[J].昆虫知识, 1991, (3): 181-185.
    [16]蒋时察,黄建国.菇床的种群及其为害特性研究[J].中国食用菌, 1995, 14(2): 31-33.
    [17]胡学难,杨臣瑾.贵州省菌蕈害虫种类和天敌种类调查[J].中国食用菌, 1995, 14(2) 33-34.
    [18]邹萍,高建荣.中国食用菌长头螨属二新种(蜱螨亚纲:蒲螨总科)[J].昆虫学报, 1996, 39(4): 430-433.
    [19]陆云华.宜春市食用菌螨类种类调查[J].中国食用菌, 1999, 18(1): 20.
    [20]孙立娟,李忆萍,胡煜等.杨凌及其周边地边地区食用菌害虫初步调查研究[J].西北农业学报, 2008, 17(1): 110-112.
    [21]张学敏,杨集昆,谭琦.食用菌病虫害防治[M].北京:金盾出版社, 1994.
    [22]刘克均.食用菌病虫害识别与防治[M].南京:江苏科学技术出版社, 1986.
    [23]吴菊芳.新编食用菌病虫螨害防治技术[M].北京:中国农业出版社, 2003.
    [24]刘克均.食用菌病虫螨害防治指南[M].北京:中国盲文出版社, 1999.
    [25]杨文钦,黄邦侃.福建食用菌新害虫---星狄夜蛾的初步研究(鳞翅目:夜蛾科)[J].研成果福建农学院学报, 1990, 19(4): 416-420.
    [26]李健康.天麻棘跳虫的发生规律与防治技术[J].植保技术与推广, 2003, 23(9): 14-15.
    [27]邹矛,胡建芳.食用菌害虫大黑伪步甲的生物学及防治.植物保护, 1992, (6): 9-10.
    [28]郑其春.食用菌主要病虫害及其防治[M].北京:中国农业出版社, 2001.
    [29]张维瑞.新缟食用菌病虫害防治技术[M].北京:金盾出版社, 1996.
    [30]罗佳,庄秋林.食用菌有害生物与天敌调查研究[J].江西农业大学学报, 2006, 28(6): 886-889.
    [31]吴光荣,虞轶俊.蘑菇菌种害螨侵染途径的调查研究[J].植物保护学报, 1996, 23(1): 17-19.
    [32]王德芝,张水成,段鸿斌等.食用菌生产技术[M].北京:中国轻工业出版社, 2007.
    [33]陆云华.食用菌大害螨---腐食酪螨的生物学特性及防治对策[J].安徽农业科学, 2002, 30(1): 100-101.
    [34]李蒙英,谢立群.尖眼蕈蚊的生物学及综合防治研究[J].中国食用菌, 2000, 19(3): 19-20.
    [35] Nagesh M., Reddy P., Parvatha. Status of mushroom nematodes and their management in India[J]. Integrated Pest Management Reviews[J], 2000, (5): 212-224.
    [36]高会东.食用菌产前、产中、采后无公害生产技术[J].天津农学院学报, 2003, 10(2): 53-56.
    [37]杜秀菊.鸡腿菇病虫害的综合防治[J].中国食用菌, 2004, 23(4): 25-26.
    [38]林汝楷.蘑菇害虫的生物防治[J].中国食用菌, 1999, 18(4): 25-26.
    [39]王兆唐,蒋玉标,陈俊等.平菇害虫的生物防治研究[J].食用菌,1998, (3): 38
    [40]杭树群,杨怀文.应用昆虫病原线虫防治平菇眼菌蚊初探[J].食用菌, 1992, 13(5): 42-43.
    [41]蒋时察,周仲刚.生物防治在食用菌害虫防治上的研究应用[J].浙江食用菌, 1997, 6: 29-31.
    [42]李建庆,张永安.昆虫病原真菌毒素的研究进展[J].林业科学研究, 2003, 16(2): 233-239.
    [43]彭卫红,郑林用,甘炳成.食用菌生产中农药使用原则和安全性[J].食用菌, 2002, (1): 33-34.
    [44]李菇,陶嘉喜,王宝林.食用菌害虫黑粪蚊生物学特性与防治[J].湖北农业科学, 2004(2): 61-62.
    [45]李勇.黑粪蚊发生危害与防治[J].中国食用菌, 1997, 16(4): 20-21.
    [46]钦俊德.昆虫与植物关系---论昆虫与植物的相互关系及其演化[M].北京:科学出版社, 1987.
    [47]吴世昌.小菜蛾抗药性现状,机理与对策[J].农药科学与管理, 1993(2): 19-22.
    [48] Swingle M C. The effect of previous diet on the toxic action of lead asenate to a leaf-feeding insect [J]. J. Econ. Entomol, 1939, 32: 884.
    [49]高希开,马军.害虫的化学防治与作物抗虫性[J].中国农业大学学报, 1998, 3(1): 78-82.
    [50]唐振华.我国昆虫抗药性研究的现状与展望[J].昆虫知识, 2000, 37(2): 97-103.
    [51] Brattsten L B., Wilkinson C F., Eisner T. Herbivores replant interactions: mixed-function oxidases and secondary plant substances[J]. Science, 1997, 196: 1349-1352.
    [52]唐振华.昆虫抗药性及其治理[M].北京:农业出版社, 1993, 166-302.
    [53]李云寿,罗万春,慕立义.敌敌畏对不同寄主植物上小菜蛾羟酸酯酶活性的体内抑制[J].华东昆虫学报, 1999, 25(6): 4-6.
    [54] Yu S J. Host plant induction of glutathione Stransferace in the fall armyworm[J]. Pestic Biochem Physiol, 1982, 18: 101-106.
    [55]王建军,戴志一,杨益众.取食不同寄主植物对棉铃虫对高效氯氰菊脂敏感性的变化[J].棉花学报, 2001, 13(5): 286-289.
    [56]王开运,姜兴印,仪美芹等.取食不同寄主植物对棉蚜后代抗药性的影响[J].昆虫学报, 2001, 44(4): 469-475.
    [57]王健,吴振廷,李学德.寄主植物对瓜蚜酯酶活性及其耐药性的影响[J].昆虫知识, 1996,33(1): 20-22.
    [58]陈永兵,张纯胄,胡丽秋.寄主植物对甜菜夜蛾生长发育的影响[J].昆虫知识, 1999, 36(6): 332-334.
    [59]高希武,马军.害虫的化学防治与作物抗虫性[J].中国农业大学学报, 1998, 3(1): 78-82.
    [60] Pekin V P. Thermopreferendum reactions of ladybirds (Coleoptera, Coccinellidae) as a criterion for interspecies comparison[J]. Sibirskii Biologicheskii Zhurnal, 1993, 4: 9-18.
    [61] Forsman A., Ringblom K., Civantos E. et al. Convolution of color pattern and thermo regulatory behavior in polymorphic pygmy grasshoppers Tetrix undulate[J]. Evolution, 2002, 56: 349-360.
    [62] Schilman P E., Lazzari C R. Temperature preference in Rhodnius prolixus, effects and possible consequences[J]. Acta Tropica, 2004, 90: 115-122.
    [63] Lazzari C R. Temperature preference in Triatioma infextans (Hemiptera: Reduviidae) [J]. Bulletin of Entomological Research, 1991, 81: 273-276.
    [64] Shinner R H. Leaf temperature effects on Bemisia argentifolii (Hompotera: Aleyrodidae) ovipositon[J]. Environmental Entopology, 1996, 25: 1371-1375.
    [65] Wiktelius S. Distribution of Rhopalosip humpadi (Homoptera: Aphididae) on spring barley plants[J]. Annals of Applied Biology, 1987, 110: 1-7.
    [66] Jian F., Jayas D S., White N D G., et al. Temperature and geotaxis preference by Cryptolestes ferrugineus(Coleoptera: Laemophleeidae) adults in response to 5℃/m temperature gradients atoptimum and hot temperatures in stored wheat and their mortality at high temperature[J]. Environmental Entomology, 2002, 31: 816-826.
    [67] Madge D S. The response of cotton strainers (Dysdercus fasciatus Sign.) to relative humidity and temperature and the location of their hygroreceptors[J]. Entomologia Experimentalis et Applicata, 1965, 8: 135-152.
    [68] Nielsen E T., Nielsen H T. Temperatures preferred by the pierid Asciamonuste L[J]. Ecology, 1959, 40: 181-185.
    [69] Schilman P E., Lazzari C R. Temperature preference in Rhodnius prolixus, effects and possible consequences[J]. Acta Tropica, 2004, 90: 115-122.
    [70] Jian F., Jayas D S., White N D G. Effects of temperature ancclimation and age on movement of Cryptolestes ferrugineus(Coleoptera: Laemophloeidae) adults in response to temperature gradients[J]. Canadian Entomologist, 2005, 137: 71-82.
    [71] Pires H H R., Lazzari C R., Schilman P E., et al. Dynamics of thermopreference in the Chagas disease vector Panstrongy lusmegistus (Hemiptera: Reduviidae)[J]. Journal of Medical Entomology, 2002, 39: 716-719.
    [72] Schilman P E., Lazzari C R. Temperature preference in Rhodnius prolixus, effects and possible consequences[J]. Acta Tropica, 2004, 90: 115-122.
    [73] Kuhrt U., Samietz J., Dorn S. Thermoregulation behavior in codling moth larvae[J]. Physiological Entomology, 2005, 30: 54-61.
    [74]彩万志,庞雄飞,花保祯等.普通昆虫学[M].北京:中国农业大学出版社, 2001,
    [75] Fridovich I. Free radical in biology[M]. New York: Academin press. 1976, 239.
    [76] Packer L. Oygen Radicals in Biological System[A]. Harcourt B J. (ed.), Methods in Enzymology[C]. London: Academic Press, INC. 1984, 105(1): 273-280.
    [77] Fridovich I. Oxygen is Toxic[J]. Bioscicncc, 1977, 27(7): 462.
    [78]刘缠民,马捷琼.不同温度对双齿多刺蚁养殖及其保护酶系的影响[J].徐州师范大学学报, 2007, 25(1): 72-74.
    [79]梅增霞等.韭菜迟眼蕈蚊在不同温度下的实验种群生命表[J].昆虫学报, 2004, 47(2): 219-222.
    [80]唐启义.数理统计在植保试验研究中的应用——方差分析及多重比较[J].植保技术与推广, 2001, 10: 12-13.
    [81]庞雄飞,梁广文.害虫种群系统的控制[M].广东:广东科技出版社, 1995.
    [82] Bessey O A., Lowry O H., Brock M J. A method for the rapid determination of alkaline. phosphatase with five cubic millimeters of serum[J]. Biol Chem, 1946, 164: 321-328.
    [83]钱芸,朱琳,刘广梁.几种农药对鲤鱼脑AchE的联合毒性效应[J].环境污染治理技术与设备, 2000, 1(4): 27-32.
    [84]艾希珍,于贤昌,王绍辉.低温胁迫下黄瓜嫁接苗与自根苗某些物质含量的变化(简报).植物生理学通讯, 1999, 35(1): 26-28.
    [85] Chance B., Machly A C. Assay of catalases and peroxidases[A].Colowick Sp, Kaplan NO. Methods in Enzymology(Vol. 2)[C]. New York: Academic Press, 1955.
    [86]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社, 2002.
    [87]姜卫华,陆志强,马式廉等.寄主植物对甜菜夜蛾酯酶活性及杀虫剂敏感性的影响[J].植物保护, 2001, 27(5): 13-14.
    [88] Terriere L C.Induction of detoxication enzymes in insects[J].Ann Rev Entomol, 1984, 29: 71-88.
    [89]李鹏武,宗静,高希武等.寄主植物对桃蚜羧酸酯酶和乙酰胆碱酯酶的诱导作用[J].植物保护, 1997, 23(2): 14-16.
    [90]宋春满,高家合,邓建华等.寄主植物对云南烟蚜解毒酶和靶标酶活力的影响[J].西南农业大学学报, 2002, 24(3): 241-243.
    [91] Fridovich I.Oxygen is Toxic[J].Bioscicncc, 1977, 27(7): 462.
    [92]李周直,沈惠娟,蒋巧根等.几种昆虫体内保护酶系统活力的研究[J].昆虫学报, 1999, 37(4): 399-403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700